
10: V��ãÊÙÝ
This chapter introduces a new mathemaƟcal object, the vector. Defined in Sec-
Ɵon 10.2, we will see that vectors provide a powerful language for describing
quanƟƟes that have magnitude and direcƟon aspects. A simple example of
such a quanƟty is force: when applying a force, one is generally interested in
howmuch force is applied (i.e., the magnitude of the force) and the direcƟon in
which the force was applied. Vectors will play an important role in many of the
subsequent chapters in this text.

This chapter begins with moving our mathemaƟcs out of the plane and into
“space.” That is, we begin to think mathemaƟcally not only in two dimensions,
but in three. With this foundaƟon, we can explore vectors both in the plane and
in space.

10.1 IntroducƟon to Cartesian Coordinates in Space
Up to this point in this text we have consideredmathemaƟcs in a 2–dimensional
world. We have ploƩed graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properƟes of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotaƟng it out of the plane.

While there is wonderful mathemaƟcs to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathemaƟcs involving this third di-
mension. In this secƟon we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundaƟon for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple, P = (a, b, c),
where a, b and c represent the relaƟve posiƟon of P along the x-, y- and z-axes,
respecƟvely. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problemaƟc, as we are trying
to represent a 3-dimensional concept on a 2–dimensional medium. We cannot
draw three lines represenƟng the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard convenƟons exist for ploƫng
shapes in space that we will discuss that are more than adequate.

One convenƟon is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
Ɵon of the posiƟve x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the posiƟve y-axis, then the extended thumb
will point in the direcƟon of the posiƟve z-axis. (It may take some thought to



Figure 10.1.1: Ploƫng the point P =
(2, 1, 3) in space.

Figure 10.1.2: Ploƫng the point P =
(2, 1, 3) in space with a perspecƟve used
in this text.
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verify this, but this system is inherently different from the one created by using
the “leŌ hand rule.”)

As long as the coordinate axes are posiƟoned so that they follow this rule,
it does not maƩer how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure 10.1.1 we see the point P = (2, 1, 3) ploƩed on a set of axes. The
basic convenƟon here is that the x-y plane is drawn in its standard way, with the
z-axis down to the leŌ. The perspecƟve is that the paper represents the x-y plane
and the posiƟve z axis is coming up, off the page. This method is preferred by
many engineers. Because it can behard to tell where a single point lies in relaƟon
to all the axes, dashed lines have been added to let one see how far along each
axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the posiƟve z-axis is poinƟng up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 10.1.2. The same
point P is drawn, again with dashed lines. This point of view is preferred by
most mathemaƟcians, and is the convenƟon adopted by this text.

Just as the x- and y-axes divide the plane into four quadrants, the x-, y-, and
z-coordinate planes divide space into eight octants. The octant in which x, y, and
z are posiƟve is called the first octant. We do not name the other seven octants
in this text.

Measuring Distances

It is of criƟcal importance to knowhow tomeasure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

DefiniƟon 10.1.1 Distance In Space

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The distance
D between P and Q is

D =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ||PQ||. The above distance formula
allows us to compute the length of this segment.

Example 10.1.1 Length of a line segment
Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ and find its
length.

Notes:
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Figure 10.1.3: Ploƫng points P and Q in
Example 10.1.1.

10.1 IntroducƟon to Cartesian Coordinates in Space

SÊ½çã®ÊÄ The points P and Q are ploƩed in Figure 10.1.3; no special
consideraƟon need be made to draw the line segment connecƟng these two
points; simply connect them with a straight line. One cannot actually measure
this line on the page and deduce anything meaningful; its true length must be
measured analyƟcally. Applying DefiniƟon 10.1.1, we have

||PQ|| =
√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14 ≈ 3.74.

Spheres

Just as a circle is the set of all points in the plane equidistant from a given
point (its center), a sphere is the set of all points in space that are equidis-
tant from a given point. DefiniƟon 10.1.1 allows us to write an equaƟon of the
sphere.

We start with a point C = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is,

||PC|| =
√

(x− a)2 + (y− b)2 + (z− c)2 = r.

Squaring both sides, we get the standard equaƟon of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

Key Idea 10.1.1 Standard EquaƟon of a Sphere in Space

The standard equaƟon of the sphere with radius r, centered at C =
(a, b, c), is

(x− a)2 + (y− b)2 + (z− c)2 = r2.

Example 10.1.2 EquaƟon of a sphere
Find the center and radius of the sphere defined by x2+2x+y2−4y+z2−6z = 2.

SÊ½çã®ÊÄ To determine the center and radius, we must put the equa-
Ɵon in standard form. This requires us to complete the square (three Ɵmes).

x2 + 2x+ y2 − 4y+ z2 − 6z = 2
(x2 + 2x+ 1) + (y2 − 4y+ 4) + (z2 − 6z+ 9)− 14 = 2

(x+ 1)2 + (y− 2)2 + (z− 3)2 = 16

The sphere is centered at (−1, 2, 3) and has a radius of 4.

The equaƟon of a sphere is an example of an implicit funcƟon defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We

Notes:
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Figure 10.1.5: The plane x = 2.

Figure 10.1.6: Sketching the boundaries
of a region in Example 10.1.3.
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now consider situaƟons where surfaces are defined where one or two of these
variables are absent.

IntroducƟon to Planes in Space

The coordinate axes naturally define three planes (shown in Figure 10.1.4),
the coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y
plane is characterized as the set of all points in space where the z-value is 0.
This, in fact, gives us an equaƟon that describes this plane: z = 0. Likewise, the
x-z plane is all points where the y-value is 0, characterized by y = 0.

the x-y plane the y-z plane the x-z plane

Figure 10.1.4: The coordinate planes.

The equaƟon x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the y-z coordinate plane, shown in Figure 10.1.5.

Example 10.1.3 Regions defined by planes
Sketch the region defined by the inequaliƟes−1 ≤ y ≤ 2.

SÊ½çã®ÊÄ The region is all points between the planes y = −1 and
y = 2. These planes are sketched in Figure 10.1.6, which are parallel to the
x-z plane. Thus the region extends infinitely in the x and z direcƟons, and is
bounded by planes in the y direcƟon.

Cylinders

The equaƟon x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equaƟon x2 + y2 = 1 in space. In the plane, this equaƟon describes a circle
of radius 1, centered at the origin. In space, the z coordinate is not specified,
meaning it can take on any value. In Figure 10.1.8 (a), we show part of the graph
of the equaƟon x2 + y2 = 1 by sketching 3 circles: the boƩom one has a con-
stant z-value of−1.5, the middle one has a z-value of 0 and the top circle has a
z-value of 1. By ploƫng all possible z-values, we get the surface shown in Figure

Notes:
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(a)

(b)

Figure 10.1.8: Sketching x2 + y2 = 1.

10.1 IntroducƟon to Cartesian Coordinates in Space

10.1.8(b). This surface looks like a “tube,” or a “cylinder”; mathemaƟcians call
this surface a cylinder for an enƟrely different reason.

DefiniƟon 10.1.2 Cylinder

Let C be a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equaƟons involving 2
variables, and the rulings will be parallel to the axis of the 3rd variable.

In the example preceding the definiƟon, the curve x2 + y2 = 1 in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 10.1.8 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definiƟon.

Example 10.1.4 Graphing cylinders
Graph the following cylinders.

1. z = y2 2. x = sin z

SÊ½çã®ÊÄ

1. We can view the equaƟon z = y2 as a parabola in the y-z plane, as il-
lustrated in Figure 10.1.7(a). As x does not appear in the equaƟon, the
rulings are lines through this parabola parallel to the x-axis, shown in (b).
These rulings give an idea as to what the surface looks like, drawn in (c).

(a) (b) (c)

Figure 10.1.7: Sketching the cylinder defined by z = y2.

Notes:

563



(a)

(b)

Figure 10.1.10: Introducing surfaces of
revoluƟon.
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2. We can view the equaƟon x = sin z as a sine curve that exists in the x-z
plane, as shown in Figure 10.1.9 (a). The rules are parallel to the y axis as
the variable y does not appear in the equaƟon x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.

(a) (b) (c)

Figure 10.1.9: Sketching the cylinder defined by x = sin z.

Surfaces of RevoluƟon

One of the applicaƟons of integraƟon we learned previously was to find the
volume of solids of revoluƟon – solids formed by revolving a curve about a hori-
zontal or verƟcal axis. We now consider how to find the equaƟon of the surface
of such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross–

secƟons of this surface parallel to the y-z plane are circles, as shown in Figure
10.1.10(a). Each circle has equaƟon of the form y2 + z2 = r2 for some radius r.
The radius is a funcƟon of x; in fact, it is r(x) =

√
x. Thus the equaƟon of the

surface shown in Figure 10.1.10b is y2 + z2 = (
√
x)2.

We generalize the above principles to give the equaƟons of surfaces formed
by revolving curves about the coordinate axes.

Key Idea 10.1.2 Surfaces of RevoluƟon, Part 1

Let r be a radius funcƟon.

1. The equaƟon of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equaƟon of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equaƟon of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

Notes:
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(a)

(b)

Figure 10.1.11: Revolving y = sin z about
the z-axis in Example 10.1.5.

(a)

(b)

Figure 10.1.12: Revolving z = sin x about
the z-axis in Example 10.1.6.

10.1 IntroducƟon to Cartesian Coordinates in Space

Example 10.1.5 Finding equaƟon of a surface of revoluƟon
Let y = sin z on [0, π]. Find the equaƟon of the surface of revoluƟon formed by
revolving y = sin z about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 10.1.2, we find the surface has equaƟon x2+
y2 = sin2 z. The curve is sketched in Figure 10.1.11(a) and the surface is drawn
in Figure 10.1.11(b).

Note how the surface (and hence the resulƟng equaƟon) is the same if we
began with the curve x = sin z, which is also drawn in Figure 10.1.11(a).

This parƟcular method of creaƟng surfaces of revoluƟon is limited. For in-
stance, in Example 7.3.4 of SecƟon 7.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sin x as a func-
Ɵon of y is not trivial, as simply wriƟng x = sin−1 y only gives part of the region
we desire.

What we desire is a way of wriƟng the surface of revoluƟon formed by ro-
taƟng y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotaƟng f(x) about the z-axis, wewant all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points saƟsfy the equaƟon r2 = x2 + y2; hence r =

√
x2 + y2. Replacing r with√

x2 + y2 in f(r) gives z = f(
√

x2 + y2). This is the equaƟon of the surface.

Key Idea 10.1.3 Surfaces of RevoluƟon, Part 2

Let z = f(x), x ≥ 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equaƟon z = f

(√
x2 + y2

)
.

Example 10.1.6 Finding equaƟon of surface of revoluƟon
Find the equaƟon of the surface found by revolving z = sin x about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 10.1.3, the surface has equaƟon z = sin
(√

x2 + y2
)
.

The curve and surface are graphed in Figure 10.1.12.

Notes:
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Figure 10.1.13: The ellipƟc paraboloid
z = x2/4+ y2.

Chapter 10 Vectors

Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The definiƟon may
look inƟmidaƟng, but we will show how to analyze these surfaces in an illumi-
naƟng way.

DefiniƟon 10.1.3 Quadric Surface

A quadric surface is the graph of the general second–degree equaƟon in
three variables:

Ax2 + By2 + Cz2 + Dxy+ Exz+ Fyz+ Gx+ Hy+ Iz+ J = 0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these
coefficients are 0; we will not consider rotaƟons. There are six basic quadric sur-
faces: the ellipƟc paraboloid, ellipƟc cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersecƟons of each
surface with a plane parallel to a coordinate plane. For instance, consider the
ellipƟc paraboloid z = x2/4 + y2, shown in Figure 10.1.13. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equaƟon:

d =
x2

4
+ y2.

Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse – so cross secƟons parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross secƟons parallel to the x-z plane. For instance, leƫng
y = 0 gives the equaƟon z = x2/4, clearly a parabola. IntersecƟng with the
plane x = 0 gives a cross secƟon defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the ellipƟc paraboloid gets its name: some cross secƟons
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equaƟon of each, provide a sketch with representaƟve traces, and de-
scribe these traces.

Notes:
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EllipƟc Paraboloid, z =
x2

a2
+

y2

b2

Plane Trace
x = d Parabola
y = d Parabola
z = d Ellipse

One variable in the equaƟon of the ellipƟc paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direcƟon of this variable’s axis. Thus
x = y2/a2 + z2/b2 is an ellipƟc paraboloid that opens along the x-axis.

MulƟplying the right hand side by (−1) defines an ellipƟc paraboloid that “opens” in the opposite
direcƟon.

