10: VECTORS

This chapter introduces a new mathematical object, the vector. Defined in Sec-
tion 10.2, we will see that vectors provide a powerful language for describing
quantities that have magnitude and direction aspects. A simple example of
such a quantity is force: when applying a force, one is generally interested in
how much force is applied (i.e., the magnitude of the force) and the direction in
which the force was applied. Vectors will play an important role in many of the
subsequent chapters in this text.

This chapter begins with moving our mathematics out of the plane and into
“space.” That is, we begin to think mathematically not only in two dimensions,
but in three. With this foundation, we can explore vectors both in the plane and
in space.

10.1 Introduction to Cartesian Coordinates in Space

Up to this point in this text we have considered mathematics in a 2—dimensional
world. We have plotted graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properties of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotating it out of the plane.

While there is wonderful mathematics to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathematics involving this third di-
mension. In this section we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundation for much of what we do in the
remainder of the text.

Each point Pin space can be represented with an ordered triple, P = (a, b, ¢),
where a, b and c represent the relative position of P along the x-, y- and z-axes,
respectively. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problematic, as we are trying
to represent a 3-dimensional concept on a 2—dimensional medium. We cannot
draw three lines representing the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard conventions exist for plotting
shapes in space that we will discuss that are more than adequate.

One convention is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
tion of the positive x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the positive y-axis, then the extended thumb
will point in the direction of the positive z-axis. (It may take some thought to
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Figure 10.1.1: Plotting the point P =
(2,1,3) in space.

Figure 10.1.2: Plotting the point P =
(2,1,3) in space with a perspective used
in this text.
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verify this, but this system is inherently different from the one created by using
the “left hand rule.”)

As long as the coordinate axes are positioned so that they follow this rule,
it does not matter how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure 10.1.1 we see the point P = (2, 1, 3) plotted on a set of axes. The
basic convention here is that the x-y plane is drawn in its standard way, with the
z-axis down to the left. The perspective is that the paper represents the x-y plane
and the positive z axis is coming up, off the page. This method is preferred by
many engineers. Because it can be hard to tell where a single point lies in relation
to all the axes, dashed lines have been added to let one see how far along each
axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the positive z-axis is pointing up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 10.1.2. The same
point P is drawn, again with dashed lines. This point of view is preferred by
most mathematicians, and is the convention adopted by this text.

Just as the x- and y-axes divide the plane into four quadrants, the x-, y-, and
z-coordinate planes divide space into eight octants. The octant in which x, y, and
z are positive is called the first octant. We do not name the other seven octants
in this text.

Measuring Distances

Itis of critical importance to know how to measure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

Definition 10.1.1 Distance In Space

Let P = (x1,¥1,21) and Q = (X2, ¥2,2>) be points in space. The distance
D between P and Q is

D=+ —x)*+(y2—y1)? + (22 — z2)2.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ||PQ||. The above distance formula
allows us to compute the length of this segment.

Example 10.1.1 Length of a line segment
Let P = (1,4,—1) and let Q = (2,1, 1). Draw the line segment PQ and find its
length.

Notes:
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SOLUTION The points P and Q are plotted in Figure 10.1.3; no special
consideration need be made to draw the line segment connecting these two
points; simply connect them with a straight line. One cannot actually measure
this line on the page and deduce anything meaningful; its true length must be
measured analytically. Applying Definition 10.1.1, we have

PQll = V2 -12+(1—4)72+(1—(-1))? = V14~ 3.74.

Spheres

Just as a circle is the set of all points in the plane equidistant from a given
point (its center), a sphere is the set of all points in space that are equidis-
tant from a given point. Definition 10.1.1 allows us to write an equation of the
sphere.

We start with a point C = (a, b, ¢) which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is,

IPCll = V/(x —a)* + (y = b)? + (2= )2 =r.

Squaring both sides, we get the standard equation of a sphere in space with
center at C = (a, b, ¢) with radius r, as given in the following Key Idea.

Key Idea 10.1.1 Standard Equation of a Sphere in Space
The standard equation of the sphere with radius r, centered at C =
(a,b,c),is

(x—a)+(y—b?+(z—c) =r.

Example 10.1.2 Equation of a sphere
Find the center and radius of the sphere defined by x*> +2x+y? —4y+22—6z = 2.

SOLUTION To determine the center and radius, we must put the equa-
tion in standard form. This requires us to complete the square (three times).

X224y —dy+22—62=2
P+ 2+ 1)+ (P —8y+48)+ (*—62+9)—14=2
(x+1)2+(y—2°+(z—-3)?2=16

The sphere is centered at (—1, 2, 3) and has a radius of 4.

The equation of a sphere is an example of an implicit function defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We

Notes:

Figure 10.1.3: Plotting points P and Q in
Example 10.1.1.
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Figure 10.1.5: The plane x = 2.

=\

Figure 10.1.6: Sketching the boundaries
of a region in Example 10.1.3.
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now consider situations where surfaces are defined where one or two of these
variables are absent.

Introduction to Planes in Space

The coordinate axes naturally define three planes (shown in Figure 10.1.4),
the coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y
plane is characterized as the set of all points in space where the z-value is 0.
This, in fact, gives us an equation that describes this plane: z = 0. Likewise, the
x-z plane is all points where the y-value is 0, characterized by y = 0.
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Figure 10.1.4: The coordinate planes.

The equation x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the y-z coordinate plane, shown in Figure 10.1.5.

Example 10.1.3 Regions defined by planes
Sketch the region defined by the inequalities —1 <y < 2.

SOLUTION The region is all points between the planes y = —1 and
y = 2. These planes are sketched in Figure 10.1.6, which are parallel to the
x-z plane. Thus the region extends infinitely in the x and z directions, and is
bounded by planes in the y direction.

Cylinders

The equation x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equation x> + y> = 1 in space. In the plane, this equation describes a circle
of radius 1, centered at the origin. In space, the z coordinate is not specified,
meaning it can take on any value. In Figure 10.1.8 (a), we show part of the graph
of the equation x2 + y?> = 1 by sketching 3 circles: the bottom one has a con-
stant z-value of —1.5, the middle one has a z-value of 0 and the top circle has a
z-value of 1. By plotting all possible z-values, we get the surface shown in Figure

Notes:
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10.1.8(b). This surface looks like a “tube,” or a “cylinder”; mathematicians call
this surface a cylinder for an entirely different reason.

Definition 10.1.2 Cylinder -
Let Cbe a curve in a plane and let L be a line not parallel to C. A cylinder .

is the set of all lines parallel to L that pass through C. The curve Cis the 2

directrix of the cylinder, and the lines are the rulings. C)

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equations involving 2
variables, and the rulings will be parallel to the axis of the 3™ variable.

In the example preceding the definition, the curve x> + y> = 1 in the x-y ——
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle HH
shown in Figure 10.1.8 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definition.
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Example 10.1.4 Graphing cylinders
Graph the following cylinders.
1. z=y° 2. x=sinz

SOLUTION

. ) 5 . . Figure 10.1.8: Sketching x> + y? = 1.
1. We can view the equation z = y“ as a parabola in the y-z plane, as il-

lustrated in Figure 10.1.7(a). As x does not appear in the equation, the
rulings are lines through this parabola parallel to the x-axis, shown in (b).
These rulings give an idea as to what the surface looks like, drawn in (c).

(a) (b)

Figure 10.1.7: Sketching the cylinder defined by z = y°.

Notes:
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—2

(a)

(b)

Figure 10.1.10: Introducing surfaces of
revolution.

564

2. We can view the equation x = sinz as a sine curve that exists in the x-z
plane, as shown in Figure 10.1.9 (a). The rules are parallel to the y axis as
the variable y does not appear in the equation x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.

(a) (b)

Figure 10.1.9: Sketching the cylinder defined by x = sin z.

Surfaces of Revolution

One of the applications of integration we learned previously was to find the
volume of solids of revolution — solids formed by revolving a curve about a hori-
zontal or vertical axis. We now consider how to find the equation of the surface
of such a solid.

Consider the surface formed by revolving y = +/x about the x-axis. Cross—
sections of this surface parallel to the y-z plane are circles, as shown in Figure
10.1.10(a). Each circle has equation of the form y? + z2 = r? for some radius r.
The radius is a function of x; in fact, it is r(x) = /x. Thus the equation of the
surface shown in Figure 10.1.10b is y? + 22 = (/).

We generalize the above principles to give the equations of surfaces formed
by revolving curves about the coordinate axes.

Key Idea 10.1.2 Surfaces of Revolution, Part 1

Let r be a radius function.

1. The equation of the surface formed by revolving y = r(x) orz =
r(x) about the x-axis is y* + 2% = r(x)>.

2. The equation of the surface formed by revolving x = r(y) orz =
r(y) about the y-axis is x> + 2> = r(y)?.

3. The equation of the surface formed by revolving x = r(z) ory =
r(z) about the z-axis is x> + y* = r(z)*.

Notes:
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Example 10.1.5 Finding equation of a surface of revolution
Let y = sinz on [0, 71]. Find the equation of the surface of revolution formed by
revolving y = sin z about the z-axis.

SOLUTION Using Key Idea 10.1.2, we find the surface has equation x* +
y2 = sin? z. The curve is sketched in Figure 10.1.11(a) and the surface is drawn
in Figure 10.1.11(b).

Note how the surface (and hence the resulting equation) is the same if we
began with the curve x = sin z, which is also drawn in Figure 10.1.11(a).

This particular method of creating surfaces of revolution is limited. For in-
stance, in Example 7.3.4 of Section 7.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sinx as a func-
tion of y is not trivial, as simply writing x = sin~! y only gives part of the region
we desire.

What we desire is a way of writing the surface of revolution formed by ro-
tating y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotating f(x) about the z-axis, we want all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points satisfy the equation r> = x* 4 y?; hence r = 1/x2 + y2. Replacing r with

VX2 + y?in f(r) gives z = f(1/x* + y?). This is the equation of the surface.

Key Idea 10.1.3 Surfaces of Revolution, Part 2

Let z = f(x), x > 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equation z = f(\/x2 + yz).

Example 10.1.6 Finding equation of surface of revolution
Find the equation of the surface found by revolving z = sin x about the z-axis.

SOLUTION Using Key Idea 10.1.3, the surface has equation z = sin (\/x? + y?).

The curve and surface are graphed in Figure 10.1.12.

Notes:

(b)

Figure 10.1.11: Revolving y = sin z about
the z-axis in Example 10.1.5.

(b)

Figure 10.1.12: Revolving z = sin x about
the z-axis in Example 10.1.6.
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Figure 10.1.13: The elliptic paraboloid

z=x*/4+y.
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Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The definition may
look intimidating, but we will show how to analyze these surfaces in an illumi-
nating way.

Definition 10.1.3 Quadric Surface

A quadric surface is the graph of the general second—degree equation in
three variables:

Ax2+By2+sz+ny+Exz—|—Fyz—|—Gx—|—Hy—|—lz+J:0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these
coefficients are 0; we will not consider rotations. There are six basic quadric sur-
faces: the elliptic paraboloid, elliptic cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersections of each
surface with a plane parallel to a coordinate plane. For instance, consider the
elliptic paraboloid z = x2/4 + y2, shown in Figure 10.1.13. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equation:

b's
d=— 2,
2 +y
Divide both sides by d:
X2y
1= .
4d + d

This describes an ellipse — so cross sections parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross sections parallel to the x-z plane. For instance, letting
y = 0 gives the equation z = x?/4, clearly a parabola. Intersecting with the
plane x = 0 gives a cross section defined by z = y?, another parabola. These
parabolas are also sketched in the figure.

Thus we see where the elliptic paraboloid gets its name: some cross sections
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equation of each, provide a sketch with representative traces, and de-
scribe these traces.

Notes:



Plane Trace In plane , In plane
x=d Parabola

=d Parabola
z=d Ellipse

One variable in the equation of the elliptic paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direction of this variable’s axis. Thus
x = y?/a® + 22 /b?* is an elliptic paraboloid that opens along the x-axis.

Multiplying the right hand side by (—1) defines an elliptic paraboloid that “opens” in the opposite
direction.

X
Elliptic Cone, 2°> = — +
a

z Plane Trace z z
x=0 Crossed Lines
y = Crossed Lines
x=d Hyperbola
y=d Hyperbola
z=d Ellipse

One can rewrite the equation as 22 — x*/a*> — y?/b?> = 0. The one variable with a positive
coefficient corresponds to the axis that the cones “open” along.
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The one variable with a negative coefficient corresponds to the axis that the hyperboloid “opens”

along.
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Trace
Hyperbola
Hyperbola

Ellipse

In plane
z=d

The one variable with a positive coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

) i Xy
Hyperbolic Paraboloid, =z = P~y
“ Plane Trace
x=d Parabola
y=d Parabola

z=d Hyperbola
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The parabolic traces will open along the axis of the one variable that is raised to the first power.
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44
1
4 2 y
—44

(b)

Figure 10.1.14: Sketching an elliptic
paraboloid.

—34

(b)

Figure 10.1.15: Sketching an ellipsoid.
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2=y —x

Example 10.1.7 Sketching quadric surfaces
Sketch the quadric surface defined by the given equation.

XZ ZZ yZ 22
ly="—+— 2.5+ 4+ =1. 3.z=y* — X%
Y=74"1 t9ty y
SOLUTION
X2 2
lL.y=—+—:
Y=

We first identify the quadric by pattern—matching with the equations given
previously. Only two surfaces have equations where one variable is raised
to the first power, the elliptic paraboloid and the hyperbolic paraboloid.
In the latter case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the paraboloid opens along the y-axis.