EllipƟc Cone, z2 =
x2

a2
+

y2

b2

Plane Trace
x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

One can rewrite the equaƟon as z2 − x2/a2 − y2/b2 = 0. The one variable with a posiƟve
coefficient corresponds to the axis that the cones “open” along.
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Ellipsoid, x2

a2
+

y2

b2
+

z2

c2
= 1

Plane Trace
x = d Ellipse
y = d Ellipse
z = d Ellipse

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key Idea 10.1.1.

Hyperboloid of One Sheet, x2

a2
+

y2

b2
− z2

c2
= 1

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a negaƟve coefficient corresponds to the axis that the hyperboloid “opens”
along.
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Hyperboloid of Two Sheets, z2

c2
− x2

a2
− y2

b2
= 1

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a posiƟve coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

Hyperbolic Paraboloid, z =
x2

a2
− y2

b2

Plane Trace
x = d Parabola
y = d Parabola
z = d Hyperbola

The parabolic traces will open along the axis of the one variable that is raised to the first power. 569



(a)

(b)

Figure 10.1.14: Sketching an ellipƟc
paraboloid.

(a)

(b)

Figure 10.1.15: Sketching an ellipsoid.

Chapter 10 Vectors

Example 10.1.7 Sketching quadric surfaces
Sketch the quadric surface defined by the given equaƟon.

1. y =
x2

4
+

z2

16
2. x2 +

y2

9
+

z2

4
= 1. 3. z = y2 − x2.

SÊ½çã®ÊÄ

1. y =
x2

4
+

z2

16
:

Wefirst idenƟfy the quadric by paƩern–matchingwith the equaƟons given
previously. Only two surfaces have equaƟons where one variable is raised
to the first power, the ellipƟc paraboloid and the hyperbolic paraboloid.
In the laƩer case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the paraboloid opens along the y-axis.
To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.
x = 0: The trace is the parabola y = z2/16
z = 0: The trace is the parabola y = x2/4.
Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure 10.1.14(a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

2. x2 +
y2

9
+

z2

4
= 1 :

This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is along the

y–axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is along the

z-axis, and the minor axis has length 2 along the x-axis.

z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along the

y-axis.
Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure 10.1.15(a). Filling in the surface gives Figure 10.1.15(b).

3. z = y2 − x2:

Notes:
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(a)

(b)

Figure 10.1.16: Sketching a hyperbolic
paraboloid.

Figure 10.1.17: A possible equaƟon of
this quadric surface is found in Example
10.1.8.

10.1 IntroducƟon to Cartesian Coordinates in Space

This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric secƟons. Consider the traces in the y−z and x−z planes:
x = 0: The trace is z = y2, a parabola opening up in the y− z plane.
y = 0: The trace is z = −x2, a parabola opening down in the x− z plane.
Sketching these two parabolas gives a sketch like that in Figure 10.1.16(a),
and filling in the surface gives a sketch like (b).

Example 10.1.8 IdenƟfying quadric surfaces
Consider the quadric surface shown in Figure 10.1.17. Which of the following
equaƟons best fits this surface?

(a) x2 − y2 − z2

9
= 0 (c) z2 − x2 − y2 = 1

(b) x2 − y2 − z2 = 1 (d) 4x2 − y2 − z2

9
= 1

SÊ½çã®ÊÄ The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equaƟon will have a form similar to z2

c2 −
x2
a2 −

y2
b2 = 1.

We can immediately eliminate opƟon (a), as the constant in that equaƟon is
not 1.

The hyperboloid “opens” along the x-axis, meaning xmust be the only vari-
able with a posiƟve coefficient, eliminaƟng (c).

The hyperboloid is wider in the z-direcƟon than in the y-direcƟon, so we
need an equaƟon where c > b. This eliminates (b), leaving us with (d). We
should verify that the equaƟon given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equaƟon describes a hyperboloid of two

sheets that opens in the x-direcƟon and is wider in the z-direcƟon than in the
y. Now note the coefficient of the x-term. RewriƟng 4x2 in standard form, we

have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x must be 1/2; i.e., each

hyperboloid “starts” at x = 1/2. This matches our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph.

This secƟon has introduced points in space and shown how equaƟons can
describe surfaces. The next secƟons explore vectors, an importantmathemaƟcal
object that we’ll use to explore curves in space.

Notes:
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Exercises 10.1
Terms and Concepts
1. Axes drawn in space must conform to the

rule.

2. In the plane, the equaƟon x = 2 defines a ; in
space, x = 2 defines a .

3. In the plane, the equaƟon y = x2 defines a ; in
space, y = x2 defines a .

4. Which quadric surface looks like a Pringles® chip?

5. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems
7. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1, 1, 3), B = (3, 2, 7), C = (2, 0, 8) and
D = (0,−1, 4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
x2 − 8x+ y2 + 2y+ z2 + 8 = 0.

10. Find the center and radius of the sphere defined by
x2 + y2 + z2 + 4x− 2y− 4z+ 4 = 0.

In Exercises 11 – 14, describe the region in space defined by
the inequaliƟes.

11. x2 + y2 + z2 < 1

12. 0 ≤ x ≤ 3

13. x ≥ 0, y ≥ 0, z ≥ 0

14. y ≥ 3

In Exercises 15 – 18, sketch the cylinder in space.

15. z = x3

16. y = cos z

17. x2

4
+

y2

9
= 1

18. y = 1
x

In Exercises 19 – 22, give the equaƟon of the surface of revo-
luƟon described.

19. Revolve z = 1
1+ y2

about the y-axis.

20. Revolve y = x2 about the x-axis.

21. Revolve z = x2 about the z-axis.

22. Revolve z = 1/x about the z-axis.

In Exercises 23 – 26, a quadric surface is sketched. Determine
which of the given equaƟons best fits the graph.

23.

(a) x = y2 + z2

9
(b) x = y2 + z2

3

24.

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

(a) x2 + y2

3
+

z2

2
= 1 (b) x2 + y2

9
+

z2

4
= 1
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26.

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1

In Exercises 27 – 32, sketch the quadric surface.

27. z− y2 + x2 = 0

28. z2 = x2 + y2

4

29. x = −y2 − z2

30. 16x2 − 16y2 − 16z2 = 1

31. x2

9
− y2 + z2

25
= 1

32. 4x2 + 2y2 + z2 = 4
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Figure 10.2.1: Drawing the same vector
with different iniƟal points.
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Figure 10.2.2: IllustraƟng how equal vec-
tors have the same displacement.

Chapter 10 Vectors

10.2 An IntroducƟon to Vectors
Many quanƟƟes we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster oŌen describes wind with its speed and its direcƟon (“. . .
with winds from the southeast gusƟng up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direcƟon of that force.
In both of these examples, direcƟon is important. Because of this, we study
vectors, mathemaƟcal objects that convey both magnitude and direcƟon infor-
maƟon.

One “bare–bones” definiƟon of a vector is based on what we wrote above:
“a vector is a mathemaƟcal object with magnitude and direcƟon parameters.”
This definiƟon leaves much to be desired, as it gives no indicaƟon as to how
such an object is to be used. Several other definiƟons exist; we choose here a
definiƟon rooted in a geometric visualizaƟon of vectors. It is very simplisƟc but
readily permits further invesƟgaƟon.

DefiniƟon 10.2.1 Vector

A vector is a directed line segment.

Given points P and Q (either in the plane or in space), we denote with
#  ‰PQ the vector from P to Q. The point P is said to be the iniƟal point of
the vector, and the point Q is the terminal point.

The magnitude, length or norm of #  ‰PQ is the length of the line segment
PQ: || #  ‰PQ || = || PQ ||.

Two vectors are equal if they have the same magnitude and direcƟon.

Figure 10.2.1 shows mulƟple instances of the same vector. Each directed
line segment has the same direcƟon and length (magnitude), hence each is the
same vector.

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

Consider the vectors #  ‰PQ and #‰RS as shown in Figure 10.2.2. The vectors look to
be equal; that is, they seem to have the same length and direcƟon. Indeed, they
are. Both vectors move 2 units to the right and 1 unit up from the iniƟal point
to reach the terminal point. One can analyze this movement to measure the

Notes:
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magnitude of the vector, and the movement itself gives direcƟon informaƟon
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direcƟon, these two vectors are equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z direcƟons the terminal point is from the iniƟal
point. Both the vectors #  ‰PQ and #‰RS in Figure 10.2.2 have an x-displacement of 2
and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the iniƟal point is the origin, (0, 0). This
leads us to a definiƟon of a standard and concise way of referring to vectors.

DefiniƟon 10.2.2 Component Form of a Vector

1. The component form of a vector v⃗ in R2, whose terminal point is
(a, b) when its iniƟal point is (0, 0), is ⟨a, b⟩ .

2. The component form of a vector v⃗ in R3, whose terminal point is
(a, b, c) when its iniƟal point is (0, 0, 0), is ⟨a, b, c⟩ .

The numbers a, b (and c, respecƟvely) are the components of v⃗.

It follows from the definiƟon that the component form of the vector #  ‰PQ,
where P = (x1, y1) and Q = (x2, y2) is

#  ‰PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) and Q = (x2, y2, z2), the component form of #  ‰PQ
is

#  ‰PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .

We pracƟce using this notaƟon in the following example.

Example 10.2.1 Using component form notaƟon for vectors

1. Sketch the vector v⃗ = ⟨2,−1⟩ starƟng at P = (3, 2) and find its magni-
tude.

2. Find the component formof the vector w⃗whose iniƟal point isR = (−3,−2)
and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ starƟng at the point Q = (1, 1, 1) and
find its magnitude.

Notes:
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Figure 10.2.3: Graphing vectors in Exam-
ple 10.2.1.
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1. Using P as the iniƟal point, wemove 2 units in the posiƟve x-direcƟon and
−1 units in the posiƟve y-direcƟon to arrive at the terminal point P ′ =
(5, 1), as drawn in Figure 10.2.3(a).
The magnitude of v⃗ is determined directly from the component form:

|| v⃗ || =
√

22 + (−1)2 =
√
5.

2. Using the note following DefiniƟon 10.2.2, we have
#‰RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 10.2.3(a) that the x- and y-displacement
of #‰RS is 2 and 4, respecƟvely, as the component form suggests.

3. Using Q as the iniƟal point, we move 2 units in the posiƟve x-direcƟon,
−1 unit in the posiƟve y-direcƟon, and 3 units in the posiƟve z-direcƟon
to arrive at the terminal pointQ′ = (3, 0, 4), illustrated in Figure 10.2.3(b).
The magnitude of u⃗ is:

|| u⃗ || =
√

22 + (−1)2 + 32 =
√
14.

Now thatwehave defined vectors, and have created a nice notaƟonbywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Notes:
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Figure 10.2.4: Graphing the sum of vec-
tors in Example 10.2.2.
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Figure 10.2.5: IllustraƟng how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.
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DefiniƟon 10.2.3 Vector Algebra

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c be a
scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3, and let c
be a scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2, v3⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addiƟon and scalarmulƟplicaƟon are computed “component–
wise.”

Example 10.2.2 Adding vectors
Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗ + v⃗ all with iniƟal point at the
origin.

SÊ½çã®ÊÄ We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

These are all sketched in Figure 10.2.4.

As vectors convey magnitude and direcƟon informaƟon, the sum of vectors
also convey length and magnitude informaƟon. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

“StarƟng at an iniƟal point, go out u⃗, then go out v⃗.”

Notes:
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Figure 10.2.6: IllustraƟng how to subtract
vectors graphically.
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This idea is sketched in Figure 10.2.5, where the iniƟal point of v⃗ is the termi-
nal point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addiƟon is very important. For instance, if the vectors u⃗ and v⃗ represent forces
acƟng on a body, the sum u⃗ + v⃗ gives the resulƟng force. Because of various
physical applicaƟons of vector addiƟon, the sum u⃗+ v⃗ is oŌen referred to as the
resultant vector, or just the “resultant.”

AnalyƟcally, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 10.2.5 also gives
a graphical representaƟon of this, using gray vectors. Note that the vectors u⃗
and v⃗, when arranged as in the figure, form a parallelogram. Because of this,
the Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗+ v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the iniƟal
point of u⃗ + v⃗ is the common iniƟal point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properƟes of the real numbers and DefiniƟon 10.2.3 that

u⃗− v⃗ = u⃗+ (−1)⃗v.

The Parallelogram Law gives us a good way to visualize this subtracƟon. We
demonstrate this in the following example.

Example 10.2.3 Vector SubtracƟon
Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩ . Compute and sketch u⃗− v⃗.

SÊ½çã®ÊÄ The computaƟon of u⃗ − v⃗ is straighƞorward, and we show
all steps below. Usually the formal step of mulƟplying by (−1) is omiƩed and
we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)⃗v
= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

Figure 10.2.6 illustrates, using the Head to Tail Rule, how the subtracƟon can
be viewed as the sum u⃗+ (−v⃗). The figure also illustrates how u⃗− v⃗ can be ob-
tained by looking only at the terminal points of u⃗ and v⃗ (when their iniƟal points
are the same).

Example 10.2.4 Scaling vectors

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2⃗v with iniƟal point at the origin.

2. Compute the magnitudes of v⃗ and 2⃗v.

Notes:
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Figure 10.2.7: Graphing vectors v⃗ and 2⃗v
in Example 10.2.4.
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1. We compute 2⃗v:

2⃗v = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

Both v⃗ and 2⃗v are sketched in Figure 10.2.7. Make note that 2⃗v does not
start at the terminal point of v⃗; rather, its iniƟal point is also the origin.

2. The figure suggests that 2⃗v is twice as long as v⃗. We compute their mag-
nitudes to confirm this.

|| v⃗ || =
√

22 + 12

=
√
5.

|| 2⃗v || =
√

42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2⃗v is twice as long as v⃗.

The zero vector is the vector whose iniƟal point is also its terminal point. It
is denoted by 0⃗. Its component form, inR2, is ⟨0, 0⟩; inR3, it is ⟨0, 0, 0⟩. Usually
the context makes is clear whether 0⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to mulƟply vectors by a scalar. The following the-
orem states formally the properƟes of these operaƟons.

Notes:
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Theorem 10.2.1 ProperƟes of Vector OperaƟons

The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are all in R3:

1. u⃗+ v⃗ = v⃗+ u⃗ CommutaƟve Property

2. (⃗u+ v⃗) + w⃗ = u⃗+ (⃗v+ w⃗) AssociaƟve Property

3. v⃗+ 0⃗ = v⃗ AddiƟve IdenƟty

4. (cd)⃗v = c(d⃗v)

5. c(⃗u+ v⃗) = c⃗u+ c⃗v DistribuƟve Property

6. (c+ d)⃗v = c⃗v+ d⃗v DistribuƟve Property

7. 0⃗v = 0⃗

8. || c⃗v || = |c| · || v⃗ ||

9. || u⃗ || = 0 if, and only if, u⃗ = 0⃗.

As stated before, each nonvector v⃗ conveys magnitude and direcƟon infor-
maƟon. We have amethod of extracƟng themagnitude, whichwewrite as || v⃗ ||.
Unit vectors are a way of extracƟng just the direcƟon informaƟon from a vector.

DefiniƟon 10.2.4 Unit Vector

A unit vector is a vector v⃗ with a magnitude of 1; that is,

|| v⃗ || = 1.

Consider this scenario: you are given a vector v⃗ and are told to create a vector
of length 10 in the direcƟon of v⃗. How does one do that? If we knew that u⃗ was
the unit vector in the direcƟon of v⃗, the answer would be easy: 10u⃗. So how do
we find u⃗ ?

Property 8 of Theorem 10.2.1 holds the key. If we divide v⃗ by its magnitude,
it becomes a vector of length 1. Consider:∣∣∣∣∣∣∣∣ 1

|| v⃗ ||
v⃗
∣∣∣∣∣∣∣∣ = 1

|| v⃗ ||
|| v⃗ || (we can pull out 1

|| v⃗ || as it is a posiƟve scalar)

= 1.

Notes:
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Figure 10.2.8: Graphing vectors in Exam-
ple 10.2.5. All vectors shown have their
iniƟal point at the origin.
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So the vector of length 10 in the direcƟon of v⃗ is 10
1

|| v⃗ ||
v⃗. An example will make

this more clear.

Example 10.2.5 Using Unit Vectors
Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direcƟon of v⃗.

2. Find the unit vector in the direcƟon of w⃗.

3. Find the vector in the direcƟon of v⃗ with magnitude 5.

SÊ½çã®ÊÄ

1. We find || v⃗ || =
√
10. So the unit vector u⃗ in the direcƟon of v⃗ is

u⃗ =
1√
10

v⃗ =
⟨

3√
10

,
1√
10

⟩
.

2. We find || w⃗ || = 3, so the unit vector z⃗ in the direcƟon of w⃗ is

u⃗ =
1
3
w⃗ =

⟨
1
3
,
2
3
,
2
3

⟩
.

3. To create a vector with magnitude 5 in the direcƟon of v⃗, we mulƟply the
unit vector u⃗ by 5. Thus 5u⃗ =

⟨
15/

√
10, 5/

√
10
⟩
is the vector we seek.

This is sketched in Figure 10.2.8.

The basic formaƟon of the unit vector u⃗ in the direcƟon of a vector v⃗ leads
to a interesƟng equaƟon. It is:

v⃗ = || v⃗ || 1
|| v⃗ ||

v⃗.

We rewrite the equaƟon with parentheses to make a point:

v⃗ = || v⃗ ||︸︷︷︸
magnitude

·
(

1
|| v⃗ ||

v⃗
)

︸ ︷︷ ︸
direcƟon

.

This equaƟon illustrates the fact that a nonzero vector has both magnitude
and direcƟon, where we view a unit vector as supplying only direcƟon informa-
Ɵon. IdenƟfying unit vectors with direcƟon allows us to define parallel vectors.

Notes:
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Note: 0⃗ is direcƟonless; because
|| 0⃗ || = 0, there is no unit vector in the
“direcƟon” of 0⃗.

Some texts define two vectors as being
parallel if one is a scalar mulƟple of the
other. By this definiƟon, 0⃗ is parallel to
all vectors as 0⃗ = 0⃗v for all v⃗.

We define what it means for two vectors
to be perpendicular in DefiniƟon 10.3.2,
which is wriƩen to exclude 0⃗. It could be
wriƩen to include 0⃗; by such a definiƟon,
0⃗ is perpendicular to all vectors. While
counter-intuiƟve, it is mathemaƟcally
sound to allow 0⃗ to be both parallel and
perpendicular to all vectors.

We prefer the given definiƟon of parallel
as it is grounded in the fact that unit vec-
tors provide direcƟon informaƟon. One
may adopt the convenƟon that 0⃗ is paral-
lel to all vectors if they desire. (See also
the marginal note on page 604.)

..

50lb

.

45◦

.

30◦

Figure 10.2.9: A diagram of a weight
hanging from 2 chains in Example 10.2.6.
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DefiniƟon 10.2.5 Parallel Vectors

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respecƟve unit vec-
tors are parallel.

It is equivalent to say that vectors v⃗1 and v⃗2 are parallel if there is a scalar
c ̸= 0 such that v⃗1 = c⃗v2 (see marginal note).

If one graphed all unit vectors in R2 with the iniƟal point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is ⟨cos θ, sin θ⟩ for some angle θ.
A similar construcƟon inR3 shows that the terminal points all lie on the unit

sphere. These vectors also have a parƟcular component form, but its derivaƟon
is not as straighƞorward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea 10.2.1 Unit Vectors

1. The unit vector in the direcƟon of a nonzero vector v⃗ is

u⃗ =
1

|| v⃗ ||
v⃗.

2. A vector u⃗ in R2 is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ in R3 is a unit vector if, and only if, its component form
is ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situaƟons, especially the
formula for unit vectors in the plane.

Example 10.2.6 Finding Component Forces
Consider a weight of 50lb hanging from two chains, as shown in Figure 10.2.9.
One chain makes an angle of 30◦ with the verƟcal, and the other an angle of
45◦. Find the force applied to each chain.

SÊ½çã®ÊÄ Knowing that gravity is pulling the 50lbweight straight down,

Notes:
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Figure 10.2.10: A diagram of the force
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we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” theweight up, prevenƟng it from falling.
We can represent the force from each chain with a vector. Let F⃗1 represent the
force from the chain making an angle of 30◦ with the verƟcal, and let F⃗2 repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure 10.2.10), and apply Key Idea 10.2.1. As we do not
yet know themagnitudes of these vectors, (that is the problem at hand), we use
m1 andm2 to represent them.

F⃗1 = m1 ⟨cos 120◦, sin 120◦⟩

F⃗2 = m2 ⟨cos 45◦, sin 45◦⟩

As the weight is not moving, we know the sum of the forces is 0⃗. This gives:

F⃗+ F⃗1 + F⃗2 = 0⃗

⟨0,−50⟩+m1 ⟨cos 120◦, sin 120◦⟩+m2 ⟨cos 45◦, sin 45◦⟩ = 0⃗

The sum of the entries in the first component is 0, and the sum of the entries
in the second component is also 0. This leads us to the following two equaƟons:

m1 cos 120◦ +m2 cos 45◦ = 0
m1 sin 120◦ +m2 sin 45◦ = 50

This is a simple 2-equaƟon, 2-unkown system of linear equaƟons. We leave it to
the reader to verify that the soluƟon is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1+
√
3
≈ 25.88.

It might seem odd that the sum of the forces applied to the chains is more
than 50lb. We leave it to a physics class to discuss the full details, but offer this
short explanaƟon. Our equaƟons were established so that the verƟcal compo-
nents of each force sums to 50lb, thus supporƟng the weight. Since the chains
are at an angle, they also pull against each other, creaƟng an “addiƟonal” hori-
zontal force while holding the weight in place.

Unit vectors were very important in the previous calculaƟon; they allowed
us to define a vector in the proper direcƟon but with an unknown magnitude.
Our computaƟons were then computed component–wise. Because such calcu-
laƟons are oŌen necessary, the standard unit vectors can be useful.

Notes:
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Figure 10.2.11: A figure of a weight being
pushed by the wind in Example 10.2.8.

Chapter 10 Vectors

DefiniƟon 10.2.6 Standard Unit Vectors

1. In R2, the standard unit vectors are

i⃗ = ⟨1, 0⟩ and j⃗ = ⟨0, 1⟩ .

2. In R3, the standard unit vectors are

i⃗ = ⟨1, 0, 0⟩ and j⃗ = ⟨0, 1, 0⟩ and k⃗ = ⟨0, 0, 1⟩ .

Example 10.2.7 Using standard unit vectors

1. Rewrite v⃗ = ⟨2,−3⟩ using the standard unit vectors.

2. Rewrite w⃗ = 4⃗i− 5⃗j+ 2⃗k in component form.

SÊ½çã®ÊÄ

1. v⃗ = ⟨2,−3⟩
= ⟨2, 0⟩+ ⟨0,−3⟩
= 2 ⟨1, 0⟩ − 3 ⟨0, 1⟩
= 2⃗i− 3⃗j

2. w⃗ = 4⃗i− 5⃗j+ 2⃗k
= ⟨4, 0, 0⟩+ ⟨0,−5, 0⟩+ ⟨0, 0, 2⟩
= ⟨4,−5, 2⟩

These two examples demonstrate that converƟng between component form
and the standard unit vectors is rather straighƞorward. Many mathemaƟcians
prefer component form, and it is the preferred notaƟon in this text. Many en-
gineers prefer using the standard unit vectors, and many engineering text use
that notaƟon.

Example 10.2.8 Finding Component Force
Aweight of 25lb is suspended from a chain of length 2Ōwhile a wind pushes the
weight to the right with constant force of 5lb as shown in Figure 10.2.11. What
angle will the chain make with the verƟcal as a result of the wind’s pushing?
How much higher will the weight be?

Notes:
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SÊ½çã®ÊÄ The force of the wind is represented by the vector F⃗w = 5⃗i.
The force of gravity on the weight is represented by F⃗g = −25⃗j. The direcƟon
and magnitude of the vector represenƟng the force on the chain are both un-
known. We represent this force with

F⃗c = m ⟨cosφ, sinφ⟩ = m cosφ i⃗+m sinφ j⃗

for some magnitude m and some angle with the horizontal φ. (Note: θ is the
angle the chain makes with the verƟcal; φ is the angle with the horizontal.)

As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cosφ i⃗+m sinφ j⃗+ 5⃗i− 25⃗j = 0⃗

Thus the sum of the i⃗ and j⃗ components are 0, leading us to the following
system of equaƟons:

5+m cosφ = 0
−25+m sinφ = 0

(10.1)

This is enough to determine F⃗c already, as we know m cosφ = −5 and
m sinφ = 25. Thus Fc = ⟨−5, 25⟩ . We can use this to find the magnitude
m:

m =
√
(−5)2 + 252 = 5

√
26 ≈ 25.5lb.

We can then use either equality from EquaƟon (10.1) to solve for φ. We choose
the first equality as using arccosine will return an angle in the 2nd quadrant:

5+ 5
√
26 cosφ = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.

SubtracƟng 90◦ from this angle gives us an angle of 11.31◦ with the verƟcal.
We can now use trigonometry to find out how high the weight is liŌed.