To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.

x = 0: The trace is the parabolay = 22/16
z = 0: The trace is the parabola y = x2/4.

Graphing each trace in the respective plane creates a sketch as shown in
Figure 10.1.14(a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

yZ ZZ

e+ =1

9 4
This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.
y2 22

x = 0: The trace is the ellipse = + — = 1. The major axis is along the
y—axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.

2

z

y = 0: The trace is the ellipse x* + 7 1. The major axis is along the
z-axis, and the minor axis has length 2 along the x-axis.

2
z = 0: The trace is the ellipse x* + % = 1, with major axis along the
y-axis.

Graphing each trace in the respective plane creates a sketch as shown in
Figure 10.1.15(a). Filling in the surface gives Figure 10.1.15(b).

2,

Notes:
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This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric sections. Consider the traces in the y—z and x—z planes:

x = 0: The trace is z = y?, a parabola opening up in the y — z plane.
y = 0: The trace is z = —x?, a parabola opening down in the x — z plane.

Sketching these two parabolas gives a sketch like that in Figure 10.1.16(a),
and filling in the surface gives a sketch like (b).

Example 10.1.8 Identifying quadric surfaces
Consider the quadric surface shown in Figure 10.1.17. Which of the following
equations best fits this surface?

2

z
(a) xz—yz—E:O () Z2Z—-x*—-y*=1
2
z
(b) X —y* -2 =1 @ &’ -y -5 =1
SOLUTION The image clearly displays a hyperboloid of two sheets. The
2
gallery informs us that the equation will have a form similar to Z—z — Z—i — % =1

We can immediately eliminate option (a), as the constant in that equation is
not 1.

The hyperboloid “opens” along the x-axis, meaning x must be the only vari-
able with a positive coefficient, eliminating (c).

The hyperboloid is wider in the z-direction than in the y-direction, so we
need an equation where ¢ > b. This eliminates (b), leaving us with (d). We
should verify that the equation given in (d), 4x> — y?> — % = 1, fits.

We already established that this equation describes a hyperboloid of two
sheets that opens in the x-direction and is wider in the z-direction than in the

y. Now note the coefficient of the x-term. Rewriting 4x?% in standard form, we
2

have: 4x* = Thus when y = 0 and z = 0, x must be 1/2; i.e., each

b's
(1/2)*
hyperboloid “starts” at x = 1/2. This matches our figure.
2

z
We conclude that 4x* — y? — 5= 1 best fits the graph.

This section has introduced points in space and shown how equations can
describe surfaces. The next sections explore vectors, an important mathematical
object that we’ll use to explore curves in space.

Notes:

(b)

Figure 10.1.16: Sketching a hyperbolic
paraboloid.
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Figure 10.1.17: A possible equation of
this quadric surface is found in Example
10.1.8.
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Exercises 10.1

Terms and Concepts

1. Axes drawn in space must conform to the

rule.

2. In the plane, the equation x = 2 defines a ; in
space, x = 2 defines a

3. In the plane, the equation y = x defines a ;in
space, y = x* defines a

4. Which quadric surface looks like a Pringles® chip?

5. Consider the hyperbola x> — y> = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

6. Consider the hyperbola x> — y> = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems

7. The points A = (1,4,2), B = (2,6,3) and C = (4,3,1)
form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1,1,3), B = (3,2,7),C = (2,0,8) and
D = (0,—1,4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
X —8x+y +2y+22+8=0.

10. Find the center and radius of the sphere defined by

Ay +24+4x—2y—4z+4=0.

In Exercises 11 — 14, describe the region in space defined by
the inequalities.

11.

12

13.

14.

Ly +2 <1
.0<x<3
x>0,y>0,z>0
y=>3

In Exercises 15 — 18, sketch the cylinder in space.

15

16

17.

z=x

. y=cosz

(I
Il
-

+

INEW

1
18. y:;

In Exercises 19 — 22, give the equation of the surface of revo-
lution described.

1
19. Revolve z = T

) about the y-axis.

20. Revolve y = x* about the x-axis.
21. Revolve z = x* about the z-axis.

22. Revolve z = 1/x about the z-axis.

In Exercises 23 — 26, a quadric surface is sketched. Determine
which of the given equations best fits the graph.

23.

25.

(a)




26.

In Exercises 27 — 32, sketch the quadric surface.

27. z—yz—i—xz:O

28. 2 =X +

INAW

29. x = —y* — 7

30. 16x* — 16y* — 1627 = 1
3. X i

32. A+ 2+ =14
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Figure 10.2.1: Drawing the same vector
with different initial points.

Figure 10.2.2: lllustrating how equal vec-
tors have the same displacement.
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10.2 An Introduction to Vectors

Many quantities we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be described with just one number. For instance,
a weather forecaster often describes wind with its speed and its direction (“. ..
with winds from the southeast gusting up to 30 mph ...”). When applying a
force, we are concerned with both the magnitude and direction of that force.
In both of these examples, direction is important. Because of this, we study
vectors, mathematical objects that convey both magnitude and direction infor-
mation.

One “bare—bones” definition of a vector is based on what we wrote above:
“a vector is a mathematical object with magnitude and direction parameters.”
This definition leaves much to be desired, as it gives no indication as to how
such an object is to be used. Several other definitions exist; we choose here a
definition rooted in a geometric visualization of vectors. It is very simplistic but
readily permits further investigation.

Definition 10.2.1 Vector

A vector is a directed line segment.
Given points P and Q (either in the plane or in space), we denote with
PQ the vector from P to Q. The point P is said to be the initial point of

the vector, and the point Q is the terminal point.

Ee mgnitude,@gth or norm of PQ is the length of the line segment
Pa:|[Pafl =Pl

Two vectors are equal if they have the same magnitude and direction.

Figure 10.2.1 shows multiple instances of the same vector. Each directed
line segment has the same direction and length (magnitude), hence each is the
same vector.

We use R? (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

Consider the vectors PQ and RS as shown in Figure 10.2.2. The vectors look to
be equal; that is, they seem to have the same length and direction. Indeed, they
are. Both vectors move 2 units to the right and 1 unit up from the initial point
to reach the terminal point. One can analyze this movement to measure the

Notes:



magnitude of the vector, and the movement itself gives direction information
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direction, these two vectors are equal.
This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z directions the terminal point is from the initial
point. Both the vectors P_Q’ and RS in Figure 10.2.2 have an x-displacement of 2
and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the initial point is the origin, (0, 0). This
leads us to a definition of a standard and concise way of referring to vectors.

Definition 10.2.2 Component Form of a Vector

1. The component form of a vector vV in R?, whose terminal point is
(a, b) when its initial point is (0, 0), is {a, b} .

2. The component form of a vector Vin R3, whose terminal point is
(a, b, ¢) when its initial point is (0,0,0), is {a, b, c) .

The numbers g, b (and ¢, respectively) are the components of v.

It follows from the definition that the component form of the vector P_Q’,
where P = (x1,y1) and Q = (xa, y3) is
P_d = <X2 —X1,Y2 — y1> ;
in space, where P = (x1,y1,21) and Q = (x3, ¥», 22), the component form of PQ
is
PQ = <X2 —X1,Y2 — V1,22 —21>-

We practice using this notation in the following example.

Example 10.2.1 Using component form notation for vectors

1. Sketch the vector V = (2, —1) starting at P = (3, 2) and find its magni-
tude.

2. Find the component form of the vector w whose initial pointis R = (-3, —2)
and whose terminal point is § = (—1, 2).

3. Sketch the vector & = (2, —1, 3) starting at the point Q = (1,1,1) and
find its magnitude.

Notes:
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(a)

(b)

Figure 10.2.3: Graphing vectors in Exam-
ple 10.2.1.
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SOLUTION

1. Using P as the initial point, we move 2 units in the positive x-direction and
—1 units in the positive y-direction to arrive at the terminal point P/ =
(5,1), as drawn in Figure 10.2.3(a).

The magnitude of V is determined directly from the component form:

1711 = /2 + (-17 = V5.

2. Using the note following Definition 10.2.2, we have

RE=(-1—(-3),2— (~2)) = (2,4).

One can readily see from Figure 10.2.3(a) that the x- and y-displacement
of RS is 2 and 4, respectively, as the component form suggests.

3. Using Q as the initial point, we move 2 units in the positive x-direction,
—1 unit in the positive y-direction, and 3 units in the positive z-direction
to arrive at the terminal point @' = (3,0, 4), illustrated in Figure 10.2.3(b).

The magnitude of i is:

U] =224 (-1)2+32 = V14,

Now that we have defined vectors, and have created a nice notation by which
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Notes:



Definition 10.2.3 Vector Algebra

1. Letd = {(u1,u,) and vV = (v, v,) be vectors in R?, and let c be a
scalar.

(a) The addition, or sum, of the vectors 4 and V is the vector
U4+V=(up+vi,u+vy).

(b) The scalar product of ¢ and V is the vector
oV = c(vi,vy) = (cvi,cva) .

2. Let U = (uy,u;,us) and V = (v, vy, v3) be vectors in R3, and let ¢
be a scalar.

(a) The addition, or sum, of the vectors u and v/ is the vector
L7+ V: <U1+V1,U2+V2,U3+V3>.
(b) The scalar product of ¢ and V is the vector

¢V = c (v, Vs, v3) = (cvq,CVa,CV3) .

In short, we say addition and scalar multiplication are computed “component—
wise.”

Example 10.2.2 Adding vectors
Sketch the vectors & = (1,3), Vv = (2,1) and ¥ + V all with initial point at the
origin.

SOLUTION We first compute i + V.

G+ =(1,3)+(2,1)

bl

These are all sketched in Figure 10.2.4.

As vectors convey magnitude and direction information, the sum of vectors
also convey length and magnitude information. Adding U + V suggests the fol-
lowing idea:

“Starting at an initial point, go out u, then go out v.”

Notes:
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> v

Figure 10.2.5: lllustrating how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.

Lol 2
X

Figure 10.2.4: Graphing the sum of vec-
tors in Example 10.2.2.
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Figure 10.2.6: Illustrating how to subtract
vectors graphically.
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This idea is sketched in Figure 10.2.5, where the initial point of Vis the termi-
nal point of i. This is known as the “Head to Tail Rule” of adding vectors. Vector
addition is very important. For instance, if the vectors 4 and V represent forces
acting on a body, the sum & + V gives the resulting force. Because of various
physical applications of vector addition, the sum u + V is often referred to as the
resultant vector, or just the “resultant.”

Analytically, it is easy to see that & + V = vV + 4. Figure 10.2.5 also gives
a graphical representation of this, using gray vectors. Note that the vectors i
and v, when arranged as in the figure, form a parallelogram. Because of this,
the Head to Tail Rule is also known as the Parallelogram Law: the vector i + V is
defined by forming the parallelogram defined by the vectors & and V; the initial
point of 4 + V is the common initial point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R? as well.

It follows from the properties of the real numbers and Definition 10.2.3 that

G—V=i+(—1)V

The Parallelogram Law gives us a good way to visualize this subtraction. We
demonstrate this in the following example.

Example 10.2.3  Vector Subtraction
Let & = (3,1) and V = (1, 2) . Compute and sketch & — V.

SOLUTION The computation of 4 — V is straightforward, and we show
all steps below. Usually the formal step of multiplying by (—1) is omitted and
we “just subtract.”

Figure 10.2.6 illustrates, using the Head to Tail Rule, how the subtraction can
be viewed as the sum i + (—V). The figure also illustrates how & — v can be ob-
tained by looking only at the terminal points of & and V (when their initial points
are the same).

Example 10.2.4 Scaling vectors

1. Sketch the vectors vV = (2, 1) and 2V with initial point at the origin.

2. Compute the magnitudes of v and 2v.

Notes:



SOLUTION

1. We compute 2V:

20=2(2,1)
— (4,2).

Both vV and 2V are sketched in Figure 10.2.7. Make note that 2V does not
start at the terminal point of V; rather, its initial point is also the origin.

2. The figure suggests that 2V is twice as long as V. We compute their mag-
nitudes to confirm this.

= /5.
| 27| = /42 + 22

=20

=+4.5=24/5.

As we suspected, 2V is twice as long as V.

The zero vector is the vector whose initial point is also its terminal point. It
is denoted by 0. Its component form, in R?, is (0,0);inR3, itis (0,0, 0). Usually
the context makes is clear whether 0 is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to multiply vectors by a scalar. The following the-
orem states formally the properties of these operations.

Notes:
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Py

N
v

Figure 10.2.7: Graphing vectors vV and 2V
in Example 10.2.4.
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Theorem 10.2.1 Properties of Vector Operations

The following are true for all scalars ¢ and d, and for all vectors 4, vV and
w, where U, Vand w are all in R? or where @, V and w are all in R3:

L i+v=v+u Commutative Property
2. (+V)+w=d+ {V+w) Associative Property
3.V+0=v Additive Identity

5 c(U+V)=ci+cv Distributive Property

Distributive Property

8. [[cv][ = el - [[ V]l

9. ||d|| = 0if, and only if, & = O.

As stated before, each nonvector vV conveys magnitude and direction infor-
mation. We have a method of extracting the magnitude, which we write as || V||.
Unit vectors are a way of extracting just the direction information from a vector.

Definition 10.2.4 Unit Vector

A unit vector is a vector V with a magnitude of 1; that is,

vl = 1.