The diagram shows that a right triangle is formed with the 2Ō chain as the hy-
potenuse with an interior angle of 11.31◦. The length of the adjacent side (in
the diagram, the dashed verƟcal line) is 2 cos 11.31◦ ≈ 1.96Ō. Thus the weight
is liŌed by about 0.04Ō, almost 1/2in.

The algebra we have applied to vectors is already demonstraƟng itself to be
very useful. There are two more fundamental operaƟons we can perform with
vectors, the dot product and the cross product. The next two secƟons explore
each in turn.

Notes:
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Exercises 10.2
Terms and Concepts
1. Name two different things that cannot be described with

just one number, but rather need 2 or more numbers to
fully describe them.

2. What is the difference between (1, 2) and ⟨1, 2⟩?

3. What is a unit vector?

4. Unit vectors can be thought of as conveying what type of
informaƟon?

5. What does it mean for two vectors to be parallel?

6. What effect does mulƟplying a vector by−2 have?

Problems
In Exercises 7 – 10, points P and Q are given. Write the vector
# ‰PQ in component form and using the standard unit vectors.

7. P = (2,−1), Q = (3, 5)

8. P = (3, 2), Q = (7,−2)

9. P = (0, 3,−1), Q = (6, 2, 5)

10. P = (2, 1, 2), Q = (4, 3, 2)

11. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.
(a) Find u⃗+ v⃗, u⃗− v⃗, 2⃗u− 3⃗v.
(b) Sketch the above vectors on the same axes, along

with u⃗ and v⃗.
(c) Find x⃗ where u⃗+ x⃗ = 2⃗v− x⃗.

12. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.
(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−

√
2⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗+ 2⃗x.

In Exercises 13 – 16, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same
axes.

13.

.....

u⃗

. v⃗.

x

.

y

14.
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.
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15.
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.v⃗ .

x

.

y
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z

16.
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u⃗
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v⃗

.

x

.

y

.

z

In Exercises 17 – 20, find || u⃗ ||, || v⃗ ||, || u⃗+ v⃗ || and || u⃗− v⃗ ||.

17. u⃗ = ⟨2, 1⟩, v⃗ = ⟨3,−2⟩

18. u⃗ = ⟨−3, 2, 2⟩, v⃗ = ⟨1,−1, 1⟩

19. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−3,−6⟩

20. u⃗ = ⟨2,−3, 6⟩, v⃗ = ⟨10,−15, 30⟩

21. Under what condiƟons is || u⃗ ||+ || v⃗ || = || u⃗+ v⃗ ||?

In Exercises 22 – 25, find the unit vector u⃗ in the direcƟon of
v⃗.

22. v⃗ = ⟨3, 7⟩

23. v⃗ = ⟨6, 8⟩

24. v⃗ = ⟨1,−2, 2⟩

25. v⃗ = ⟨2,−2, 2⟩
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26. Find the unit vector in the first quadrant of R2 that makes
a 50◦ angle with the x-axis.

27. Find the unit vector in the second quadrant of R2 that
makes a 30◦ angle with the y-axis.

28. Verify, from Key Idea 10.2.1, that

u⃗ = ⟨sin θ cosφ, sin θ sinφ, cos θ⟩

is a unit vector for all angles θ and φ.

A weight of 100lb is suspended from two chains, making an-
gles with the verƟcal of θ andφ as shown in the figure below.

..

100lb

.

θ

.

φ

In Exercises 29 – 32, angles θ and φ are given. Find the mag-
nitude of the force applied to each chain.

29. θ = 30◦, φ = 30◦

30. θ = 60◦, φ = 60◦

31. θ = 20◦, φ = 15◦

32. θ = 0◦, φ = 0◦

A weight of plb is suspended from a chain of length ℓ while
a constant force of F⃗w pushes the weight to the right, making
an angle of θ with the verƟcal, as shown in the figure below.

..

ℓ Ō

.

p lb

.

θ

.

F⃗w

In Exercises 33 – 36, a force F⃗w and length ℓ are given. Find
the angle θ and the height the weight is liŌed as it moves to
the right.

33. F⃗w = 1lb, ℓ = 1Ō, p = 1lb

34. F⃗w = 1lb, ℓ = 1Ō, p = 10lb

35. F⃗w = 1lb, ℓ = 10Ō, p = 1lb

36. F⃗w = 10lb, ℓ = 10Ō, p = 1lb
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10.3 The Dot Product
The previous secƟon introduced vectors and described how to add them to-
gether and how to mulƟply them by scalars. This secƟon introduces a mulƟ-
plicaƟon on vectors called the dot product.

DefiniƟon 10.3.1 Dot Product

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ in R2. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot product of
u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector. We
pracƟce evaluaƟng a dot product in the following example, then we will discuss
why this product is useful.

Example 10.3.1 EvaluaƟng dot products

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

SÊ½çã®ÊÄ

1. Using DefiniƟon 10.3.1, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definiƟon, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definiƟon gives no hint as to why

Notes:
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u⃗
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v⃗

. θ

(a)

(b)

Figure 10.3.1: IllustraƟng the angle
formed by two vectors with the same
iniƟal point.

10.3 The Dot Product

we would care about this operaƟon, there is an amazing connecƟon between
the dot product and angles formed by the vectors. Before staƟng this connec-
Ɵon, we give a theorem staƟng some of the properƟes of the dot product.

Theorem 10.3.1 ProperƟes of the Dot Product

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ CommutaƟve Property

2. u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗ DistribuƟve Property

3. c(⃗u · v⃗) = (c⃗u) · v⃗ = u⃗ · (c⃗v)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = || v⃗ ||2

The last statement of the theorem makes a handy connecƟon between the
magnitude of a vector and the dot product with itself. Our definiƟon and theo-
rem give properƟes of the dot product, but we are sƟll likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecƟng the dot product
tomagnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is clearly
formedwhen u⃗ and v⃗ are drawnwith the same iniƟal point as illustrated in Figure
10.3.1(a). (We always take θ to be the angle in [0, π] as two angles are actually
created.)

The same is also true of 2 vectors in space: given u⃗ and v⃗ in R3 with the
same iniƟal point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗
are co-linear, there are infinitely many planes that contain both vectors.) In that
plane, we can again find an angle θ between them (and again, 0 ≤ θ ≤ π). This
is illustrated in Figure 10.3.1(b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Notes:
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Figure 10.3.3: Vectors used in Example
10.3.2.

Chapter 10 Vectors

Theorem 10.3.2 The Dot Product and Angles

Let u⃗ and v⃗ be nonzero vectors in R2 or R3. Then

u⃗ · v⃗ = || u⃗ || || v⃗ || cos θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Using Theorem 10.3.1, we can rewrite this theorem as

u⃗
|| u⃗ ||

· v⃗
|| v⃗ ||

= cos θ.

Note how on the leŌ hand side of the equaƟon, we are compuƟng the dot prod-
uct of two unit vectors. Recalling that unit vectors essenƟally only provide direc-
Ɵon informaƟon, we can informally restate Theorem 10.3.2 as saying “The dot
product of two direcƟons gives the cosine of the angle between them.”

When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos θ is posiƟve; when θ =
π/2, cos θ = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos θ is negaƟve.
Thus the sign of the dot product gives a general indicaƟon of the angle between
the vectors, illustrated in Figure 10.3.2.

..
u⃗ · v⃗ > 0

. u⃗.

v⃗

. θ.
u⃗ · v⃗ = 0

. u⃗.

v⃗

.
θ = π/2

.
u⃗ · v⃗ < 0

. u⃗.

v⃗

.
θ

Figure 10.3.2: IllustraƟng the relaƟonship between the angle between vectors and the
sign of their dot product.

We can use Theorem 10.3.2 to compute the dot product, but generally this
theorem is used to find the angle between known vectors (since the dot product
is generally easy to compute). To this end, we rewrite the theorem’s equaƟon
as

cos θ =
u⃗ · v⃗

|| u⃗ |||| v⃗ ||
⇔ θ = cos−1

(
u⃗ · v⃗

|| u⃗ |||| v⃗ ||

)
.

We pracƟce using this theorem in the following example.

Example 10.3.2 Using the dot product to find angles
Let u⃗ = ⟨3, 1⟩, v⃗ = ⟨−2, 6⟩ and w⃗ = ⟨−4, 3⟩, as shown in Figure 10.3.3. Find
the angles α, β and θ.

Notes:
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Figure 10.3.4: Vectors used in Example
10.3.3.

10.3 The Dot Product

SÊ½çã®ÊÄ We start by compuƟng the magnitude of each vector.

|| u⃗ || =
√
10; || v⃗ || = 2

√
10; || w⃗ || = 5.

We now apply Theorem 10.3.2 to find the angles.

α = cos−1
(

u⃗ · v⃗
(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

β = cos−1
(

v⃗ · w⃗
(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1
(

u⃗ · w⃗
(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

We see from our computaƟon that α+β = θ, as indicated by Figure 10.3.3.
While we knew this should be the case, it is nice to see that this non-intuiƟve
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Example 10.3.3 Using the dot product to find angles
Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in Figure
10.3.4. Find the angle between each pair of vectors.

SÊ½çã®ÊÄ

1. Between u⃗ and v⃗:

θ = cos−1
(

u⃗ · v⃗
|| u⃗ |||| v⃗ ||

)
= cos−1

(
0√

3
√
14

)
=

π

2
.

Notes:
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Note: The term perpendicular originally
referred to lines. As mathemaƟcs pro-
gressed, the concept of “being at right
angles to” was applied to other objects,
such as vectors and planes, and the term
orthogonal was introduced. It is espe-
cially used when discussing objects that
are hard, or impossible, to visualize: two
vectors in 5-dimensional space are or-
thogonal if their dot product is 0. It is not
wrong to say they are perpendicular, but
common convenƟon gives preference to
the word orthogonal.

Chapter 10 Vectors

2. Between u⃗ and w⃗:

θ = cos−1
(

u⃗ · w⃗
|| u⃗ |||| w⃗ ||

)
= cos−1

(
0√

3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1
(

v⃗ · w⃗
|| v⃗ |||| w⃗ ||

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these angles
looks to be a right angle in Figure 10.3.4. Such is the case when drawing three–
dimensional objects on the page.

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. NoƟce the common
feature in each calculaƟon (and also the calculaƟon of α in Example 10.3.2): the
dot products of each pair of angles was 0. We use this as a basis for a definiƟon
of the term orthogonal, which is essenƟally synonymous to perpendicular.

DefiniƟon 10.3.2 Orthogonal

Nonzero vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

Example 10.3.4 Finding orthogonal vectors
Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non–parallel vectors in R3 that are orthogonal to v⃗.

SÊ½çã®ÊÄ
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Figure 10.3.5: Developing the construc-
Ɵon of the orthogonal projecƟon.

10.3 The Dot Product

1. Recall that a line perpendicular to a line with slope m has slope −1/m,
the “opposite reciprocal slope.” We can think of the slope of u⃗ as 5/3, its
“rise over run.” A vector orthogonal to u⃗ will have slope−3/5. There are
many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

2. There are infinitelymany direcƟons in space orthogonal to any given direc-
Ɵon, so there are an infinite number of non–parallel vectors orthogonal
to v⃗. Since there are so many, we have great leeway in finding some.
One way is to arbitrarily pick values for the first two components, leaving
the third unknown. For instance, let v⃗1 = ⟨2, 7, z⟩. If v⃗1 is to be orthogonal
to v⃗, then v⃗1 · v⃗ = 0, so

2+ 14+ 3z = 0 ⇒ z =
−16
3

.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a similar technique
by leaving the first or second component unknown.
Another method of finding a vector orthogonal to v⃗ mirrors what we did
in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first two components
of v⃗, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Leƫng the third component be 0 effecƟvely ignores the
third component of v⃗, and it is easy to see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel.

An important construcƟon is illustrated in Figure 10.3.5, where vectors u⃗ and
v⃗ are sketched. In part (a), a doƩed line is drawn from the Ɵp of u⃗ to the line
containing v⃗, where the doƩed line is orthogonal to v⃗. In part (b), the doƩed
line is replaced with the vector z⃗ and w⃗ is formed, parallel to v⃗. It is clear by the
diagram that u⃗ = w⃗ + z⃗. What is important about this construcƟon is this: u⃗ is
decomposed as the sum of two vectors, one of which is parallel to v⃗ and one that
is perpendicular to v⃗. It is hard to overstate the importance of this construcƟon
(as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 10.3.5 (b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

|| w⃗ || = || u⃗ || cos θ. (10.2)

Notes:
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We also know that w⃗ is parallel to to v⃗ ; that is, the direcƟon of w⃗ is the
direcƟon of v⃗, described by the unit vector v⃗/|| v⃗ ||. The vector w⃗ is the vector
in the direcƟon v⃗/|| v⃗ || with magnitude || u⃗ || cos θ:

w⃗ =
(
|| u⃗ || cos θ

) 1
|| v⃗ ||

v⃗.

Replace cos θ using Theorem 10.3.2:

=

(
|| u⃗ || u⃗ · v⃗

|| u⃗ |||| v⃗ ||

)
1

|| v⃗ ||
v⃗

=
u⃗ · v⃗
|| v⃗ ||2

v⃗.

Now apply Theorem 10.3.1.

=
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Since this construcƟon is so important, it is given a special name.

DefiniƟon 10.3.3 Orthogonal ProjecƟon

Let nonzero vectors u⃗ and v⃗ be given. The orthogonal projecƟon of u⃗
onto v⃗, denoted proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Example 10.3.5 CompuƟng the orthogonal projecƟon

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three vectors
with iniƟal points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all three
vectors with iniƟal points at the origin.

SÊ½çã®ÊÄ
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Figure 10.3.6: Graphing the vectors used
in Example 10.3.5.

10.3 The Dot Product

1. Applying DefiniƟon 10.3.3, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
−5
10

⟨3, 1⟩

=

⟨
−3
2
,−1

2

⟩
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 10.3.6(a). Note how the
projecƟon is parallel to v⃗; that is, it lies on the same line through the origin
as v⃗, although it points in the opposite direcƟon. That is because the angle
between u⃗ and v⃗ is obtuse (i.e., greater than 90◦).

2. Apply the definiƟon:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗

x⃗

=
6
3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .

These vectors are sketched in Figure 10.3.6(b), and again in part (c) from
a different perspecƟve. Because of the nature of graphing these vectors,
the sketch in part (b) makes it difficult to recognize that the drawn projec-
Ɵon has the geometric properƟes it should. The graph shown in part (c)
illustrates these properƟes beƩer.

We can use the properƟes of the dot product found in Theorem 10.3.1 to
rearrange the formula found in DefiniƟon 10.3.3:

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
u⃗ · v⃗
|| v⃗ ||2

v⃗

=

(
u⃗ · v⃗

|| v⃗ ||

)
v⃗

|| v⃗ ||
.

The above formula shows that the orthogonal projecƟon of u⃗ onto v⃗ is only
concerned with the direcƟon of v⃗, as both instances of v⃗ in the formula come in
the form v⃗/|| v⃗ ||, the unit vector in the direcƟon of v⃗.

A special case of orthogonal projecƟon occurs when v⃗ is a unit vector. In this
situaƟon, the formula for the orthogonal projecƟon of a vector u⃗ onto v⃗ reduces
to just proj v⃗ u⃗ = (⃗u · v⃗)⃗v, as v⃗ · v⃗ = 1.

Notes:
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Figure 10.3.7: IllustraƟng the orthogonal
projecƟon.

Chapter 10 Vectors

This gives us a new understanding of the dot product. When v⃗ is a unit vec-
tor, essenƟally providing only direcƟon informaƟon, the dot product of u⃗ and v⃗
gives “howmuch of u⃗ is in the direcƟon of v⃗.” This use of the dot product will be
very useful in future secƟons.

Now consider Figure 10.3.7 where the concept of the orthogonal projecƟon
is again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (10.3)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite EquaƟon (10.3) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (⃗u− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (NotaƟon note:
the expression “∥ y⃗ ” means “is parallel to y⃗.” We can use this notaƟon to state
“⃗x ∥ y⃗ ” which means “⃗x is parallel to y⃗.” The expression “⊥ y⃗ ” means “is or-
thogonal to y⃗,” and is used similarly.)

Key Idea 10.3.1 Orthogonal DecomposiƟon of Vectors

Let nonzero vectors u⃗ and v⃗ be given. Then u⃗ can bewriƩen as the sumof
two vectors, one of which is parallel to v⃗, and one of which is orthogonal
to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (⃗u− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example 10.3.6 Orthogonal decomposiƟon of vectors

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 10.3.5. Decompose u⃗ as the
sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 10.3.5. Decompose w⃗ as
the sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

SÊ½çã®ÊÄ
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Figure 10.3.8: Sketching the ramp and
box in Example 10.3.7. Note: The vectors
are not drawn to scale.

10.3 The Dot Product

1. In Example 10.3.5, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗ ? (I.e, is z⃗ ⊥ v⃗ ?) We check for orthogonality with the
dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.
Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (⃗u− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.

2. We found in Example 10.3.5 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying the Key
Idea, we have:

z⃗ = w⃗− proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

Since the dot product is 0, we know the two vectors are orthogonal. We
now write w⃗ as the sum of two vectors, one parallel and one orthogonal
to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗− proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗

We give an example of where this decomposiƟon is useful.

Example 10.3.7 Orthogonally decomposing a force vector
Consider Figure 10.3.8(a), showing a box weighing 50lb on a ramp that rises 5Ō
over a span of 20Ō. Find the components of force, and their magnitudes, acƟng
on the box (as sketched in part (b) of the figure):

1. in the direcƟon of the ramp, and

2. orthogonal to the ramp.

SÊ½çã®ÊÄ As the ramp rises 5Ō over a horizontal distance of 20Ō, we can
represent the direcƟon of the ramp with the vector r⃗ = ⟨20, 5⟩. Gravity pulls
down with a force of 50lb, which we represent with g⃗ = ⟨0,−50⟩.

Notes:
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Figure 10.3.9: Finding work when the
force and direcƟon of travel are given as
vectors.

Chapter 10 Vectors

1. Tofind the force of gravity in the direcƟonof the ramp,we computeproj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗

r⃗

=
−250
425

⟨20, 5⟩

=

⟨
−200

17
,−50

17

⟩
≈ ⟨−11.76,−2.94⟩ .

The magnitude of proj r⃗ g⃗ is || proj r⃗ g⃗ || = 50/
√
17 ≈ 12.13lb. Though

the box weighs 50lb, a force of about 12lb is enough to keep the box from
sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use Key
Idea 10.3.1.

z⃗ = g⃗− proj r⃗ g⃗

=

⟨
200
17

,−800
17

⟩
≈ ⟨11.76,−47.06⟩ .

Themagnitude of this force is || z⃗ || ≈ 48.51lb. In physics and engineering,
knowing this force is importantwhen compuƟng things like staƟc fricƟonal
force. (For instance, we could easily compute if the staƟc fricƟonal force
alone was enough to keep the box from sliding down the ramp.)

ApplicaƟon to Work

In physics, the applicaƟon of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in the
direcƟon of travel). The orthogonal projecƟon allows us to compute work when
the force is not in the direcƟon of travel.

Consider Figure 10.3.9, where a force F⃗ is being applied to an object moving
in the direcƟon of d⃗. (The distance the object travels is the magnitude of d⃗.) The

Notes:
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Figure 10.3.10: CompuƟng work when
sliding a box up a ramp in Example 10.3.8.

10.3 The Dot Product

work done is the amount of force in the direcƟon of d⃗, || proj d⃗ F⃗ ||, Ɵmes || d⃗ ||:

|| proj d⃗ F⃗ || · || d⃗ || =

∣∣∣∣∣
∣∣∣∣∣ F⃗ · d⃗d⃗ · d⃗

d⃗

∣∣∣∣∣
∣∣∣∣∣ · || d⃗ ||

=

∣∣∣∣∣ F⃗ · d⃗
|| d⃗ ||2

∣∣∣∣∣ · || d⃗ || · || d⃗ ||
=

∣∣∣⃗F · d⃗∣∣∣
|| d⃗ ||2

|| d⃗ ||2

=
∣∣∣⃗F · d⃗∣∣∣ .

The expression F⃗ · d⃗ will be posiƟve if the angle between F⃗ and d⃗ is acute;
when the angle is obtuse (hence F⃗ · d⃗ is negaƟve), the force is causing moƟon
in the opposite direcƟon of d⃗, resulƟng in “negaƟve work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

DefiniƟon 10.3.4 Work

Let F⃗ be a constant force thatmoves an object in a straight line frompoint
P to point Q. Let d⃗ =

#  ‰PQ. The workW done by F⃗ along d⃗ isW = F⃗ · d⃗.

Example 10.3.8 CompuƟng work
Aman slides a box along a ramp that rises 3Ō over a distance of 15Ō by applying
50lb of force as shown in Figure 10.3.10. Compute the work done.

SÊ½çã®ÊÄ The figure indicates that the force applied makes a 30◦ an-
gle with the horizontal, so F⃗ = 50 ⟨cos 30◦, sin 30◦⟩ ≈ ⟨43.3, 25⟩ . The ramp is
represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ = 50 ⟨cos 30◦, sin 30◦⟩ · ⟨15, 3⟩ ≈ 724.5Ō–lb.

Note how we did not actually compute the distance the object traveled, nor
the magnitude of the force in the direcƟon of travel; this is all inherently com-
puted by the dot product!

The dot product is a powerful way of evaluaƟng computaƟons that depend
onangleswithout actually using angles. Thenext secƟonexplores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.

Notes:
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Exercises 10.3
Terms and Concepts

1. The dot product of two vectors is a , not a vector.

2. How are the concepts of the dot product and vector mag-
nitude related?

3. How can one quickly tell if the angle between two vectors
is acute or obtuse?

4. Give a synonym for “orthogonal.”

Problems
In Exercises 5 – 10, find the dot product of the given vectors.

5. u⃗ = ⟨2,−4⟩, v⃗ = ⟨3, 7⟩

6. u⃗ = ⟨5, 3⟩, v⃗ = ⟨6, 1⟩

7. u⃗ = ⟨1,−1, 2⟩, v⃗ = ⟨2, 5, 3⟩

8. u⃗ = ⟨3, 5,−1⟩, v⃗ = ⟨4,−1, 7⟩

9. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩

10. u⃗ = ⟨1, 2, 3⟩, v⃗ = ⟨0, 0, 0⟩

11. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that
u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗.

12. Create your own vectors u⃗ and v⃗ inR3 and scalar c and show
that c(⃗u · v⃗) = u⃗ · (c⃗v).

In Exercises 13 – 16, find the measure of the angle between
the two vectors in both radians and degrees.

13. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2⟩

14. u⃗ = ⟨−2, 1⟩, v⃗ = ⟨3, 5⟩

15. u⃗ = ⟨8, 1,−4⟩, v⃗ = ⟨2, 2, 0⟩

16. u⃗ = ⟨1, 7, 2⟩, v⃗ = ⟨4,−2, 5⟩

In Exercises 17 – 20, a vector v⃗ is given. Give two vectors that
are orthogonal to v⃗.

17. v⃗ = ⟨4, 7⟩

18. v⃗ = ⟨−3, 5⟩

19. v⃗ = ⟨1, 1, 1⟩

20. v⃗ = ⟨1,−2, 3⟩

In Exercises 21 – 26, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗,
the orthogonal projecƟon of u⃗ onto v⃗, and sketch all three
vectors with the same iniƟal point.

21. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

22. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

23. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

24. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

25. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

26. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

In Exercises 27 – 32, vectors u⃗ and v⃗ are given. Write u⃗ as the
sum of two vectors, one of which is parallel to v⃗ and one of
which is perpendicular to v⃗. Note: these are the same pairs
of vectors as found in Exercises 21 – 26.

27. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

28. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

29. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

30. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

31. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

32. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

33. A 10lb box sits on a ramp that rises 4Ō over a distance of
20Ō. Howmuch force is required to keep the box from slid-
ing down the ramp?

34. A 10lb box sits on a 15Ō ramp that makes a 30◦ angle with
the horizontal. Howmuch force is required to keep the box
from sliding down the ramp?

35. How much work is performed in moving a box horizontally
10Ō with a force of 20lb applied at an angle of 45◦ to the
horizontal?

36. How much work is performed in moving a box horizontally
10Ō with a force of 20lb applied at an angle of 10◦ to the
horizontal?

37. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2Ō over a distance of 10Ō, with a force
of 50lb applied horizontally?

38. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2Ō over a distance of 10Ō, with a force
of 50lb applied at an angle of 45◦ to the horizontal?

39. Howmuchwork is performed inmoving a box up the length
of a 10Ō ramp that makes a 5◦ angle with the horizontal,
with 50lb of force applied in the direcƟon of the ramp?600



10.4 The Cross Product

10.4 The Cross Product
“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

Given two non–parallel, nonzero vectors u⃗ and v⃗ in space, it is very useful
to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There is a operaƟon,
called the cross product, that creates such a vector. This secƟon defines the
cross product, then explores its properƟes and applicaƟons.