Consider this scenario: you are given a vector vVand are told to create a vector
of length 10 in the direction of V. How does one do that? If we knew that i was
the unit vector in the direction of v, the answer would be easy: 10i. So how do
we find 4?

Property 8 of Theorem 10.2.1 holds the key. If we divide V by its magnitude,
it becomes a vector of length 1. Consider:

I

[EEN

. 1
[| V]| (we can pull out T as it is a positive scalar)

I
= =
<i

Notes:




So the vector of length 10 in the direction of Vis 10 V. An example will make

this more clear.

Example 10.2.5 Using Unit Vectors
Let V= (3,1) and let w = (1,2, 2).

1. Find the unit vector in the direction of V.
2. Find the unit vector in the direction of w.

3. Find the vector in the direction of vV with magnitude 5.

SOLUTION

1. We find || V || = v/10. So the unit vector & in the direction of Vis

2. We find || w || = 3, so the unit vector Z in the direction of w is

L 1 122
u—=—-w= Ty Ty X .
3 3'3° 3

3. To create a vector with magnitude 5 in the direction of vV, we multiply the
unit vector & by 5. Thus 54 = (15/1/10,5/1/10) is the vector we seek.
This is sketched in Figure 10.2.8.

The basic formation of the unit vector i in the direction of a vector v leads
to a interesting equation. It is:

[EEN

<i

We rewrite the equation with parentheses to make a point:

. . 1
v= IVl '(Hw”)‘
—~—  —\—

magnitude direction

This equation illustrates the fact that a nonzero vector has both magnitude
and direction, where we view a unit vector as supplying only direction informa-
tion. Identifying unit vectors with direction allows us to define parallel vectors.

Notes:
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[

Figure 10.2.8: Graphing vectors in Exam-
ple 10.2.5. All vectors shown have their
initial point at the origin.
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Note: O is directionless; because
[| 0 ]| = 0, there is no unit vector in the
“direction” of 0.

Some texts define two vectors as being
parallel if one is a scalar multiple of the
other. By this definition, 0is parallel to
all vectors as 0 = 0V for all V.

We define what it means for two vectors
to be perpendicular in Definition 10.3.2,
which is written to exclude 0. It could be
written to include 5; by such a definition,
0is perpendicular to all vectors. While
counter-intuitive, it is mathematically
sound to allow 0 to be both parallel and
perpendicular to all vectors.

We prefer the given definition of parallel
as it is grounded in the fact that unit vec-
tors provide direction information. One
may adopt the convention that Ois paral-
lel to all vectors if they desire. (See also
the marginal note on page 604.)

Figure 10.2.9: A diagram of a weight
hanging from 2 chains in Example 10.2.6.
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Definition 10.2.5 Parallel Vectors

1. Unit vectors u, and U, are parallel if iy = £0,.

2. Nonzero vectors v, and v, are parallel if their respective unit vec-
tors are parallel.

It is equivalent to say that vectors V; and v, are parallel if there is a scalar
¢ # Osuch that vV, = ¢V, (see marginal note).

If one graphed all unit vectors in R? with the initial point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors in R?
is (cos 0, sin ) for some angle 6.

A similar construction in R3 shows that the terminal points all lie on the unit
sphere. These vectors also have a particular component form, but its derivation
is not as straightforward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea 10.2.1 Unit Vectors

1. The unit vector in the direction of a nonzero vector V is

[EEY

i= V.

<!

2. Avector i in R? is a unit vector if, and only if, its component form
is (cos 8, sin &) for some angle 6.

3. Avector i in R? is a unit vector if, and only if, its component form
is (sin @ cos ¢, sin @ sin o, cos 0) for some angles 6 and .

These formulas can come in handy in a variety of situations, especially the
formula for unit vectors in the plane.

Example 10.2.6 Finding Component Forces

Consider a weight of 50lb hanging from two chains, as shown in Figure 10.2.9.
One chain makes an angle of 30° with the vertical, and the other an angle of
45°. Find the force applied to each chain.

SOLUTION Knowing that gravity is pulling the 50lb weight straight down,

Notes:
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we can create a vector F to represent this force.
F=50(0,—1) = (0, -50) .

We can view each chain as “pulling” the weight up, preventing it from falling.
We can represent the force from each chain with a vector. Let F; represent the
force from the chain making an angle of 30° with the vertical, and let F, repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure 10.2.10), and apply Key Idea 10.2.1. As we do not
yet know the magnitudes of these vectors, (that is the problem at hand), we use
my and m; to represent them. Figure 10.2.10: A diagram of the force

vectors from Example 10.2.6.

=

F1 = my (cos 120°, sin 120°)

Fy = m; (cos 45°, sin 45°)

As the weight is not moving, we know the sum of the forces is 0. This gives:

The sum of the entries in the first component is 0, and the sum of the entries
in the second component is also 0. This leads us to the following two equations:

mj cos 120° + m, cos45° = 0
myq sin 120° + m, sin45° = 50

This is a simple 2-equation, 2-unkown system of linear equations. We leave it to
the reader to verify that the solution is

50v/2
1+3

It might seem odd that the sum of the forces applied to the chains is more
than 50lb. We leave it to a physics class to discuss the full details, but offer this
short explanation. Our equations were established so that the vertical compo-
nents of each force sums to 50Ib, thus supporting the weight. Since the chains
are at an angle, they also pull against each other, creating an “additional” hori-
zontal force while holding the weight in place.

my =50(v/3—1)~36.6; m,= ~ 25.88.

Unit vectors were very important in the previous calculation; they allowed
us to define a vector in the proper direction but with an unknown magnitude.
Our computations were then computed component—wise. Because such calcu-
lations are often necessary, the standard unit vectors can be useful.

Notes:
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Figure 10.2.11: A figure of a weight being
pushed by the wind in Example 10.2.8.
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Definition 10.2.6 Standard Unit Vectors
1. In R?, the standard unit vectors are
i=(1,0) and j=(0,1).
2. In R3, the standard unit vectors are

=(1,0,0) and j=(0,1,0) and k= (0,0,1).

Example 10.2.7 Using standard unit vectors

1. Rewrite V = (2, —3) using the standard unit vectors.

2. Rewrite W = 47 — 5/_"+ 2Kin component form.

SOLUTION
1. V= (2,-3)
= (2,0) + (0, —3)
=2(1,0)—3(0,1)
=2i—3f
2. W = 4i — 5] + 2k
= (4,0,0) + (0, —5,0) + (0,0,2)
= (4,-5,2)

These two examples demonstrate that converting between component form
and the standard unit vectors is rather straightforward. Many mathematicians
prefer component form, and it is the preferred notation in this text. Many en-
gineers prefer using the standard unit vectors, and many engineering text use

that notation.

Example 10.2.8 Finding Component Force

A weight of 25lb is suspended from a chain of length 2ft while a wind pushes the
weight to the right with constant force of 5lb as shown in Figure 10.2.11. What
angle will the chain make with the vertical as a result of the wind’s pushing?

How much higher will the weight be?

Notes:



SOLUTION The force of the wind is represented by the vector F,, = 51,
The force of gravity on the weight is represented by I?g = —25ﬁ The direction
and magnitude of the vector representing the force on the chain are both un-
known. We represent this force with

Fe = m (cos p,sing) = mcos i+ msingj

for some magnitude m and some angle with the horizontal . (Note: @ is the
angle the chain makes with the vertical; o is the angle with the horizontal.)
As the weight is at equilibrium, the sum of the forces is 0:

oA Fy+F =0
m cos §0T+ msin g07+ 5/—25/=0

Thus the sum of the i and fcomponents are 0, leading us to the following
system of equations:

5+mcosp=0
S (10.1)

—254+msinp =0
This is enough to determine F. already, as we know mcosp = —5 and
msing = 25. Thus F, = (—5,25). We can use this to find the magnitude

m:
m = +/(—5)? + 252 = 5v/26 ~ 25.5Ib.

We can then use either equality from Equation (10.1) to solve for ¢. We choose
the first equality as using arccosine will return an angle in the 2" quadrant:

-5
545v26cosp =0 = = cos™? (> ~ 1.7682 ~ 101.31°.
z 7 5v/26

Subtracting 90° from this angle gives us an angle of 11.31° with the vertical.

We can now use trigonometry to find out how high the weight is lifted.
The diagram shows that a right triangle is formed with the 2ft chain as the hy-
potenuse with an interior angle of 11.31°. The length of the adjacent side (in
the diagram, the dashed vertical line) is 2 cos 11.31° ~ 1.96ft. Thus the weight
is lifted by about 0.04ft, almost 1/2in.

The algebra we have applied to vectors is already demonstrating itself to be
very useful. There are two more fundamental operations we can perform with
vectors, the dot product and the cross product. The next two sections explore
each in turn.

Notes:
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Exercises 10.2
Terms and Concepts y

<y

1. Name two different things that cannot be described with
just one number, but rather need 2 or more numbers to
fully describe them.

14.
X
2. What is the difference between (1,2) and (1,2)?
v
3. What is a unit vector?
4. Unit vectors can be thought of as conveying what type of
information?
5. What does it mean for two vectors to be parallel? ,
6. What effect does multiplying a vector by —2 have?
15. Y
u
Problems
X y
In Exercises 7 — 10, points P and Q are given. Write the vector
PQ in component form and using the standard unit vectors.
7. P=(2,-1), Q=(3,5)
z
8. P=(3,2), Qa=(7,-2)
u
9. P=(0,3,—1), Q=(6,2,5) 16.
10. P=(2,1,2), Q= (4,3,2)
X Vv oY

11. Letd = (1,—2)and V = (1,1).
(a) Findd +V, i —V, 24 — 3V.
(b) Sk‘etcb the fbove vectors on the same axes, along In Exercises 17 - 20, find || @ ||, || 7 ||, || &+ 7 || and || G — ¥||.
with ¢ and v.
(c) Find Xwhere d +X = 2V — X. 17. 6= (2,1), V=3, -2)
12. Lleti = (1,1,—1)and vV = (2,1,2).
(@) Findd+ v, i — v, i — /2V.
(b) Sk‘etcb the fbove vectors on the same axes, along 19. G=(1,2), V=(-3,-6)
with ¢ and v.

18. 4 =(-3,2,2), V=(1,-1,1)

(c) Find Xwhere d + X = vV + 2X. 20. = <27 -3, 6>, V= <107 —15, 30>
In Exercises 13 — 16, sketch 4, V, i + vV and i/ — V on the same T - oL
axes 21. Under what conditionsis || 4 || + || V|| = || d + V]|?
y In Exercises 22 — 25, find the unit vector i/ in the direction of
V.
; 22. V= (3,7)
13.
x 23. V= (6,8)

24, V=(1,-2,2)

<i{

25. V=(2,-2,2)
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26. Find the unit vector in the first quadrant of R? that makes
a 50° angle with the x-axis.

27. Find the unit vector in the second quadrant of R? that
makes a 30° angle with the y-axis.

28. Verify, from Key Idea 10.2.1, that
4 = (sinfcos , sin fsin @, cos )

is a unit vector for all angles § and ¢.

A weight of 100lb is suspended from two chains, making an-
gles with the vertical of 6 and ¢ as shown in the figure below.

@
0

In Exercises 29 — 32, angles 6 and ¢ are given. Find the mag-
nitude of the force applied to each chain.
29. # =30°, ¢ =30°

30. §=60°, ¢ =60°

31. §=120°, ¢ =15°

32. 0=0° ¢p=0°

A weight of plb is suspended from a chain of length ¢ while
a constant force of F,, pushes the weight to the right, making
an angle of § with the vertical, as shown in the figure below.

In Exercises 33 — 36, a force F,, and length £ are given. Find
the angle 6 and the height the weight is lifted as it moves to
the right.

33. Fy=1lb, £=1ft, p=1lb
34. F,=1lb, £=1ft, p=10lb
35. F, =1lb, £=10ft, p=1lb
36. F, =10lb, ¢=10ft, p=1lb
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10.3 The Dot Product

The previous section introduced vectors and described how to add them to-
gether and how to multiply them by scalars. This section introduces a multi-
plication on vectors called the dot product.

Definition 10.3.1 Dot Product

1. Letd = (uy,u) and V = (vy,v,) in R2. The dot product of & and
Vv, denoted i - V, is

u-v= uivy + Uz vsy.

2. Let U = (uy,uy,us3) and V = {(v1, vy, v3) in R3. The dot product of
v and V, denoted i - V, is

u-v= Uiv1 + Uvy + Usvs.

Note how this product of vectors returns a scalar, not another vector. We
practice evaluating a dot product in the following example, then we will discuss
why this product is useful.

Example 10.3.1 Evaluating dot products

1. Letd = (1,2),v=(3,—-1)inR2 Find g - V.

2. letX=(2,-2,5)andy = (—1,0,3) in R3. Find X - y..

SOLUTION

1. Using Definition 10.3.1, we have

i-v=103)42(-1)=1.

2. Using the definition, we have

- =2(~1) - 2(0) +5(3) = 13.

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definition gives no hint as to why

Notes:



we would care about this operation, there is an amazing connection between
the dot product and angles formed by the vectors. Before stating this connec-
tion, we give a theorem stating some of the properties of the dot product.

Theorem 10.3.1 Properties of the Dot Product

Let &, vand w be vectors in R? or R3 and let ¢ be a scalar.
l.g.v=v-ua Commutative Property

2. 0-(V+w)=0-v+i-w Distributive Property

4.0-v=0
5. v-v=||V|]?