DefiniƟon 10.4.1 Cross Product

Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩ .

This definiƟon can be a bit cumbersome to remember. AŌer an example we
will give a convenient method for compuƟng the cross product. For now, careful
examinaƟon of the products and differences given in the definiƟon should reveal
a paƩern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s pracƟce using this definiƟon by compuƟng a cross product.

Example 10.4.1 CompuƟng a cross product
Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is orthogonal
to both u⃗ and v⃗.

SÊ½çã®ÊÄ Using DefiniƟon 10.4.1, we have

u⃗× v⃗ =
⟨
(−1)5− (4)2,−

(
(2)5− (4)3

)
, (2)2− (−1)3

⟩
= ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then verify
their result.)

We test whether or not u⃗× v⃗ is orthogonal to u⃗ and v⃗ using the dot product:(⃗
u× v⃗

)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(⃗

u× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Since both dot products are zero, u⃗× v⃗ is indeed orthogonal to both u⃗ and v⃗.

Notes:
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A convenient method of compuƟng the cross product starts with forming a
parƟcular 3 × 3 matrix, or rectangular array. The first row comprises the stan-
dard unit vectors i⃗, j⃗, and k⃗. The second and third rows are the vectors u⃗ and v⃗,
respecƟvely. Using u⃗ and v⃗ from Example 10.4.1, we begin with:

i⃗ j⃗ k⃗
2 −1 4
3 2 5

Now repeat the first two columns aŌer the original three:

i⃗ j⃗ k⃗ i⃗ j⃗
2 −1 4 2 −1
3 2 5 3 2

This gives three full “upper leŌ to lower right” diagonals, and three full “up-
per right to lower leŌ” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the
leŌ:

i⃗ j⃗ k⃗ i⃗ j⃗
2 −1 4 2 −1
3 2 5 3 2

−5⃗i 12⃗j 4⃗k−3⃗k 8⃗i 10⃗j

u⃗× v⃗ =
(
− 5⃗i+12⃗j+ 4⃗k

)
−
(
− 3⃗k+ 8⃗i+10⃗j

)
= −13⃗i+ 2⃗j+ 7⃗k = ⟨−13, 2, 7⟩ .

We pracƟce using this method.

Example 10.4.2 CompuƟng a cross product
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗× u⃗.

SÊ½çã®ÊÄ To compute u⃗× v⃗, we form the matrix as prescribed above,
complete with repeated first columns:

i⃗ j⃗ k⃗ i⃗ j⃗
1 3 6 1 3
−1 2 1 −1 2

We let the reader compute the products of the diagonals; we give the result:

u⃗× v⃗ =
(
3⃗i− 6⃗j+ 2⃗k

)
−
(
− 3⃗k+ 12⃗i+ j⃗

)
= ⟨−9,−7, 5⟩ .

Notes:
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10.4 The Cross Product

To compute v⃗× u⃗, we switch the second and third rows of the above matrix,
then mulƟply along diagonals and subtract:

i⃗ j⃗ k⃗ i⃗ j⃗
−1 2 1 −1 2
1 3 6 1 3

Note how with the rows being switched, the products that once appeared on
the right now appear on the leŌ, and vice–versa. Thus the result is:

v⃗× u⃗ =
(
12⃗i+ j⃗− 3⃗k

)
−
(
2⃗k+ 3⃗i− 6⃗j

)
= ⟨9, 7,−5⟩ ,

which is the opposite of u⃗ × v⃗. We leave it to the reader to verify that each of
these vectors is orthogonal to u⃗ and v⃗.

ProperƟes of the Cross Product

It is not coincidence that v⃗ × u⃗ = −(⃗u × v⃗) in the preceding example; one
can show using DefiniƟon 10.4.1 that this will always be the case. The following
theorem states several useful properƟes of the cross product, each of which can
be verified by referring to the definiƟon.

Theorem 10.4.1 ProperƟes of the Cross Product

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following idenƟƟes
hold:

1. u⃗× v⃗ = −(⃗v× u⃗) AnƟcommutaƟve Property

2. (a) (⃗u+ v⃗)× w⃗ = u⃗× w⃗+ v⃗× w⃗ DistribuƟve ProperƟes
(b) u⃗× (⃗v+ w⃗) = u⃗× v⃗+ u⃗× w⃗

3. c(⃗u× v⃗) = (c⃗u)× v⃗ = u⃗× (c⃗v)

4. (a) (⃗u× v⃗) · u⃗ = 0 Orthogonality ProperƟes
(b) (⃗u× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (⃗v× w⃗) = (⃗u× v⃗) · w⃗ Triple Scalar Product

Notes:
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Note: We could rewrite DefiniƟon 10.3.2
and Theorem10.4.2 to include 0⃗, then de-
fine that u⃗ and v⃗ are parallel if u⃗× v⃗ = 0⃗.
Since 0⃗ · v⃗ = 0 and 0⃗× v⃗ = 0⃗, this would
mean that 0⃗ is both parallel and orthog-
onal to all vectors. Apparent paradoxes
such as this are not uncommon in math-
emaƟcs and can be very useful. (See also
the marginal note on page 582.)

Chapter 10 Vectors

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construcƟon given in
DefiniƟon 10.4.1 saƟsfies this property. Theorem 10.4.1 asserts this property
holds; we leave it as a problem in the Exercise secƟon to verify this.

Property 5 from the theorem is also leŌ to the reader to prove in the Exercise
secƟon, but it reveals something more interesƟng than “the cross product of a
vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = c⃗u. Consider their cross product:

u⃗× v⃗ = u⃗× (c⃗u)
= c(⃗u× u⃗) (by Property 3 of Theorem 10.4.1)
= 0⃗. (by Property 5 of Theorem 10.4.1)

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 10.3.2 related the angle between two vectors
and their dot product; there is a similar relaƟonship relaƟng the cross product
of two vectors and the angle between them, given by the following theorem.

Theorem 10.4.2 The Cross Product and Angles

Let u⃗ and v⃗ be nonzero vectors in R3. Then

|| u⃗× v⃗ || = || u⃗ || || v⃗ || sin θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of
0 is 0⃗ (see Property 9 of Theorem 10.2.1), hence the cross product of parallel
vectors is 0⃗.

We demonstrate the truth of this theorem in the following example.

Example 10.4.3 The cross product and angles
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 10.4.2. Verify Theorem 10.4.2
by finding θ, the angle between u⃗ and v⃗, and the magnitude of u⃗× v⃗.

Notes:
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Figure 10.4.1: IllustraƟng the Right Hand
Rule of the cross product.

10.4 The Cross Product

SÊ½çã®ÊÄ We use Theorem 10.3.2 to find the angle between u⃗ and v⃗.

θ = cos−1
(

u⃗ · v⃗
|| u⃗ || || v⃗ ||

)
= cos−1

(
11√
46

√
6

)
≈ 0.8471 = 48.54◦.

Our work in Example 10.4.2 showed that u⃗× v⃗ = ⟨−9,−7, 5⟩, hence || u⃗×
v⃗ || =

√
155. Is || u⃗ × v⃗ || = || u⃗ || || v⃗ || sin θ? Using numerical approximaƟons,

we find:

|| u⃗× v⃗ || =
√
155 || u⃗ || || v⃗ || sin θ =

√
46

√
6 sin 0.8471

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(
cos−1

(
11√
46

√
6

))
=

√
155√
46

√
6
,

which allows us to verify the theorem exactly.

Right Hand Rule

The anƟcommutaƟve property of the cross product demonstrates that u⃗× v⃗
and v⃗×u⃗ differ only by a sign – these vectors have the samemagnitude but point
in the opposite direcƟon. When seeking a vector perpendicular to u⃗ and v⃗, we
essenƟally have two direcƟons to choose from, one in the direcƟon of u⃗× v⃗ and
one in the direcƟon of v⃗× u⃗. Does it maƩer which we choose? How can we tell
which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in R3 with the same iniƟal point, point
the index finger of your right hand in the direcƟon of u⃗ and let yourmiddle finger
point in the direcƟon of v⃗ (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direcƟon of u⃗× v⃗. One can “pracƟce” this using Figure 10.4.1. If you switch,
and point the index finder in the direcƟon of v⃗ and the middle finger in the di-
recƟon of u⃗, your thumb will now point in the opposite direcƟon, allowing you
to “visualize” the anƟcommutaƟve property of the cross product.

ApplicaƟons of the Cross Product

There are a number of ways in which the cross product is useful in mathe-
maƟcs, physics and other areas of science beyond “just” finding a vector per-
pendicular to two others. We highlight a few here.

Notes:
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Figure 10.4.2: Using the cross product to
find the area of a parallelogram.
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Figure 10.4.3: Sketching the parallelo-
grams in Example 10.4.4.

Chapter 10 Vectors

Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh,
where b is the length of the base and h is the height of the parallelogram, as
illustrated in Figure 10.4.2(a). As shownwhen defining the Parallelogram Law of
vector addiƟon, two vectors u⃗ and v⃗ define a parallelogram when drawn from
the same iniƟal point, as illustrated in Figure 10.4.2(b). Trigonometry tells us
that h = || u⃗ || sin θ, hence the area of the parallelogram is

A = || u⃗ || || v⃗ || sin θ = || u⃗× v⃗ ||, (10.4)

where the second equality comes from Theorem 10.4.2. We illustrate using
EquaƟon (10.4) in the following example.

Example 10.4.4 Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors u⃗ = ⟨2, 1⟩ and
v⃗ = ⟨1, 3⟩.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3) and
D = (3, 3, 2) are the verƟces of a parallelogram. Find the area of the
parallelogram.

SÊ½çã®ÊÄ

1. Figure 10.4.3(a) sketches the parallelogram defined by the vectors u⃗ and
v⃗. We have a slight problem in that our vectors exist in R2, not R3, and
the cross product is only defined on vectors in R3. We skirt this issue by
viewing u⃗ and v⃗ as vectors in the x−y plane ofR3, and rewrite themas u⃗ =
⟨2, 1, 0⟩ and v⃗ = ⟨1, 3, 0⟩. We can now compute the cross product. It is
easy to show that u⃗×v⃗ = ⟨0, 0, 5⟩; therefore the area of the parallelogram
is A = || u⃗× v⃗ || = 5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in Figure
10.4.3(b)), we need to show that the opposite sides are parallel. We can
quickly show that # ‰AB =

# ‰DC = ⟨1, 2, 1⟩ and # ‰BC =
#  ‰AD = ⟨2, 2, 1⟩. We find

the area by compuƟng the magnitude of the cross product of # ‰AB and # ‰BC:
# ‰AB× # ‰BC = ⟨0, 1,−2⟩ ⇒ || # ‰AB× # ‰BC || =

√
5 ≈ 2.236.

This applicaƟon is perhaps more useful in finding the area of a triangle (in
short, triangles are used more oŌen than parallelograms). We illustrate this in
the following example.

Notes:
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Figure 10.4.4: Finding the area of a trian-
gle in Example 10.4.5.

Note: The word “parallelepiped” is pro-
nounced “parallel–eh–pipe–ed.”

Figure 10.4.5: A parallelepiped is the
three dimensional analogue to the paral-
lelogram.

Figure 10.4.6: A parallelepiped in Exam-
ple 10.4.6.

10.4 The Cross Product

Example 10.4.5 Area of a triangle
Find the area of the triangle with verƟces A = (1, 2), B = (2, 3) and C = (3, 1),
as pictured in Figure 10.4.4.

SÊ½çã®ÊÄ We found the area of this triangle in Example 7.1.4 to be 1.5
using integraƟon. There we discussed the fact that finding the area of a triangle
can be inconvenient using the “ 12bh” formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is muchmore
direct.

We can choose any two sides of the triangle to use to form vectors; we
choose # ‰AB = ⟨1, 1⟩ and # ‰AC = ⟨2,−1⟩. As in the previous example, we will
rewrite these vectors with a third component of 0 so that we can apply the cross
product. The area of the triangle is

1
2
|| # ‰AB× # ‰AC || = 1

2
|| ⟨1, 1, 0⟩ × ⟨2,−1, 0⟩ || = 1

2
|| ⟨0, 0,−3⟩ || = 3

2
.

We arrive at the same answer as before with less work.

Volume of a Parallelepiped
The three dimensional analogue to the parallelogram is the parallelepiped.

Each face is parallel to the opposite face, as illustrated in Figure 10.4.5. By cross-
ing v⃗ and w⃗, one gets a vector whose magnitude is the area of the base. Doƫng
this vector with u⃗ computes the volume of parallelepiped! (Up to a sign; take
the absolute value.)