The last statement of the theorem makes a handy connection between the
magnitude of a vector and the dot product with itself. Our definition and theo-
rem give properties of the dot product, but we are still likely wondering “What
does the dot product mean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecting the dot product
to magnitudes and angles. Given vectors i and Vin the plane, an angle @ is clearly
formed when i and vV are drawn with the same initial point as illustrated in Figure
10.3.1(a). (We always take 6 to be the angle in [0, 7] as two angles are actually
created.)

The same is also true of 2 vectors in space: given i and vV in R? with the
same initial point, there is a plane that contains both ¢ and V. (When ¢ and V
are co-linear, there are infinitely many planes that contain both vectors.) In that
plane, we can again find an angle 6 between them (and again, 0 < 6 < 7). This
is illustrated in Figure 10.3.1(b).

The following theorem connects this angle  to the dot product of 4 and V.

Notes:

Figure 10.3.1:

10.3 The Dot Product

<i{

(a)

(b)

Illustrating the angle

formed by two vectors with the same

initial point.
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;3

Figure 10.3.3: Vectors used in Example
10.3.2.
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Theorem 10.3.2 The Dot Product and Angles

Let & and V be nonzero vectors in R? or R3. Then

—

u-v=|udl|||| V] cos®,

where 6,0 < 0 < T, is the angle between i and V.

Using Theorem 10.3.1, we can rewrite this theorem as

= cos 6.

Note how on the left hand side of the equation, we are computing the dot prod-
uct of two unit vectors. Recalling that unit vectors essentially only provide direc-
tion information, we can informally restate Theorem 10.3.2 as saying “The dot
product of two directions gives the cosine of the angle between them.”

When 6 is an acute angle (i.e., 0 < 6 < m/2), cos @ is positive; when § =
7/2, cos @ = 0; when 6 is an obtuse angle (/2 < 6 < ), cosf is negative.
Thus the sign of the dot product gives a general indication of the angle between
the vectors, illustrated in Figure 10.3.2.

- v

9 0=m/2 \CH
u i u

u-v i-v=0 i-vVv<o
Figure 10.3.2: lllustrating the relationship between the angle between vectors and the
sign of their dot product.

We can use Theorem 10.3.2 to compute the dot product, but generally this
theorem is used to find the angle between known vectors (since the dot product
is generally easy to compute). To this end, we rewrite the theorem’s equation
as

- =

cosf = # < f=cos? (“) )
Izaiinal Izaiinal

We practice using this theorem in the following example.
Example 10.3.2 Using the dot product to find angles

Let = (3,1),V = (—2,6) and w = (—4, 3), as shown in Figure 10.3.3. Find
the angles «, B and 6.

Notes:



10.3 The Dot Product
SOLUTION We start by computing the magnitude of each vector.
ldl|=v10; [[V[=2v10; [|w]=5.
We now apply Theorem 10.3.2 to find the angles.

—

a=cos ! ((\EO)(ZV\EO))
=90°.

<l

=
|
(]
(@]
(%]
|
N
7 N\
~
<
e
=¥
(9]
N~—
N———

= cos™ ! ( 2
104/10
~ 0.6055 ~ 34.7°.

= C0571 (_9>
5v10
A 2.1763 = 124.7°

We see from our computation that « + 3 = 6, as indicated by Figure 10.3.3.
While we knew this should be the case, it is nice to see that this non-intuitive
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.
Example 10.3.3 Using the dot product to find angles

Letd = (1,1,1), Vv = (—1,3,—2) and w = (—5,1,4), as illustrated in Figure
10.3.4. Find the angle between each pair of vectors.

SOLUTION

1. Between i and V:

a-v
0= C0571 <H)
Ll vl
0

“o(Gavm)

Figure 10.3.4: Vectors used in Example
10.3.3.

Notes:

591



Chapter 10 Vectors

Note: The term perpendicular originally
referred to lines. As mathematics pro-
gressed, the concept of “being at right
angles to” was applied to other objects,
such as vectors and planes, and the term
orthogonal was introduced. It is espe-
cially used when discussing objects that
are hard, or impossible, to visualize: two
vectors in 5-dimensional space are or-
thogonal if their dot product is 0. It is not
wrong to say they are perpendicular, but
common convention gives preference to
the word orthogonal.

592

2. Between ¢ and w:

3. Between vand w:

While our work shows that each angle is 7/2, i.e., 90°, none of these angles
looks to be a right angle in Figure 10.3.4. Such is the case when drawing three—
dimensional objects on the page.

All three angles between these vectors was 7/2, or 90°. We know from
geometry and everyday life that 90° angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all 7r/2. Notice the common
feature in each calculation (and also the calculation of o in Example 10.3.2): the
dot products of each pair of angles was 0. We use this as a basis for a definition
of the term orthogonal, which is essentially synonymous to perpendicular.

Definition 10.3.2 Orthogonal

Nonzero vectors d and V are orthogonal if their dot product is 0.

Example 10.3.4 Finding orthogonal vectors
Letd = (3,5)and V = (1,2, 3).

1. Find two vectors in R? that are orthogonal to .

2. Find two non—parallel vectors in R that are orthogonal to V.

SOLUTION

Notes:



1. Recall that a line perpendicular to a line with slope m has slope —1/m,
the “opposite reciprocal slope.” We can think of the slope of & as 5/3, its
“rise over run.” A vector orthogonal to i will have slope —3/5. There are
many such choices, though all parallel:

(-=5,3) or (5—-3) or (-10,6) or (15,—9),etc.

2. There are infinitely many directions in space orthogonal to any given direc-
tion, so there are an infinite number of non—parallel vectors orthogonal
to V. Since there are so many, we have great leeway in finding some.

One way is to arbitrarily pick values for the first two components, leaving
the third unknown. Forinstance, letv; = (2, 7,z). If V1 is to be orthogonal
tov,thenv; - v=0,so

—16

Sov; = (2,7,—16/3) is orthogonal to V. We can apply a similar technique
by leaving the first or second component unknown.

Another method of finding a vector orthogonal to vV mirrors what we did
inpart1. Letv; = (—2,1,0). Here we switched the first two components
of V, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Letting the third component be 0 effectively ignores the
third component of V, and it is easy to see that

_'2"—/: <72a170> <15273> =0.

Clearly v; and v, are not parallel.

An important construction is illustrated in Figure 10.3.5, where vectors i and
V are sketched. In part (a), a dotted line is drawn from the tip of & to the line
containing vV, where the dotted line is orthogonal to V. In part (b), the dotted
line is replaced with the vector Zand w is formed, parallel to V. It is clear by the
diagram that & = w + Z. What is important about this construction is this: i is
decomposed as the sum of two vectors, one of which is parallel to v and one that
is perpendicular to V. It is hard to overstate the importance of this construction
(as we'll see in upcoming examples).

The vectors w, Z and i as shown in Figure 10.3.5 (b) form a right triangle,
where the angle between vV and i is labeled §. We can find w in terms of vV and
a.

Using trigonometry, we can state that

| w]|| = ||| cos. (10.2)

Notes:

10.3 The Dot Product

(b)

Figure 10.3.5: Developing the construc-
tion of the orthogonal projection.
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We also know that w is parallel to to V; that is, the direction of w is the
direction of v, described by the unit vector v/|| V||. The vector w is the vector

in the direction V/|| V' || with magnitude || & || cos 6:

1
—V.
12l

wz(uﬁncose)

Replace cos # using Theorem 10.3.2:

= (Walg s ) o
IEIEIAK

_ G
VI

Now apply Theorem 10.3.1.

<l
<!

<!
<{

Since this construction is so important, it is given a special name.

Definition 10.3.3 Orthogonal Projection

Let nonzero vectors i and V be given. The orthogonal projection of i/
onto vV, denoted proj; 4, is

<
<{

projyi = =—V.

<!
<!

Example 10.3.5 Computing the orthogonal projection

1. Letd = (—2,1) and V = (3, 1). Find projy U, and sketch all three vectors

with initial points at the origin.

2. Letw = (2,1,3) and X = (1,1,1). Find projzw, and sketch all three

vectors with initial points at the origin.

SOLUTION

Notes:



1. Applying Definition 10.3.3, we have

proj; i = ——=V

Vectors 4, V and projy U are sketched in Figure 10.3.6(a). Note how the
projection is parallel to V; that is, it lies on the same line through the origin
as v, although it points in the opposite direction. That is because the angle
between d and V is obtuse (i.e., greater than 90°).

2. Apply the definition:

These vectors are sketched in Figure 10.3.6(b), and again in part (c) from
a different perspective. Because of the nature of graphing these vectors,
the sketch in part (b) makes it difficult to recognize that the drawn projec-
tion has the geometric properties it should. The graph shown in part (c)
illustrates these properties better.

We can use the properties of the dot product found in Theorem 10.3.1 to
rearrange the formula found in Definition 10.3.3:

<l
<{
<i

projy i = ——

ST
<i

v
2

<i{

v

-
A

The above formula shows that the orthogonal projection of 4 onto vV is only
concerned with the direction of V, as both instances of V in the formula come in
the form v/|| V||, the unit vector in the direction of V.

A special case of orthogonal projection occurs when Vis a unit vector. In this
situation, the formula for the orthogonal projection of a vector i onto vV reduces
tojust projyd = (4-V)V,asv-v=1.

<l

Notes:

10.3 The Dot Product

4 SU
<t

—t + - + X

2" 1 2 3
projyi _q |

2 |

Figure 10.3.6: Graphing the vectors used
in Example 10.3.5.
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Figure 10.3.7: Illustrating the orthogonal
projection.

596

This gives us a new understanding of the dot product. When V is a unit vec-
tor, essentially providing only direction information, the dot product of & and vV

gives “how much of ¢ is in the direction of V.” This use of the dot product will be

very useful in future sections.

Now consider Figure 10.3.7 where the concept of the orthogonal projection
is again illustrated. It is clear that

U=projyi+7Z. (10.3)
As we know what 4 and proj ; i are, we can solve for Z and state that
Z =14 — projyd.
This leads us to rewrite Equation (10.3) in a seemingly silly way:
U = projy i+ (0 — proj; ).

This is not nonsense, as pointed out in the following Key Idea. (Notation note:
the expression “|| ¥” means “is parallel to ¥” We can use this notation to state
“X || ¥” which means “X is parallel to y.” The expression “_L y” means “is or-
thogonal to ¥,” and is used similarly.)

Key Idea 10.3.1 Orthogonal Decomposition of Vectors

Let nonzero vectors i and V be given. Then d can be written as the sum of
two vectors, one of which is parallel to v, and one of which is orthogonal
to v:
U =projyu + (4 — projyd).
———

v v

We illustrate the use of this equality in the following example.

Example 10.3.6 Orthogonal decomposition of vectors

1. Letii = (—2,1) and V = (3,1) as in Example 10.3.5. Decompose U as the
sum of a vector parallel to V and a vector orthogonal to V.

2. letw = (2,1,3) and X = (1,1,1) as in Example 10.3.5. Decompose w as
the sum of a vector parallel to X and a vector orthogonal to X.

SOLUTION

Notes:



1. In Example 10.3.5, we found that proj; i = (—1.5, —0.5). Let
Z7=10—projyi = (—2,1) — (—1.5,-0.5) = (—0.5,1.5) .

Is Z orthogonal to v? (l.e, is Z 1. V ?) We check for orthogonality with the
dot product:
Z-v=(-0.5,1.5)-(3,1) = 0.

Since the dot product is 0, we know Z L V. Thus:
projyi + (0 — projyu)
(—1.5,—0.5) + (—0.5,1.5).

v 1

U=
<*27 1> =

2. We found in Example 10.3.5 that proj;w = (2,2,2). Applying the Key
Idea, we have:

E: v_l?—proj;v_ﬁz <271a3> - <272a2> = <Oa_1a1>'
We check to see if Z L X:
Z-x=1{(0,-1,1)-(1,1,1) = 0.

Since the dot product is 0, we know the two vectors are orthogonal. We
now write w as the sum of two vectors, one parallel and one orthogonal

to X:
W = projzw + (W — projyw)
<25 173> = <27272> =+ <Oa 717 1>
——
| % 1%

We give an example of where this decomposition is useful.

Example 10.3.7 Orthogonally decomposing a force vector

Consider Figure 10.3.8(a), showing a box weighing 50lb on a ramp that rises 5ft
over a span of 20ft. Find the components of force, and their magnitudes, acting
on the box (as sketched in part (b) of the figure):

1. in the direction of the ramp, and

2. orthogonal to the ramp.

SOLUTION As the ramp rises 5ft over a horizontal distance of 20ft, we can
represent the direction of the ramp with the vector 7 = (20, 5). Gravity pulls
down with a force of 50Ib, which we represent with g = (0, —50).

Notes:

10.3 The Dot Product

att

S

- projzg
g

(b)
Figure 10.3.8: Sketching the ramp and

box in Example 10.3.7. Note: The vectors
are not drawn to scale.
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't

4—) projgl?

d

Figure 10.3.9: Finding work when the
force and direction of travel are given as
vectors.
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1. Tofind the force of gravity in the direction of the ramp, we compute proj»g:

Q)
=Sl
1

projzg = =
r-

—250

——- (20,5

425 (20,5)

(S

200 50
=(-=, -2 )~ (~11.76,-2.94) .
17’ 17

The magnitude of proj:g is || projzg || = 50/v/17 ~ 12.13Ib. Though
the box weighs 50Ib, a force of about 12lb is enough to keep the box from
sliding down the ramp.