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |⃗u · (⃗v× w⃗)|. (10.5)

Note how this is the Triple Scalar Product, first seen in Theorem 10.4.1. Applying
the idenƟƟes given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V = |⃗u · (⃗v× w⃗)| = |⃗u · (w⃗× v⃗)| = |(⃗u× v⃗) · w⃗|, etc.

Example 10.4.6 Finding the volume of parallelepiped
Find the volume of the parallepiped defined by the vectors u⃗ = ⟨1, 1, 0⟩, v⃗ =
⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.

SÊ½çã®ÊÄ We apply EquaƟon (10.5). We first find v⃗× w⃗ = ⟨1, 1,−1⟩.
Then

|⃗u · (⃗v× w⃗)| = | ⟨1, 1, 0⟩ · ⟨1, 1,−1⟩ | = 2.

So the volume of the parallelepiped is 2 cubic units.

Notes:
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Figure 10.4.7: Showing a force being ap-
plied to a lever in Example 10.4.7.

Chapter 10 Vectors

While this applicaƟon of the Triple Scalar Product is interesƟng, it is not used
all that oŌen: parallelepipeds are not a common shape in physics and engineer-
ing. The last applicaƟon of the cross product is very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A classic sce-
nario involving torque is the applicaƟon of a wrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in a di-
recƟon orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek leƩer
τ, or tau, and has units of N·m, a Newton–meter, or Ō·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulƟng torque is

τ⃗ = ℓ⃗× F⃗. (10.6)

Example 10.4.7 CompuƟng torque
A lever of length 2Ōmakes an anglewith the horizontal of 45◦. Find the resulƟng
torque when a force of 10lb is applied to the end of the level where:

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Figure 10.4.7.

SÊ½çã®ÊÄ

1. We start by determining vectors for the force and lever arm. Since the
lever arm makes a 45◦ angle with the horizontal and is 2Ō long, we can
state that ℓ⃗ = 2 ⟨cos 45◦, sin 45◦⟩ =

⟨√
2,
√
2
⟩
.

Since the force vector is perpendicular to the lever arm (as seen in the
leŌ hand side of Figure 10.4.7), we can conclude it is making an angle of
−45◦ with the horizontal. As it has a magnitude of 10lb, we can state
F⃗ = 10 ⟨cos(−45◦), sin(−45◦)⟩ =

⟨
5
√
2,−5

√
2
⟩
.

Using EquaƟon (10.6) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the cross
product:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5
√
2,−5

√
2, 0
⟩

= ⟨0, 0,−20⟩

Notes:
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10.4 The Cross Product

This clearly has a magnitude of 20 Ō-lb.
We can view the force and lever arm vectors as lying “on the page”; our
computaƟon of τ⃗ shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it alsomatcheswell with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
it in.

2. Our lever arm can sƟll be represented by ℓ⃗ =
⟨√

2,
√
2
⟩
. As our force

vector makes a 60◦ angle with ℓ⃗, we can see (referencing the right hand
side of the figure) that F⃗makes a−15◦ angle with the horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =
⟨
5(1+

√
3)√

2
,
5(−1+

√
3)√

2

⟩
≈ ⟨9.659,−2.588⟩ .

We again make the third component 0 and take the cross product to find
the torque:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5(1+

√
3)√

2
,
5(−1+

√
3)√

2
, 0
⟩

=
⟨
0, 0,−10

√
3
⟩

≈ ⟨0, 0,−17.321⟩ .

As one might expect, when the force and lever arm vectors are orthogo-
nal, the magnitude of force is greater than when the vectors are not or-
thogonal.

While the cross product has a variety of applicaƟons (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equaƟons of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
maƟcs. We study lines and planes in the next two secƟons.

Notes:
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Exercises 10.4
Terms and Concepts
1. The cross product of two vectors is a , not a

scalar.

2. One can visualize the direcƟon of u⃗× v⃗ using the
.

3. Give a synonym for “orthogonal.”

4. T/F: A fundamental principle of the cross product is that
u⃗× v⃗ is orthogonal to u⃗ and v⃗.

5. is a measure of the turning force applied to an
object.

6. T/F: If u⃗ and v⃗ are parallel, then u⃗× v⃗ = 0⃗.

Problems
In Exercises 7 – 16, vectors u⃗ and v⃗ are given. Compute u⃗× v⃗
and show this is orthogonal to both u⃗ and v⃗.

7. u⃗ = ⟨3, 2,−2⟩, v⃗ = ⟨0, 1, 5⟩

8. u⃗ = ⟨5,−4, 3⟩, v⃗ = ⟨2,−5, 1⟩

9. u⃗ = ⟨4,−5,−5⟩, v⃗ = ⟨3, 3, 4⟩

10. u⃗ = ⟨−4, 7,−10⟩, v⃗ = ⟨4, 4, 1⟩

11. u⃗ = ⟨1, 0, 1⟩, v⃗ = ⟨5, 0, 7⟩

12. u⃗ = ⟨1, 5,−4⟩, v⃗ = ⟨−2,−10, 8⟩

13. u⃗ = ⟨a, b, 0⟩, v⃗ = ⟨c, d, 0⟩

14. u⃗ = i⃗, v⃗ = j⃗

15. u⃗ = i⃗, v⃗ = k⃗

16. u⃗ = j⃗, v⃗ = k⃗

17. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗×(⃗v+w⃗) =
u⃗× v⃗+ u⃗× w⃗.

18. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗· (⃗v×w⃗) =
(⃗u× v⃗) · w⃗.

In Exercises 19 – 22, the magnitudes of vectors u⃗ and v⃗ in R3

are given, along with the angle θ between them. Use this in-
formaƟon to find the magnitude of u⃗× v⃗.

19. || u⃗ || = 2, || v⃗ || = 5, θ = 30◦

20. || u⃗ || = 3, || v⃗ || = 7, θ = π/2

21. || u⃗ || = 3, || v⃗ || = 4, θ = π

22. || u⃗ || = 2, || v⃗ || = 5, θ = 5π/6

In Exercises 23 – 26, find the area of the parallelogram de-
fined by the given vectors.

23. u⃗ = ⟨1, 1, 2⟩, v⃗ = ⟨2, 0, 3⟩

24. u⃗ = ⟨−2, 1, 5⟩, v⃗ = ⟨−1, 3, 1⟩

25. u⃗ = ⟨1, 2⟩, v⃗ = ⟨2, 1⟩

26. u⃗ = ⟨2, 0⟩, v⃗ = ⟨0, 3⟩

In Exercises 27 – 30, find the area of the triangle with the
given verƟces.

27. VerƟces: (0, 0, 0), (1, 3,−1) and (2, 1, 1).

28. VerƟces: (5, 2,−1), (3, 6, 2) and (1, 0, 4).

29. VerƟces: (1, 1), (1, 3) and (2, 2).

30. VerƟces: (3, 1), (1, 2) and (4, 3).

In Exercises 31 – 32, find the area of the quadrilateral with
the given verƟces. (Hint: break the quadrilateral into 2 trian-
gles.)

31. VerƟces: (0, 0), (1, 2), (3, 0) and (4, 3).

32. VerƟces: (0, 0, 0), (2, 1, 1), (−1, 2,−8) and (1,−1, 5).

In Exercises 33 – 34, find the volume of the parallelepiped
defined by the given vectors.

33. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨1, 2, 3⟩, w⃗ = ⟨1, 0, 1⟩

34. u⃗ = ⟨−1, 2, 1⟩, v⃗ = ⟨2, 2, 1⟩, w⃗ = ⟨3, 1, 3⟩

In Exercises 35 – 38, find a unit vector orthogonal to both u⃗
and v⃗.

35. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨2, 0, 1⟩

36. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨3, 2, 1⟩

37. u⃗ = ⟨5, 0, 2⟩, v⃗ = ⟨−3, 0, 7⟩

38. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨−2, 4,−2⟩

39. A bicycle rider applies 150lb of force, straight down,
onto a pedal that extends 7in horizontally from the
crankshaŌ. Find the magnitude of the torque applied to
the crankshaŌ.
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40. A bicycle rider applies 150lb of force, straight down, onto
a pedal that extends 7in from the crankshaŌ, making a 30◦
anglewith the horizontal. Find themagnitude of the torque
applied to the crankshaŌ.

41. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench. What is the maximum amount of torque that can
be applied to the bolt?

42. To turn a stubborn bolt, 80lb of force is applied to a 10in

wrench in a confined space, where the direcƟon of ap-
plied force makes a 10◦ angle with the wrench. How much
torque is subsequently applied to the wrench?

43. Show, using the definiƟon of the Cross Product, that u⃗ · (⃗u×
v⃗) = 0; that is, that u⃗ is orthogonal to the cross product of
u⃗ and v⃗.

44. Show, using the definiƟon of the Cross Product, that u⃗×u⃗ =
0⃗.
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Figure 10.5.2: Defining a line in space.

Chapter 10 Vectors

10.5 Lines
To find the equaƟon of a line in the x-y plane, we need two pieces of informaƟon:
a point and the slope. The slope conveys direcƟon informaƟon. As verƟcal lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direcƟon of
the line.

This holds true for lines in space.

Let P be a point in space, let p⃗ be the vector with iniƟal point at the origin
and terminal point at P (i.e., p⃗ “points” to P), and let d⃗ be a vector. Consider the
points on the line through P in the direcƟon of d⃗.

Clearly one point on the line is P; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direcƟon parallel to d⃗. For instance, starƟng at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure 10.5.2 where certain
points along the line are indicated.

The figure illustrates how every point on the line can be obtained by starƟng
with p⃗ and moving a certain distance in the direcƟon of d⃗. That is, we can define
the line as a funcƟon of t:

ℓ⃗(t) = p⃗+ t d⃗. (10.7)
In many ways, this is not a new concept. Compare EquaƟon (10.7) to the

familiar “y = mx+ b” equaƟon of a line:

y = b + mx ℓ⃗(t) = p⃗ + t d⃗

StarƟng
Point DirecƟon

How Far To
Go In That
DirecƟon

Figure 10.5.1: Understanding the vector equaƟon of a line.

The equaƟons exhibit the same structure: they give a starƟng point, define
a direcƟon, and state how far in that direcƟon to travel.

EquaƟon (10.7) is an example of a vector–valued funcƟon; the input of the
funcƟon is a real number and the output is a vector. Wewill cover vector–valued
funcƟons extensively in the next chapter.

Notes:
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10.5 Lines

There are other ways to represent a line. Let p⃗ = ⟨x0, y0, z0⟩ and let d⃗ =

⟨a, b, c⟩. Then the equaƟon of the line through p⃗ in the direcƟon of d⃗ is:

ℓ⃗(t) = p⃗+ t⃗d
= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩ .

The last line states that the x values of the line are given by x = x0 + at, the
y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equaƟons, taken together, are the parametric equaƟons of the line
through p⃗ in the direcƟon of d⃗.

Finally, each of the equaƟons for x, y and z above contain the variable t. We
can solve for t in each equaƟon:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y− y0

b
,

z = z0 + ct ⇒ t =
z− z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equaƟons of the line through
p⃗ in the direcƟon of d⃗:

x− x0
a

=
y− y0

b
=

z− z0
c

.

Each representaƟon has its own advantages, depending on the context. We
summarize these three forms in the following definiƟon, then give examples of
their use.

Notes:
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Figure 10.5.3: Graphing a line in Example
10.5.1.

Chapter 10 Vectors

DefiniƟon 10.5.1 EquaƟons of Lines in Space

Consider the line in space that passes through p⃗ = ⟨x0, y0, z0⟩ in the
direcƟon of d⃗ = ⟨a, b, c⟩ .

1. The vector equaƟon of the line is

ℓ⃗(t) = p⃗+ t⃗d.

2. The parametric equaƟons of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equaƟons of the line are

x− x0
a

=
y− y0

b
=

z− z0
c

.

Example 10.5.1 Finding the equaƟon of a line
Give all three equaƟons, as given in DefiniƟon 10.5.1, of the line through P =
(2, 3, 1) in the direcƟon of d⃗ = ⟨−1, 1, 2⟩. Does the point Q = (−1, 6, 6) lie on
this line?

SÊ½çã®ÊÄ We idenƟfy the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the definiƟon, we have

• the vector equaƟon of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equaƟons of the line are

x = 2− t, y = 3+ t, z = 1+ 2t; and

• the symmetric equaƟons of the line are

x− 2
−1

=
y− 3
1

=
z− 1
2

.

The first two equaƟons of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calculaƟng with a computer; most soŌware programs easily handle equa-
Ɵons in these formats. (For instance, the graphics program that made Figure
10.5.3 can be given the input “(2-t,3+t,1+2*t)” for−1 ≤ t ≤ 3.).