2. To find the component 7 of gravity orthogonal to the ramp, we use Key
Idea 10.3.1.

Z=g—projzg
200 800
17° 17

> ~ (11.76, —47.06) .

The magnitude of this forceis || Z|| ~ 48.51lb. In physics and engineering,
knowing this force isimportant when computing things like static frictional
force. (For instance, we could easily compute if the static frictional force
alone was enough to keep the box from sliding down the ramp.)

Application to Work

In physics, the application of a force F to move an object in a straight line a
distance d produces work; the amount of work Wis W = Fd, (where F is in the
direction of travel). The orthogonal projection allows us to compute work when
the force is not in the direction of travel.

Consider Figure 10.3.9, where a force Fis being applied to an object moving
in the direction of d. (The distance the object travels is the magnitude of d.) The

Notes:



work done is the amount of force in the direction of d, || proj 5F 1], times || dll:

atl
Q.
!

]

[leroigF |-l d|l

Q.|
Q.
Q

d
IRITELE
F.d

4|2
_|r.d.

‘l'll

ALl -1l

1d?

The expression F - d will be positive if the angle between Fanddis acute;
when the angle is obtuse (hence F.dis negative), the force is causing motion
in the opposite direction of c_j, resulting in “negative work.” We want to capture
this sign, so we drop the absolute value and find that W = F - d.

Definition 10.3.4 Work

LetFbea constant force that moves an objectina stralght line from pomt
P to point Q. Let d= PQ The work W done by Falong disW=F-d.

Example 10.3.8 Computing work
A man slides a box along a ramp that rises 3ft over a distance of 15ft by applying
50Ib of force as shown in Figure 10.3.10. Compute the work done.

SOLUTION The figure indicates that the force applied makes a 30° an-
gle with the horizontal, so F = 50 (cos 30°,sin 30°) ~ (43.3,25) . The ramp is

represented by d= (15, 3). The work done is simply

-

F-d =50 (cos30°,sin30°) - (15,3) ~ 724.5ft-Ib.

Note how we did not actually compute the distance the object traveled, nor
the magnitude of the force in the direction of travel; this is all inherently com-
puted by the dot product!

The dot product is a powerful way of evaluating computations that depend

on angles without actually using angles. The next section explores another “prod-

uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.

Notes:

10.3 The Dot Product

Figure 10.3.10: Computing work when
sliding a box up a ramp in Example 10.3.8.
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Exercises 10.3

Terms and Concepts
1. The dot product of two vectors is a , not a vector.

2. How are the concepts of the dot product and vector mag-
nitude related?

3. How can one quickly tell if the angle between two vectors
is acute or obtuse?

4. Give a synonym for “orthogonal.”

Problems

In Exercises 5 — 10, find the dot product of the given vectors.
5. 0=(2,-4),v=3,7)

6. U= (5,3),v=(6,1)

7. 0=(1,-1,2),v=(2,5,3)

8. 0= (3,5-1),Vi=(4,-1,7)
9. 0=(1,1),v=(1,2,3)

10. @ = (1,2,3),v = (0,0,0)

11. Create your own vectors &, v and w in R? and show that

—

G- (VW) =G V40w

12. Create your own vectors ii and ¥'in R? and scalar c and show
that c(i - V) = d - (cv).

In Exercises 13 — 16, find the measure of the angle between
the two vectors in both radians and degrees.

13. @ =(1,1),7 = (1,2)
14, i =(-2,1),7 = (3,5)
15. 4= (8,1,—4),V = (2,2,0)

16. U= (1,7,2),7 = (4,—2,5)

In Exercises 17 — 20, a vector v/ is given. Give two vectors that
are orthogonal to v.

17. V= (4,7)
18. V= (-3,5)
19. v=(1,1,1)

20. V=(1,-2,3)

In Exercises 21 — 26, vectors U and V are given. Find proj; U,
the orthogonal projection of i onto Vv, and sketch all three
vectors with the same initial point.

24. U= (-3,2),vV=(2,3)
25. U =(1,5,1),v=(1,2,3)
26. U= (3,—-1,2),v=(2,2,1)

In Exercises 27 — 32, vectors i and i/ are given. Write i as the
sum of two vectors, one of which is parallel to vV and one of
which is perpendicular to V. Note: these are the same pairs
of vectors as found in Exercises 21 — 26.

27. G=(1,2),V=(-1,3)
28. 4= (5,5),v=(1,3)

29. 0= (-3,2),v=(1,1)
30. U =(-3,2),V=(2,3)
31. ¥ =(1,5,1),v=(1,2,3)

32, W= (3,-1,2),v=1(2,2,1)

33. A 10lb box sits on a ramp that rises 4ft over a distance of
20ft. How much force is required to keep the box from slid-
ing down the ramp?

34. A 10lb box sits on a 15ft ramp that makes a 30° angle with
the horizontal. How much force is required to keep the box
from sliding down the ramp?

35. How much work is performed in moving a box horizontally
10ft with a force of 20lb applied at an angle of 45° to the
horizontal?

36. How much work is performed in moving a box horizontally
10ft with a force of 20lb applied at an angle of 10° to the
horizontal?

37. How much work is performed in moving a box up the length
of a ramp that rises 2ft over a distance of 10ft, with a force
of 50Ib applied horizontally?

38. How much work is performed in moving a box up the length
of a ramp that rises 2ft over a distance of 10ft, with a force
of 50lb applied at an angle of 45° to the horizontal?

39. How much work is performed in moving a box up the length
of a 10ft ramp that makes a 5° angle with the horizontal,
with 50Ib of force applied in the direction of the ramp?



10.4 The Cross Product

“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors 4 and V are perpendicular if, and only if,
g-v=0.

Given two non—parallel, nonzero vectors i and V in space, it is very useful
to find a vector w that is perpendicular to both & and V. There is a operation,
called the cross product, that creates such a vector. This section defines the
cross product, then explores its properties and applications.

Definition 10.4.1 Cross Product

Let & = (uy,u;,us3) and V. = (vq,v,,v3) be vectors in R3. The cross
product of i and v, denoted i/ x V, is the vector

Uxv= <U2V3 — U3Vs, 7(U1V3 — U3V1), uivpy — U2V1> .

This definition can be a bit cumbersome to remember. After an example we
will give a convenient method for computing the cross product. For now, careful
examination of the products and differences given in the definition should reveal
a pattern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s practice using this definition by computing a cross product.

Example 10.4.1 Computing a cross product
Letd = (2,—1,4) and V = (3,2,5). Find i x v, and verify that it is orthogonal
to both  and V..

SOLUTION Using Definition 10.4.1, we have
ixv={(-1)5-(4)2,—((2)5 - (4)3),(2)2 — (-1)3) = (-13,2,7).

(We encourage the reader to compute this product on their own, then verify
their result.)
We test whether or not i/ x Vis orthogonal to 4 and V using the dot product:

(GxV)-0=(-13,2,7)-(2,-1,4) =0,

(Ux V) -v=(-13,2,7) - (3,2,5) = 0.

Since both dot products are zero, i x V is indeed orthogonal to both & and v.

Notes:

10.4 The Cross Product
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A convenient method of computing the cross product starts with forming a
particular 3 x 3 matrix, or rectangular array. The first row comprises the stan-
dard unit vectors Tf and k. The second and third rows are the vectors & and v,
respectively. Using i and vV from Example 10.4.1, we begin with:

i7 ok
2 -1 4
3 2 5

Now repeat the first two columns after the original three:

iF kT
2 -1 4 2 -1
3 2 53 2

This gives three full “upper left to lower right” diagonals, and three full “up-
per right to lower left” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the

left:

—3k 8 10/ —5i 12f 4k
ixV=(—5+12/+4k) — (—3k+8/+10j) = —13i+2j+ 7k = (—13,2,7).
We practice using this method.

Example 10.4.2 Computing a cross product
Let i = (1,3,6) and V = (—1,2,1). Compute both & x Vand V x 4.

SOLUTION To compute U x V, we form the matrix as prescribed above,
complete with repeated first columns:

i7 ok T
1 3 6 1 3
-1 2 1 -1 2

We let the reader compute the products of the diagonals; we give the result:

GxvV=(31—6+2k) — (—3k+127+]) = (-9,-7,5).

Notes:



To compute V x U, we switch the second and third rows of the above matrix,
then multiply along diagonals and subtract:

[ S
-1 2 1 -1 2
1 3 6 1 3

Note how with the rows being switched, the products that once appeared on
the right now appear on the left, and vice—versa. Thus the result is:

Vx = (127 +]—3k) — (2k+ 37— &) = (9,7, -5),

which is the opposite of 4 x V. We leave it to the reader to verify that each of
these vectors is orthogonal to i/ and V.

Properties of the Cross Product

It is not coincidence that V x & = —(U X V) in the preceding example; one
can show using Definition 10.4.1 that this will always be the case. The following
theorem states several useful properties of the cross product, each of which can
be verified by referring to the definition.

Theorem 10.4.1 Properties of the Cross Product

Let &, V and w be vectors in R? and let ¢ be a scalar. The following identities
hold:

1. UxvV=—(Vxi Anticommutative Property

2. (@) (+V)xw=1u w Distributive Properties

4. (a) (uxv)-u=0 Orthogonality Properties
(b) (UxV)-v=0
5. xi=0
6. ix0=0
7.40-(Vxw)=({UxV) - w Triple Scalar Product
Notes:

10.4 The Cross Product
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Note: We could rewrite Definition 10.3.2
and Theorem 10.4.2 toinclude 6, then de-
fine that 7 and v are parallel if & x v = 0.
Since 0 - ¥ = 0and 0 x v = 0, this would
mean that 0 is both parallel and orthog-
onal to all vectors. Apparent paradoxes
such as this are not uncommon in math-
ematics and can be very useful. (See also
the marginal note on page 582.)
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We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construction given in
Definition 10.4.1 satisfies this property. Theorem 10.4.1 asserts this property
holds; we leave it as a problem in the Exercise section to verify this.

Property 5 from the theorem is also left to the reader to prove in the Exercise
section, but it reveals something more interesting than “the cross product of a
vector with itselfis 0.” Let & and V be parallel vectors; that is, let there be a scalar
¢ such that v = cui. Consider their cross product:

Uxv=ux(c)
=c(d x ) (byProperty 3 of Theorem 10.4.1)

(by Property 5 of Theorem 10.4.1)

|
ol

We have just shown that the cross product of parallel vectors is 0. This hints
at something deeper. Theorem 10.3.2 related the angle between two vectors
and their dot product; there is a similar relationship relating the cross product
of two vectors and the angle between them, given by the following theorem.

Theorem 10.4.2 The Cross Product and Angles

Let & and V be nonzero vectors in R3. Then
[ xv|[=]|[dlll|[v]sind,

where 0, 0 < 6 < 7, is the angle between i and V.

Note that this theorem makes a statement about the magnitude of the cross
product. When the angle between iiand Vis 0 or  (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of
0is 0 (see Property 9 of Theorem 10.2.1), hence the cross product of parallel
vectors is 0.

We demonstrate the truth of this theorem in the following example.

Example 10.4.3  The cross product and angles
Letd = (1,3,6) and vV = (—1,2,1) asin Example 10.4.2. Verify Theorem 10.4.2
by finding 0, the angle between 4 and v, and the magnitude of 7 x V.

Notes:



SOLUTION We use Theorem 10.3.2 to find the angle between & and V.

G-V
92C05_1 (_._.>
aflflvli

o (i)

~ 0.8471 = 48.54°.

Our work in Example 10.4.2 showed that i x V = (—9, —7,5), hence || & x

V|| = V155.1s || d x V|| = || d |||| V]| sin 6? Using numerical approximations,
we find:
|| U x V| =155 |[G]]|| V] sin6 = vV461/65in 0.8471
~ 12.45. ~ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

oo () -5

which allows us to verify the theorem exactly.
Right Hand Rule

The anticommutative property of the cross product demonstrates that i x v
and V x i differ only by a sign —these vectors have the same magnitude but point
in the opposite direction. When seeking a vector perpendicular to 4 and v, we
essentially have two directions to choose from, one in the direction of 4 x vV and
one in the direction of V x d. Does it matter which we choose? How can we tell
which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given & and v in R? with the same initial point, point
the index finger of your right hand in the direction of & and let your middle finger
point in the direction of V (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direction of 4 x V. One can “practice” this using Figure 10.4.1. If you switch,
and point the index finder in the direction of v and the middle finger in the di-
rection of &, your thumb will now point in the opposite direction, allowing you
to “visualize” the anticommutative property of the cross product.

Applications of the Cross Product
There are a number of ways in which the cross product is useful in mathe-

matics, physics and other areas of science beyond “just” finding a vector per-
pendicular to two others. We highlight a few here.

Notes:

10.4 The Cross Product

Figure 10.4.1: Illustrating the Right Hand
Rule of the cross product.
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(a)

<y

<i

(b)

Figure 10.4.2: Using the cross product to
find the area of a parallelogram.
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: : : > x
1 2 3 4
(a)
z
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C
B
D
A
x=T 2 \2'\’\
y

(b)

Figure 10.4.3: Sketching the parallelo-
grams in Example 10.4.4.
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Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh,
where b is the length of the base and h is the height of the parallelogram, as
illustrated in Figure 10.4.2(a). As shown when defining the Parallelogram Law of
vector addition, two vectors i and V define a parallelogram when drawn from
the same initial point, as illustrated in Figure 10.4.2(b). Trigonometry tells us
that h = || i || sin 6, hence the area of the parallelogram is

A=l dl[[[v][sing = [[dx V]| (10.4)

where the second equality comes from Theorem 10.4.2. We illustrate using
Equation (10.4) in the following example.

Example 10.4.4 Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors & = (2, 1) and
vV=(1,3).

2. Verify that the points A = (1,1,1), B = (2,3,2), C = (4,5,3) and
D = (3,3,2) are the vertices of a parallelogram. Find the area of the
parallelogram.

SOLUTION

1. Figure 10.4.3(a) sketches the parallelogram defined by the vectors i and
V. We have a slight problem in that our vectors exist in R?, not R3, and
the cross product is only defined on vectors in R3. We skirt this issue by
viewing & and V as vectors in the x—y plane of R3, and rewrite them as i =
(2,1,0) and V = (1,3,0). We can now compute the cross product. It is
easy to show that ¥ x vV = (0, 0, 5); therefore the area of the parallelogram
isA=||dx V| =5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in Figure
10.4.3(b)), we need to show that the opposite sides are parallel. We can
quickly show that AB = DC = (1,2,1) and BC = AD = (2,2, 1). We find

- —

the area by computing the magnitude of the cross product of AB and BC:
ABx BC=(0,1,—2) = ||ABxBC| =5~ 2236
This application is perhaps more useful in finding the area of a triangle (in

short, triangles are used more often than parallelograms). We illustrate this in
the following example.

Notes:



Example 10.4.5 Area of a triangle
Find the area of the triangle with vertices A = (1,2), B=(2,3)and C = (3,1),
as pictured in Figure 10.4.4.

SOLUTION We found the area of this triangle in Example 7.1.4 to be 1.5
using integration. There we discussed the fact that finding the area of a triangle
can be inconvenient using the ”%bh" formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is much more
direct.

We can choose any two sides of the triangle to use to form vectors; we
choose AB = (1,1) and AC = (2, —1). As in the previous example, we will
rewrite these vectors with a third component of 0 so that we can apply the cross
product. The area of the triangle is

1, — — 1 1 3

—||AB X AC|| = = 1,1,0) x (2,—-1,0 = —|| (0,0,—-3 = —.

= =511 {1,1,0) x (2,-1,0) || = 51| 0,0,-3) || = 5
We arrive at the same answer as before with less work.

Volume of a Parallelepiped

The three dimensional analogue to the parallelogram is the parallelepiped.
Each face is parallel to the opposite face, as illustrated in Figure 10.4.5. By cross-
ing v and w, one gets a vector whose magnitude is the area of the base. Dotting
this vector with & computes the volume of parallelepiped! (Up to a sign; take
the absolute value.)

Thus the volume of a parallelepiped defined by vectors i, Vand w is

V=i (Fx W) (10.5)

Note how this is the Triple Scalar Product, first seen in Theorem 10.4.1. Applying
the identities given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V=i - (Vxw)|=|d-(wxV)|=|UxV) w, etc
Example 10.4.6 Finding the volume of parallelepiped
Find the volume of the parallepiped defined by the vectors & = (1,1,0), V =
(=1,1,0)and w = (0,1,1).
SOLUTION We apply Equation (10.5). We first find vV x w = (1,1, —1).
Then
@ (Vxw)|=[(1,1,0)-(1,1,-1) [ = 2.

So the volume of the parallelepiped is 2 cubic units.

Notes:

10.4 The Cross Product

o

Figure 10.4.4: Finding the area of a trian-
gle in Example 10.4.5.

St

i

Figure 10.4.5: A parallelepiped is the
three dimensional analogue to the paral-
lelogram.

Note: The word “parallelepiped” is pro-
nounced “parallel-eh—pipe—ed.”

St

y

Figure 10.4.6: A parallelepiped in Exam-
ple 10.4.6.
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Figure 10.4.7: Showing a force being ap-
plied to a lever in Example 10.4.7.
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While this application of the Triple Scalar Product is interesting, it is not used
all that often: parallelepipeds are not a common shape in physics and engineer-
ing. The last application of the cross product is very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A classic sce-
nario involving torque is the application of a wrench to a bolt. When a force is
applied to the wrench the bolt turns. When we represent the force and wrench
with vectors Fand E we see that the bolt moves (because of the threads) in a di-
rection orthogonal to F and ‘. Torque is usually represented by the Greek letter
T, or tau, and has units of N-m, a Newton—meter, or ft:lb, a foot—pound.

While a full understanding of torque is beyond the purposes of this book,
when a force Fis applied to a lever arm E the resulting torque is

-

=0xF (10.6)

Example 10.4.7 Computing torque
Alever of length 2ft makes an angle with the horizontal of 45°. Find the resulting
torque when a force of 10Ib is applied to the end of the level where:

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60° with the lever, as shown in Figure 10.4.7.

SOLUTION

1. We start by determining vectors for the force and lever arm. Since the
lever arm makes a 45° angle with the horizontal and is 2ft long, we can
state that £ = 2 (cos 45°,sin45°) = (v/2,1/2) .

Since the force vector is perpendicular to the lever arm (as seen in the
left hand side of Figure 10.4.7), we can conclude it is making an angle of
—45° with the horizontal. As it has a magnitude of 10lb, we can state
F =10 (cos(—45°),sin(—45°)) = (52, —=5V2)..

Using Equation (10.6) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the cross

product:
=[xF
= <\f27 \f2,0> x <5f7—5\/§,o>
= (0,0, —20)

Notes:



W

This clearly has a magnitude of 20 ft-lb.

We can view the force and lever arm vectors as lying “on the page”; our
computation of 7 shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it also matches well with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
itin.

Our lever arm can still be represented by = (1/2,4/2). As our force

vector makes a 60° angle with E we can see (referencing the right hand
side of the figure) that F makes a —15° angle with the horizontal. Thus

5(1++/3) 5(-1+ \/§)>

V2 o V2
~ (9.659, —2.588) .

F = 10 (cos —15°, sin —15°) = <

We again make the third component 0 and take the cross product to find
the torque:

—(xF
_ <\/§, 2,0 > x <5(1\+ﬁ‘/§), 5(1\/2\/5),0>
- <o 0, —10\f3>

~ (0,0, ~17.321) .

As one might expect, when the force and lever arm vectors are orthogo-
nal, the magnitude of force is greater than when the vectors are not or-
thogonal.

hile the cross product has a variety of applications (as noted in this chap-

ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equations of lines and planes in a variety of contexts. The impor-

tance

of the cross product, in some sense, relies on the importance of lines and

planes, which see widespread use throughout engineering, physics and mathe-
matics. We study lines and planes in the next two sections.

Notes:

10.4 The Cross Product
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Exercises 10.4

Terms and Concepts

1. The cross product of two vectors is a not a
scalar.

2. One can visualize the direction of i x V using the

|u

3. Give a synonym for “orthogona

4. T/F: A fundamental principle of the cross product is that
U x Vis orthogonal to ¢ and V.

5. is a measure of the turning force applied to an
object.

6. T/F:If i and V are parallel, then & x ¥ = 0.

Problems

In Exercises 7 — 16, vectors i and V are given. Compute i/ X V
and show this is orthogonal to both i and V.

7. 0= (3,2,-2), V=(0,1,5)

8. i=(5-4,3), Vv=(2,-51)
9. U= (4,-5,-5), V=(3,3,4)
10. 0= (—4,7,—10), V= (4,4,1)

11. &= (1,0,1), v=(5,0,7)

12. i =(1,5,—4), V= (—2,-10,8)

13. 4 = (a,b,0), V={cd,0)
14. G=17 v=7J
15. =1, v=k
16. G=j, v=k

17. Pickanyvectors @, vand win R® and show that i x (V+w) =
Uxv+idxw.

18. Pick any vectors i, ¥and w in R® and show that - (Vx W) =
(T x V) -w.

In Exercises 19 — 22, the magnitudes of vectors i and ¥ in R?
are given, along with the angle 6 between them. Use this in-
formation to find the magnitude of i x V.

19. ||i||=2 ||V]|=5 6=30°

—

20. || ]| =3, 0=n/2

—

21 || @] =3,
22. ||i@||=2 ||V||=5 60=51/6

In Exercises 23 — 26, find the area of the parallelogram de-
fined by the given vectors.

23. G=(1,1,2), V=(2,0,3)
24. G=(-2,1,5), V=(-1,3,1)
25. G=(1,2), V=(21)

26. = (2,0), V=(0,3)

In Exercises 27 — 30, find the area of the triangle with the
given vertices.

27. Vertices: (0,0,0), (1,3,—1) and (2,1,1).

28. Vertices: (5,2,—1), (3,6,2) and (1,0, 4).

29. Vertices: (1,1), (1,3) and (2, 2).

30. Vertices: (3,1), (1,2) and (4, 3).
In Exercises 31 — 32, find the area of the quadrilateral with
the given vertices. (Hint: break the quadrilateral into 2 trian-
gles.)

31. Vertices: (0,0), (1,2), (3,0) and (4, 3).

32. Vertices: (0,0,0), (2,1,1), (—1,2,—8) and (1, —1,5).

In Exercises 33 — 34, find the volume of the parallelepiped
defined by the given vectors.
33, 4= (1,1,1),

V: <17273>l W: <1707 1>

34, i=(-1,2,1), V=(2,2,1), w=(3,1,3)
In Exercises 35 — 38, find a unit vector orthogonal to both i/

and V.

35. i =(1,1,1), v=(2,0,1)

36. U= (1,-2,1), V=1(3,2,1)
37. 4= (5,0,2), v=(-3,0,7)
38. U= (1,-2,1), Vv=(-2,4-2)

39. A bicycle rider applies 150lb of force, straight down,
onto a pedal that extends 7in horizontally from the
crankshaft. Find the magnitude of the torque applied to
the crankshaft.



40.

41.

42.

A bicycle rider applies 150lb of force, straight down, onto
a pedal that extends 7in from the crankshaft, making a 30°
angle with the horizontal. Find the magnitude of the torque
applied to the crankshaft.

To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench. What is the maximum amount of torque that can

be applied to the bolt?

To turn a stubborn bolt, 80lb of force is applied to a 10in

43.

wrench in a confined space, where the direction of ap-
plied force makes a 10° angle with the wrench. How much
torque is subsequently applied to the wrench?

Show, using the definition of the Cross Product, that &- (i X
V) = 0; that is, that U is orthogonal to the cross product of
dandV.

44. Show, using the definition of the Cross Product, that i x i =

0.
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Figure 10.5.2: Defining a line in space.
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10.5 Lines

To find the equation of a line in the x-y plane, we need two pieces of information:
a point and the slope. The slope conveys direction information. As vertical lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direction of
the line.

This holds true for lines in space.

Let P be a point in space, let g be the vector with initial point at the origin
and terminal point at P (i.e., p “points” to P), and let d be a vector. Consider the
points on the line through P in the direction of d.

Clearly one point on the line is P; we can say that the vector p lies at this
point on the line. To find another point on the line, we can start at g and move
in a direction parallel to d. For instance, starting at p and traveling one length of
d places one at another point on the line. Consider Figure 10.5.2 where certain
points along the line are indicated.

The figure illustrates how every point on the line can be obtained by starting
with g and moving a certain distance in the direction of d. That is, we can define
the line as a function of t:

0ty =p+td. (10.7)

In many ways, this is not a new concept. Compare Equation (10.7) to the
familiar “y = mx + b” equation of a line:

Starting

=b + mx t B+ td
How Far To /
Go In That

Direction
Figure 10.5.1: Understanding the vector equation of a line.

The equations exhibit the same structure: they give a starting point, define
a direction, and state how far in that direction to travel.

Equation (10.7) is an example of a vector-valued function; the input of the
function is a real number and the output is a vector. We will cover vector-valued
functions extensively in the next chapter.

Notes:



There are other ways to represent a line. Let § = (o, ¥o,20) and let d=
{a, b, c). Then the equation of the line through g in the direction of d is:

ity =p+td
= (X0, ¥0,20) + t{a,b,c)
= (xo + at,yo + bt,zo + ct) .

The last line states that the x values of the line are given by x = xo + at, the
y values are given by y = yo + bt, and the z values are given by z = z5 + ct.
These three equations, taken together, are the parametric equations of the line
through g in the direction of d.

Finally, each of the equations for x, y and z above contain the variable t. We
can solve for t in each equation:

X — Xo
X=Xo+at = t= ,

a
y=yo+bt = t:y_byo,

Z—2p
z=zp+ct = t= P

assuming a, b, ¢ # 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equations of the line through
p in the direction of d:

X—Xo Y—Yo Z—2o
a b c

Each representation has its own advantages, depending on the context. We
summarize these three forms in the following definition, then give examples of
their use.

Notes:

10.5 Lines
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Figure 10.5.3: Graphing a line in Example
10.5.1.
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Definition 10.5.1 Equations of Lines in Space

Consider the line in space that passes through g = (xo, yo,2) in the
direction of d = (a, b, c) .

1. The vector equation of the line is
0(t) = B+ td.
2. The parametric equations of the line are
X=Xxo+at, y=yo+bt, z=2z9+ct.

3. The symmetric equations of the line are

X—Xo Y—Yo Z—2o
a b c

Example 10.5.1 Finding the equation of a line

Give all three equations, as given in Definition 10.5.1, of the line through P =
(2,3,1) in the direction of d = (—1,1,2). Does the point Q = (—1,6,6) lie on
this line?

SOLUTION We identify the point P = (2,3,1) with the vector g =
(2,3,1). Following the definition, we have

o the vector equation of the line is £(t) = (2,3,1) + t (—1,1,2);

e the parametric equations of the line are

x=2—t, y=34t z=1+2t; and

¢ the symmetric equations of the line are

x—2 y-3 z-1
-1 1 2

The first two equations of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calculating with a computer; most software programs easily handle equa-
tions in these formats. (For instance, the graphics program that made Figure
10.5.3 can be given the input “(2-t,3+t,1+2xt)"” for —1 < t < 3.).

Does the point Q = (—1,6,6) lie on the line? The graph in Figure 10.5.3
makes it clear that it does not. We can answer this question without the graph

Notes:




using any of the three equation forms. Of the three, the symmetric equations
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

-1-2726-376—1
-1 1 2

= 3=3:+£25

We see that Q does not lie on the line as it did not satisfy the symmetric equa-
tions.

Example 10.5.2 Finding the equation of a line through two points
Find the parametric equations of the line through the points P = (2, —1,2) and
Q= (17 3a _1)

SOLUTION Recall the statement made at the beginning of this section:
to find the equation of a line, we need a point and a direction. We have two
points; either one will suffice. The direction of the line can be found by the
vector with initial point P and terminal point Q: PQ = (—1,4,-3).

The parametric equations of the line ¢ through P in the direction of PQ are:

{: x=2—-t y=-1+4t z=2-3t.

A graph of the points and line are given in Figure 10.5.4. Note how in the
given parametrization of the line, t = 0 corresponds to the point P, and t = 1
corresponds to the point Q. This relates to the understanding of the vector equa-
tion of a line described in Figure 10.5.1. The parametric equations “start” at the
point P, and t determines how far in the direction of .Ea to travel. Whent = 0,
we travel 0 lengths of P_Q'; when t = 1, we travel one length of P_CE resulting in
the point Q.

Parallel, Intersecting and Skew Lines

In the plane, two distinct lines can either be parallel or they will intersect
at exactly one point. In space, given equations of two lines, it can sometimes
be difficult to tell whether the lines are distinct or not (i.e., the same line can be
represented in different ways). Given lines El(t) = ﬁ1+t31 and E;(t) =P, +td,,
we have four possibilities: El and Zz are

the same line they share all points;

intersecting lines share only 1 point;

parallel lines d; || d>, no points in common; or

skew lines di }f d>, no points in common.
Notes:

10.5 Lines

Figure 10.5.4: A graph of the line in Exam-

ple 10.5.2.
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N
5\ C_jz P2
t,
75 > 5
A a B
X : Py
5 y

Figure 10.5.5: Sketching the lines from Ex-
ample 10.5.3.
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The next two examples investigate these possibilities.

Example 10.5.3 Comparing lines
Consider lines /1 and /;, given in parametric equation form:

x = 1+3t X = —2-+4s
fli y = 2—t fz: y = 3+s
z = t z = 54 2s.

Determine whether ¢, and ¢, are the same line, intersect, are parallel, or skew.

SOLUTION We start by looking at the directions of each line. Line ¢;
has the direction given by 31 = (3,—1,1) and line ¢, has the direction given
by Eiz = (4,1,2). It should be clear that 31 and 32 are not parallel, hence /4
and /, are not the same line, nor are they parallel. Figure 10.5.5 verifies this
fact (where the points and directions indicated by the equations of each line are
identified).

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respective x, y
and z values are the same. That is, we want s and t such that:

1+3t = —2+44s
2—t = 3+s
t = 5+42s.

This is a relatively simple system of linear equations. Since the last equation is
already solved for t, substitute that value of t into the equation above it:

2—(5+25)=3+s = s=-2,t=1

A key to remember is that we have three equations; we need to check if s =
—2, t = 1 satisfies the first equation as well:

143(1) # —2+4(-2).

It does not. Therefore, we conclude that the lines ¢, and ¢, are skew.

Example 10.5.4  Comparing lines
Consider lines £1 and /,, given in parametric equation form:

x = —-07+1.6t X = 2.8—209s
by = 424272t b,y = 10.15—4.93s
z = 2.3-—3.36t z = —5.05+ 6.09s.

Determine whether ¢, and ¢, are the same line, intersect, are parallel, or skew.

Notes:



10.5 Lines

SOLUTION It is obviously very difficult to simply look at these equations
and discern anything. This is done intentionally. In the “real world,” most equa-
tions that are used do not have nice, integer coefficients. Rather, there are lots
of digits after the decimal and the equations can look “messy.”

We again start by deciding whether or not each line has the same direction.
The direction of ¢; is given by d; = (1.6,2.72,—3.36) and the direction of ¢,
is given by d, = (—2.9,—4.93,6.09). When it is not clear through observation
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respective unit vectors. Using a calculator, we find:

. dy
iy = —— = (0.3471,0.5901, —0.7289)
Il du ||
. d
2= = (—0.3471, —0.5901, 0.7289) .
2

The two vectors seem to be parallel (at least, their components are equal to
4 decimal places). In most situations, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite 671 and 32
in terms of fractions, not decimals. We have

- 16 272 336 - 29 493 609
d1: PSPV YT d2: T AR Ann’ 1A *
10" 100" 100 10° 100° 100
One can then find the magnitudes of each vector in terms of fractions, then

compute the unit vectors likewise. After a lot of manual arithmetic (or after
briefly using a computer algebra system), one finds that

5 10 17 21 . 10 17 21
up = o5’ Jemrd /Y= u; = - os’  Je—r e .
! 83’/830° /830 2 83’ /830" /830
We can now say without equivocation that these lines are parallel.
Are they the same line? The parametric equations for a line describe one
point that lies on the line, so we know that the point P, = (—0.7,4.2,2.3) lies

on /1. To determine if this point also lies on /,, plug in the x, y and z values of P,
into the symmetric equations for /5:

(-0.7) 2.8 2 (4.2) —1015 ; (23) - (~5.05)

= = 1.2069 = 1.2069 = 1.2069.
—-2.9 —4.93 6.09

The point P, lies on both lines, so we conclude they are the same line, just
parametrized differently. Figure 10.5.6 graphs this line along with the points
and vectors described by the parametric equations. Note how 31 and 32 are
parallel, though point in opposite directions (as indicated by their unit vectors

above). Figure 10.5.6: Graphing the lines in Exam-
ple 10.5.4.

Notes:
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PQ \

\

Figure 10.5.7: Establishing the distance
from a point to a line.

Figure 10.5.8: Establishing the distance
between lines.
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Distances

Given a point Q and a line Z(t) =p+ td in space, it is often useful to know
the distance from the point to the line. (Here we use the standard definition
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) Identifying p with the point P, Figure 10.5.7 will help establish a general
method of computing this distance h.

From trigonometry, we know h = || PQ || sin. We have a similar identity
involving the cross product: || PQ x d || = || PQ || || d || sin 6. Divide both sides
of this latter equation by || d || to obtain h:

PG < d
,_IPdxdl

2 (10.8)
|l d||

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines El(t) = p1 + td; and [z(t) = B, + td, be given, as shown in Figure 10.5.8.
To find the direction orthogonal to both 5’1 and Ejz, we take the cross product:
¢ = 31 X 32. The magnitude of the orthogonal projection of PI—P£ onto Cis the
distance h we seek:

h = || projzP,P; ||

HP1P2~E’A
- C
¢-c

_ PR Ay
GG

A problem in the Exercise section is to show that this distance is 0 when the lines
intersect. Note the use of the Triple Scalar Product: PP, - € = P1P, - (d1 X d).

The following Key Idea restates these two distance formulas.

Notes:



Key Idea 10.5.1 Distances to Lines

1. Let Pbe apointonaline £ thatis parallel to d. The distance h from
a point Q to the line £ is:

_llPaxd]|
4]

2. Let Py be a point on line 81 that is paraIIeI to dl, and let P, be a
point on line ¢, parallel to dz, and let ¢ = d1 X dz, where lines /4
and /, are not parallel. The distance h between the two lines is:

|P1P; - €|

h=112
<l

Example 10.5.5 Finding the distance from a point to a line

Find the distance from the point Q = (1,1,3) to the line /(t) = (1,—1,1) +

t(2,3,1).

SOLUTION The equation of the line gives us the point P = (1,—1,1)
that lies on the line, hence PQ = (0, 2,2). The equation also gives d = (2,3, 1).

Following Key Idea 10.5.1, we have the distance as

_[Paxd||
lldl|
_ H <_474a_4> H
Ner
4/3

= — ~ 1.852.

V14

The point Q is approximately 1.852 units from the line £(t).

Example 10.5.6 Finding the distance between lines
Find the distance between the lines

x = 143t X = —2+44s
Zl Ly = 2—t 62 Ly = 3+s
z = t z = 5+42s.
SOLUTION These are the sames lines as given in Example 10.5.3, where

Notes:

10.5 Lines
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we showed them to be skew. The equations allow us to identify the following
points and vectors:

P, =(1,2,0) P, =(-2,3,5) = PP, =(-3,1,5).

d=(3,-1,1) dy=(4,1,2) = &=d; xdp=(-3,-2,7).

From Key Idea 10.5.1 we have the distance h between the two lines is

. _ P3¢
el

42
= —— ~ 5.334.

V62

The lines are approximately 5.334 units apart.

One of the key points to understand from this section is this: to describe a
line, we need a point and a direction. Whenever a problem is posed concern-
ing a line, one needs to take whatever information is offered and glean point
and direction information. Many questions can be asked (and are asked in the
Exercise section) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next section. Many
complex three dimensional objects are studied by approximating their surfaces
with lines and planes.

Notes:



Exercises 10.5

Terms and Concepts

1. To find an equation of a line, what two pieces of informa-
tion are needed?

2. Two distinct lines in the plane can intersect or be

3. Two distinct lines in space can intersect, be or be

4. Use your own words to describe what it means for two lines
in space to be skew.

Problems

In Exercises 5 — 14, write the vector, parametric and symmet-
ric equations of the lines described.

5. Passes through P = (2, —4, 1), parallel tod = (9,2, 5).
6. Passes through P = (6, 1,7), parallel to d= (—3,2,5).
7. Passes through P = (2,1,5)and Q = (7, —2,4).
8. Passes through P = (1,—2,3)and Q = (5,5,5).

9. Passes through P = (0, 1,2) and orthogonal to both
d; = <2, -1, 7> and d, = <7, 1, 3>

10. Passes through P = (5,1, 9) and orthogonal to both
d, = (1,0,1) and d, = (2,0,3).

11. Passes through the point of intersection of /;(t) and /,(t)
and orthogonal to both lines, where
G (t) = (2,1,1) + t (5,1, —2) and
G(t) = (=2,-1,2) + (3,1, -1).

12. Passes through the point of intersection of ¢1(t) and £, (t)
and orthogonal to both lines, where

x=t x=2+4t
lh=y=-242t and fl=y=2-—t1.
z=1+1t z=3+2t

13. Passes through P = (1,1), parallel tod = (2,3).

14. Passes through P = (—2,5), parallel tod = (0, 1).
In Exercises 15 — 22, determine if the described lines are the
same line, parallel lines, intersecting or skew lines. If inter-

secting, give the point of intersection.

15. f1(t) = (1,2,1) +t(2,—1,1),
b(t) = (3,3,3) + t (—4,2,-2).

16. 04(t) = (2,1,1) + t(5,1,3),
06(t) = (14,5,9) + £(1,1,1).

17. 01(t) = (3,4,1) +t (2, —3,4),
B(t) = (—3,3,-3) +t(3,-2,4).

18. 41(t) = (1,1,1) +t(3,1,3),

x=1+2t x=3—-t

19. /y=<y=3—-2t and /(=< y=3+45t
z=t z=2+47t
x=1140.6t x =3.11+ 3.4t

20. /1 =<y=3.77+09t and {, =<y=2+5.1t
z=-2.3+41.5t z=2.5+ 8.5t
x =0.2 4+ 0.6t x =0.86 + 9.2t

21. /1 =<y =1.33—-0.45t and/, = < y = 0.835 — 6.9t
z= —4.2+41.05t z = —3.045 + 16.1t

x=0.1-+1.1t XxX=4—-21t
22. /hb=Cqy=29—-15t and /l,=<Ky=18+47.2t
z=3.2+1.6t z=31+1.1t

In Exercises 23 — 26, find the distance from the point to the
line.

23. Q=(1,1,1), £4(t)=(2,1,3)+1(2,1,-2)

24. Q=(2,5,6), £(t)=(-1,1,1)+1¢(1,0,1)

25. Q=(0,3), £(t)=(2,0)+1t(1,1)

26. Q=(1,1), £(t) = (4,5)+t(—4,3)

In Exercises 27 — 28, find the distance between the two lines.

27. f1(t) = (1,2,1) + t(2,—1,1),
6(t) = (3,3,3) + t (4,2, -2).

b(t) _ (0,0,3) +t(0,1,0).

Exercises 29 — 31 explore special cases of the distance formu-
las found in Key Idea 10.5.1.
29. Let Q be a point on the line [(t) Show why the distance
formula correctly gives the distance from the point to the
line as 0.

30. Let lines 73(t) and f3(t) be intersecting lines. Show why
the distance formula correctly gives the distance between
these lines as 0.
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31. Let lines /1(t) and /5 (t) be parallel. (b) Show why letting € = (P1P; x d;) x d, allows one to

use the formula.

(a) Show why the distance formula for distance between

lines cannot be used as stated to find the distance be-
tween the lines.

(c) Show how one can use the formula for the distance
between a point and a line to find the distance be-
tween parallel lines.
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10.6 Planes

Any flat surface, such as a wall, table top or stiff piece of cardboard can be
thought of as representing part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and stick it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 10.6.1.

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different locations in space. Tilting the nail (but keeping P fixed) tilts
the cardboard. Both moving and tilting the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the location of P in space, and 2)
the direction of the nail.

The previous section showed that one can define a line given a point on the
line and the direction of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direction the plane “faces” (using the description above, the
direction of the nail). Once again, the direction information will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane” mean? Choose any two points P
and Qin the plane, and consider the vector PQ. We say a vector 1 is orthogonal
to the plane if 77 is perpendicular to PQ for all choices of P and Q; thatis, if
fi-PQ = 0forall Pand Q.

This gives us way of writing an equation describing the plane. Let P =
(X0, Yo, 20) be a point in the plane and let i = (a, b, c) be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and 7 if, and only
if, PQis orthogonal to ii. Knowing PQ = (x — X0, ¥ — Y0,Z — 2p), consider:

PQ-A=0
<X_X07y_y07z_20> : <G,b,C> =0
a(x —xo) + by —yo) +c(z—20) =0 (10.9)

Equation (10.9) defines an implicit function describing the plane. More algebra
produces:

ax + by + ¢z = axg + byg + czg.
The right hand side is just a number, so we replace it with d:
ax + by +cz=d. (10.10)

As long as ¢ # 0, we can solve for z:

7 =

(d — ax — by). (10.11)

Notes:

10.6 Planes

Figure 10.6.1: Illustrating defining a plane
with a sheet of cardboard and a nail.
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Figure 10.6.2: Sketching the plane in Ex-
ample 10.6.1.

624

Equation (10.11) is especially useful as many computer programs can graph func-
tions in this form. Equations (10.9) and (10.10) have specific names, given next.

Definition 10.6.1 Equations of a Plane in Standard and General
Forms

The plane passing through the point P = (xo, Yo, Zo) With normal vector
i = (a, b, ¢) can be described by an equation with standard form

a(x —xo) + b(y — yo) + ¢(z — 29) = 0;
the equation’s general form is

ax+by+cz=d.

A key to remember throughout this section is this: to find the equation of a
plane, we need a point and a normal vector. We will give several examples of
finding the equation of a plane, and in each one different types of information
are given. In each case, we need to use the given information to find a point on
the plane and a normal vector.

Example 10.6.1 Finding the equation of a plane.
Write the equation of the plane that passes through the points P = (1,1,0),
Q=(1,2,—-1)and R = (0,1, 2) in standard form.

SOLUTION We need a vector 1 that is orthogonal to the plane. Since P,
Q and R are in the plane, so are the vectors P‘Q’ and FTR”; :56 x PR is orthogonal
to PQ and PR and hence the plane itself.

It is straightforward to compute i = PQ x PR = (2,1,1). We can use any
point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.
Following Definition 10.6.1, the equation of the plane in standard form is

26—+ (y—-1)+z=0.
The plane is sketched in Figure 10.6.2.

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 10.6.2 Finding the equation of a plane.
Verify that lines ¢, and ¢,, whose parametric equations are given below, inter-

Notes:



10.6 Planes

sect, then give the equation of the plane that contains these two lines in general

form.
X = —5+42s X = 243t
él Ly = 1+s EZ Ly = 1-—2t
z = —4+2s z = 1+t
SOLUTION The lines clearly are not parallel. If they do not intersect, 4

they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersection, we set the x, y and z equations equal to
each other and solve for s and t:

—5+2s = 2+3t
1+4s = 1-2t = s=2 t=—1.
—44+2s = 1+t

When s = 2 and t = —1, the lines intersect at the point P = (—1, 3,0).

letd; = (2,1,2) and d, = (3,—2,1) be the directions of lines £, and £, ni
respectively. A normal vector to the plane containing these the two lines will
also be orthogonal to 31 and 32. Thus we find a normal vector i1 by computing
A=d xdy=(54—7).

We can pick any point in the plane with which to write our equation; each
line gives us infinite choices of points. We choose P, the point of intersection.
We follow Definition 10.6.1 to write the plane’s equation in general form:

Figure 10.6.3: Sketching the plane in Ex-
ample 10.6.2.

5x+1)+4(y—3)—7z=0
5x+544y—-12-72=0
5x+4y —7z=17.

The plane’s equation in general form is 5x + 4y — 7z = 7; it is sketched in Figure
10.6.3.

Example 10.6.3 Finding the equation of a plane

Give the equation, in standard form, of the plane that passes thr_pugh the point

P = (—1,0,1) andis orthogonal to the line with vector equation £(t) = (—1,0,1)+
t(1,2,2).

SOLUTION As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direction of the line given by d = (1,2, 2). We use this as
our normal vector. Thus the plane’s equation, in standard form, is

(x+1)+2y+2(z—1)=0.

The line and plane are sketched in Figure 10.6.4.
Figure 10.6.4: The line and plane in Exam-

ple 10.6.3.

Notes:
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Figure 10.6.5: Graphing the planes and
their line of intersection in Example
10.6.4.
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Example 10.6.4 Finding the intersection of two planes
Give the parametric equations of the line that is the intersection of the planes
p1 and p,, where:

pr:x—(y—2)+(z—-1)=0
p2:—2(x—=2)+(y+1)+(z-3)=0

SOLUTION To find an equation of a line, we need a point on the line and
the direction of the line.
We can find a point on the line by solving each equation of the planes for z:

pr:z2=—x+y—1
pr:z=2x—y—2

We can now set these two equations equal to each other (i.e., we are finding
values of x and y where the planes have the same z value):

—X+y—-1=2x—y—-2

2y =3x—-1
1
=-(3x—-1
y=5( )

We can choose any value for x; we choose x = 1. This determines that y = 1.
We can now use the equations of either plane to find zz. whenx = landy = 1,
z = —1 on both planes. We have found a point P on the line: P = (1,1, —1).

We now need the direction of the line. Since the line lies in each plane,
its direction is orthogonal to a normal vector for each plane. Considering the
equations for p; and p,, we can quickly determine their normal vectors. For p;,
iy = (1,—1,1) and for p,, i, = (—2,1,1). A direction orthogonal to both of
these directions is their cross product: d=r x = (—2,-3,-1).

The parametric equations of the line through P = (1,1, —1) in the direction
ofd=(-2,-3,—1)is:

l: x=-2t+1 y=-3t+1 z=—-t—1.

The planes and line are graphed in Figure 10.6.5.

Example 10.6.5 Finding the intersection of a plane and a line
Find the point of intersection, if any, of the line ¢/(t) = (3, -3, —1) +t (—1,2,1)
and the plane with equation in general form 2x +y + z = 4.

SOLUTION The equation of the plane shows that the vector i = (2,1, 1)
is a normal vector to the plane, and the equation of the line shows that the line

Notes:



moves parallel to d = (—1,2,1). Since these are not orthogonal, we know
there is a point of intersection. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersecting or the
line was in the plane itself.)

To find the point of intersection, we need to find a t value such that £(¢)
satisfies the equation of the plane. Rewriting the equation of the line with para-
metric equations will help:

x=3-—t
t)y=qy=—-3+2t.
z=-1+t

Replacing x, y and z in the equation of the plane with the expressions containing
t found in the equation of the line allows us to determine a t value that indicates
the point of intersection:

2X+y+z=4
2B —-t)+(-34+2t)+(-1+t)=4
t=2.

When t = 2, the point on the line satisfies the equation of the plane; that point
is £(2) = (1,1,1). Thus the point (1,1, 1) is the point of intersection between
the plane and the lineg, illustrated in Figure 10.6.6.

Distances

Just as it was useful to find distances between points and lines in the previous
section, it is also often necessary to find the distance from a point to a plane.

Consider Figure 10.6.7, where a plane with normal vector 71 is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projection of PQ
onto n. That is, we want:

- A-PQ_|| |A-PQ
~PQ || = = = — 10.12
[FeroizPal] = 577 || = (10.12)

Equation (10.12) isimportant as it does more than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
as well: the distance between parallel planes and the distance from a line and a
plane. Because Equation (10.12) is important, we restate it as a Key Idea.

Notes:

10.6 Planes

Figure 10.6.6: lllustrating the intersection
of a line and a plane in Example 10.6.5.

Figure 10.6.7: Illustrating finding the dis-
tance from a point to a plane.
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Key Idea 10.6.1 Distance from a Point to a Plane

Let a plane with normal vector i be given, and let Q be a point. The
distance h from Q to the plane is

where P is any point in the plane.

Example 10.6.6 Distance between a point and a plane
Find the distance between the point Q = (2, 1,4) and the plane with equation
2x — 5y 4+ 6z =09.

SOLUTION Using the equation of the plane, we find the normal vector
i = (2,-5,6). To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever satisfies the equation. Letting x and y be 0 seems
simple; this makes z = 1.5. Thus we let P = (0, 0, 1.5), and PQ = (2,1,2.5).
The distance h from Q to the plane is given by Key Idea 10.6.1:

—

|- PQ|

[l

(2, -5,6) - (2,1,2.5)]
I (2,-5,6) |

_ 14

- V6s

~ 1.74.

h =

We can use Key Idea 10.6.1 to find other distances. Given two parallel planes,
we can find the distance between these planes by letting P be a point on one
plane and Q a point on the other. If /is a line parallel to a plane, we can use the
Key ldea to find the distance between them as well: again, let P be a pointin the
plane and let Q be any point on the line. (One can also use Key Idea 10.5.1.) The
Exercise section contains problems of these types.

These past two sections have not explored lines and planes in space as an ex-
ercise of mathematical curiosity. However, there are many, many applications
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraft may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air friction. Many
equations that help determine air flow and heat dissipation are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximating a surface
with millions of small planes one can more readily model the needed behavior.

Notes:



Exercises 10.6

Terms and Concepts 16. Contains the point (5,7, 3) and the line
x=t
1. In order to find the equation of a plane, what two pieces of Lt)y=Ry=t
information must one have? 7=t

2. Whatisthe relationship between a plane and one ofitsnor- 17 contains the point (5, 7, 3) and is orthogonal to the line

mal vectors? Z(t) = (4,5,6) + t(1,1,1).
18. Contains the point (4, 1, 1) and is orthogonal to the line
Problems Xx=4+4t
Lt)y=qy=1+1t

In Exercises 3 — 6, give any two points in the given plane.
z=1+1t

3. 2x—4 7z =2
XAyt 7z 19. Contains the point (—4,7,2) and is parallel to the plane
3(x—2)+8(y+1) —10z=0.

4. 3(x+2)+5(y—9)—4z=0 ( )+ 8 )

20. Contains the point (1,2, 3) and is parallel to the plane
5. x=2 x=05.

6. 4y +2)—(2-6)=0 In Exercises 21 — 22, give the equation of the line that is the

intersection of the given planes.
In Exercises 7 — 20, give the equation of the described plane
in standard and general forms. 21. pl: 3(x—2) + (y— 1) + 4z = 0, and
p2: 2(x—1) —2(y+3)+6(z—1)=0.
7. Passes through (2, 3,4) and has normal vector
=(3,-17). 22. pl: 5(x—5)+2(y+2)+4(z— 1) =0, and
p2: 3x—4(y—1)+2(z—1)=0.
8. Passes through (1, 3, 5) and has normal vector
n=(0,2,4). In Exercises 23 — 26, find the point of intersection between
the line and the plane.
9. Passes through the points (1,2, 3), (3,—1,4)and (1,0, 1).

23. line: (5,1, —1) +t(2,2,1),

10. Passes through the points (5, 3, 8), (6,4,9) and (3, 3, 3). plane: 5x —y — z = —3
11. Contains the intersecting lines 24. line: (4,1,0) +t(1,0,—1),
6(t) =(2,1,2) +t(1,2,3) and plane: 3x +y —2z =18

() = (2,1,2) +t(2,5,4).
25. line: (1,2,3) +t(3,5, 1),

12. Contains the intersecting lines plane:3x — 2y —z=14
£1(t) = (5,0,3) +t(—1,1,1) and
6(t) = (1,4,7) + t(3,0,-3). 26. line: (1,2,3) +t (3,5, 1),

plane:3x — 2y —z= —4
13. Contains the parallel lines

G(t) = (1,1,1) +1(1,2,3) and In Exercises 27 — 30, find the given distances.
L(t) =(1,1,2) +t(1,2,3).

27. The distance from the point (1, 2, ) to the plane
14. Contains the parallel lines 3(x—1)+(y—2)+5(z—2) =
£1(t) = (1,1,1) + t(4,1,3) and

b(t) =(4,4,4) +1(4,1,3). 28. The distance from the point (2, 6, 2) to the plane

2x—1)—y+4(z+1)=0
15. Contains the point (2, —6, 1) and the line

x=245t 29. The distance between the parallel planes
Ly=qy=2+2t X+y+2z=0and
z=—1+2t (x=2)+(y—3)+(z+4)=
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30. The distance between the parallel planes formula correctly gives the distance from the point to the
2(x—1)+2(y+1)+(z—2)=0and plane as 0.
2x—3)+2(y—-1)+(z—3)=0

32. How s Exercise 30 in Section 10.5 easier to answer once we

31. Show why if the point Q lies in a plane, then the distance have an understanding of planes?
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