Does the point Q = (−1, 6, 6) lie on the line? The graph in Figure 10.5.3
makes it clear that it does not. We can answer this quesƟon without the graph

Notes:
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Figure 10.5.4: A graph of the line in Exam-
ple 10.5.2.

10.5 Lines

using any of the three equaƟon forms. Of the three, the symmetric equaƟons
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

−1− 2
−1

?
=

6− 3
1

?
=

6− 1
2

⇒ 3 = 3 ̸= 2.5.

We see that Q does not lie on the line as it did not saƟsfy the symmetric equa-
Ɵons.

Example 10.5.2 Finding the equaƟon of a line through two points
Find the parametric equaƟons of the line through the points P = (2,−1, 2) and
Q = (1, 3,−1).

SÊ½çã®ÊÄ Recall the statement made at the beginning of this secƟon:
to find the equaƟon of a line, we need a point and a direcƟon. We have two
points; either one will suffice. The direcƟon of the line can be found by the
vector with iniƟal point P and terminal point Q: #  ‰PQ = ⟨−1, 4,−3⟩.

The parametric equaƟons of the line ℓ through P in the direcƟon of #  ‰PQ are:

ℓ : x = 2− t y = −1+ 4t z = 2− 3t.

A graph of the points and line are given in Figure 10.5.4. Note how in the
given parametrizaƟon of the line, t = 0 corresponds to the point P, and t = 1
corresponds to the pointQ. This relates to the understanding of the vector equa-
Ɵon of a line described in Figure 10.5.1. The parametric equaƟons “start” at the
point P, and t determines how far in the direcƟon of #  ‰PQ to travel. When t = 0,
we travel 0 lengths of #  ‰PQ; when t = 1, we travel one length of #  ‰PQ, resulƟng in
the point Q.

Parallel, IntersecƟng and Skew Lines

In the plane, two disƟnct lines can either be parallel or they will intersect
at exactly one point. In space, given equaƟons of two lines, it can someƟmes
be difficult to tell whether the lines are disƟnct or not (i.e., the same line can be
represented in different ways). Given lines ℓ⃗1(t) = p⃗1+ t⃗d1 and ℓ⃗2(t) = p⃗2+ t⃗d2,
we have four possibiliƟes: ℓ⃗1 and ℓ⃗2 are

the same line they share all points;
intersecƟng lines share only 1 point;
parallel lines d⃗1 ∥ d⃗2, no points in common; or
skew lines d⃗1 ∦ d⃗2, no points in common.

Notes:
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Figure 10.5.5: Sketching the lines fromEx-
ample 10.5.3.

Chapter 10 Vectors

The next two examples invesƟgate these possibiliƟes.

Example 10.5.3 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equaƟon form:

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

SÊ½çã®ÊÄ We start by looking at the direcƟons of each line. Line ℓ1
has the direcƟon given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direcƟon given
by d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not parallel, hence ℓ1
and ℓ2 are not the same line, nor are they parallel. Figure 10.5.5 verifies this
fact (where the points and direcƟons indicated by the equaƟons of each line are
idenƟfied).

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respecƟve x, y
and z values are the same. That is, we want s and t such that:

1+ 3t = −2+ 4s
2− t = 3+ s
t = 5+ 2s.

This is a relaƟvely simple system of linear equaƟons. Since the last equaƟon is
already solved for t, subsƟtute that value of t into the equaƟon above it:

2− (5+ 2s) = 3+ s ⇒ s = −2, t = 1.

A key to remember is that we have three equaƟons; we need to check if s =
−2, t = 1 saƟsfies the first equaƟon as well:

1+ 3(1) ̸= −2+ 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew.

Example 10.5.4 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equaƟon form:

ℓ1 :
x = −0.7+ 1.6t
y = 4.2+ 2.72t
z = 2.3− 3.36t

ℓ2 :
x = 2.8− 2.9s
y = 10.15− 4.93s
z = −5.05+ 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

Notes:
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Figure 10.5.6: Graphing the lines in Exam-
ple 10.5.4.

10.5 Lines

SÊ½çã®ÊÄ It is obviously very difficult to simply look at these equaƟons
and discern anything. This is done intenƟonally. In the “real world,” most equa-
Ɵons that are used do not have nice, integer coefficients. Rather, there are lots
of digits aŌer the decimal and the equaƟons can look “messy.”

We again start by deciding whether or not each line has the same direcƟon.
The direcƟon of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the direcƟon of ℓ2
is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not clear through observaƟon
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respecƟve unit vectors. Using a calculator, we find:

u⃗1 =
d⃗1

|| d⃗1 ||
= ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2

|| d⃗2 ||
= ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are equal to
4 decimal places). In most situaƟons, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite d⃗1 and d⃗2
in terms of fracƟons, not decimals. We have

d⃗1 =
⟨
16
10

,
272
100

,−336
100

⟩
d⃗2 =

⟨
−29
10

,−493
100

,
609
100

⟩
.

One can then find the magnitudes of each vector in terms of fracƟons, then
compute the unit vectors likewise. AŌer a lot of manual arithmeƟc (or aŌer
briefly using a computer algebra system), one finds that

u⃗1 =

⟨√
10
83

,
17√
830

,− 21√
830

⟩
u⃗2 =

⟨
−
√

10
83

,− 17√
830

,
21√
830

⟩
.

We can now say without equivocaƟon that these lines are parallel.
Are they the same line? The parametric equaƟons for a line describe one

point that lies on the line, so we know that the point P1 = (−0.7, 4.2, 2.3) lies
on ℓ1. To determine if this point also lies on ℓ2, plug in the x, y and z values of P1
into the symmetric equaƟons for ℓ2:

(−0.7)− 2.8
−2.9

?
=

(4.2)− 10.15
−4.93

?
=

(2.3)− (−5.05)
6.09

⇒ 1.2069 = 1.2069 = 1.2069.

The point P1 lies on both lines, so we conclude they are the same line, just
parametrized differently. Figure 10.5.6 graphs this line along with the points
and vectors described by the parametric equaƟons. Note how d⃗1 and d⃗2 are
parallel, though point in opposite direcƟons (as indicated by their unit vectors
above).

Notes:
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Figure 10.5.7: Establishing the distance
from a point to a line.

Figure 10.5.8: Establishing the distance
between lines.

Chapter 10 Vectors

Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + t⃗d in space, it is oŌen useful to know
the distance from the point to the line. (Here we use the standard definiƟon
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) IdenƟfying p⃗ with the point P, Figure 10.5.7 will help establish a general
method of compuƟng this distance h.

From trigonometry, we know h = || #  ‰PQ || sin θ. We have a similar idenƟty
involving the cross product: || #  ‰PQ × d⃗ || = || #  ‰PQ || || d⃗ || sin θ. Divide both sides
of this laƩer equaƟon by || d⃗ || to obtain h:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
. (10.8)

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗1(t) = p⃗1 + t⃗d1 and ℓ⃗2(t) = p⃗2 + t⃗d2 be given, as shown in Figure 10.5.8.
To find the direcƟon orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projecƟon of #      ‰P1P2 onto c⃗ is the
distance h we seek:

h =
∣∣∣∣ proj c⃗ #      ‰P1P2

∣∣∣∣
=

∣∣∣∣∣∣∣∣ #      ‰P1P2 · c⃗
c⃗ · c⃗

c⃗
∣∣∣∣∣∣∣∣

=
| #      ‰P1P2 · c⃗|
|| c⃗ ||2

|| c⃗ ||

=
| #      ‰P1P2 · c⃗|
|| c⃗ ||

.

A problem in the Exercise secƟon is to show that this distance is 0 when the lines
intersect. Note the use of the Triple Scalar Product: #      ‰P1P2 · c⃗ =

#      ‰P1P2 · (⃗d1 × d⃗2).

The following Key Idea restates these two distance formulas.

Notes:
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10.5 Lines

Key Idea 10.5.1 Distances to Lines

1. Let P be a point on a line ℓ that is parallel to d⃗. The distance h from
a point Q to the line ℓ is:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
.

2. Let P1 be a point on line ℓ1 that is parallel to d⃗1, and let P2 be a
point on line ℓ2 parallel to d⃗2, and let c⃗ = d⃗1 × d⃗2, where lines ℓ1
and ℓ2 are not parallel. The distance h between the two lines is:

h =
| #      ‰P1P2 · c⃗|
|| c⃗ ||

.

Example 10.5.5 Finding the distance from a point to a line
Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) = ⟨1,−1, 1⟩ +
t ⟨2, 3, 1⟩ .

SÊ½çã®ÊÄ The equaƟon of the line gives us the point P = (1,−1, 1)
that lies on the line, hence #  ‰PQ = ⟨0, 2, 2⟩. The equaƟon also gives d⃗ = ⟨2, 3, 1⟩.
Following Key Idea 10.5.1, we have the distance as

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||

=
|| ⟨−4, 4,−4⟩ ||√

14

=
4
√
3√

14
≈ 1.852.

The point Q is approximately 1.852 units from the line ℓ⃗(t).

Example 10.5.6 Finding the distance between lines
Find the distance between the lines

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

SÊ½çã®ÊÄ These are the sames lines as given in Example 10.5.3, where

Notes:
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Chapter 10 Vectors

we showed them to be skew. The equaƟons allow us to idenƟfy the following
points and vectors:

P1 = (1, 2, 0) P2 = (−2, 3, 5) ⇒ #      ‰P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .

From Key Idea 10.5.1 we have the distance h between the two lines is

h =
| #      ‰P1P2 · c⃗|
|| c⃗ ||

=
42√
62

≈ 5.334.

The lines are approximately 5.334 units apart.

One of the key points to understand from this secƟon is this: to describe a
line, we need a point and a direcƟon. Whenever a problem is posed concern-
ing a line, one needs to take whatever informaƟon is offered and glean point
and direcƟon informaƟon. Many quesƟons can be asked (and are asked in the
Exercise secƟon) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next secƟon. Many
complex three dimensional objects are studied by approximaƟng their surfaces
with lines and planes.

Notes:
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Exercises 10.5
Terms and Concepts

1. To find an equaƟon of a line, what two pieces of informa-
Ɵon are needed?

2. Two disƟnct lines in the plane can intersect or be
.

3. Two disƟnct lines in space can intersect, be or be
.

4. Use your ownwords to describewhat it means for two lines
in space to be skew.

Problems
In Exercises 5 – 14, write the vector, parametric and symmet-
ric equaƟons of the lines described.

5. Passes through P = (2,−4, 1), parallel to d⃗ = ⟨9, 2, 5⟩.

6. Passes through P = (6, 1, 7), parallel to d⃗ = ⟨−3, 2, 5⟩.

7. Passes through P = (2, 1, 5) and Q = (7,−2, 4).

8. Passes through P = (1,−2, 3) and Q = (5, 5, 5).

9. Passes through P = (0, 1, 2) and orthogonal to both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

10. Passes through P = (5, 1, 9) and orthogonal to both
d⃗1 = ⟨1, 0, 1⟩ and d⃗2 = ⟨2, 0, 3⟩.

11. Passes through the point of intersecƟon of ℓ⃗1(t) and ℓ⃗2(t)
and orthogonal to both lines, where
ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ⃗2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩.

12. Passes through the point of intersecƟon of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where

ℓ1 =


x = t
y = −2+ 2t
z = 1+ t

and ℓ2 =


x = 2+ t
y = 2− t
z = 3+ 2t

.

13. Passes through P = (1, 1), parallel to d⃗ = ⟨2, 3⟩.

14. Passes through P = (−2, 5), parallel to d⃗ = ⟨0, 1⟩.

In Exercises 15 – 22, determine if the described lines are the
same line, parallel lines, intersecƟng or skew lines. If inter-
secƟng, give the point of intersecƟon.

15. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩.

16. ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩,
ℓ⃗2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩.

17. ℓ⃗1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ⃗2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

18. ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩,
ℓ⃗2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩.

19. ℓ1 =


x = 1+ 2t
y = 3− 2t
z = t

and ℓ2 =


x = 3− t
y = 3+ 5t
z = 2+ 7t

20. ℓ1 =


x = 1.1+ 0.6t
y = 3.77+ 0.9t
z = −2.3+ 1.5t

and ℓ2 =


x = 3.11+ 3.4t
y = 2+ 5.1t
z = 2.5+ 8.5t

21. ℓ1 =


x = 0.2+ 0.6t
y = 1.33− 0.45t
z = −4.2+ 1.05t

and ℓ2 =


x = 0.86+ 9.2t
y = 0.835− 6.9t
z = −3.045+ 16.1t

22. ℓ1 =


x = 0.1+ 1.1t
y = 2.9− 1.5t
z = 3.2+ 1.6t

and ℓ2 =


x = 4− 2.1t
y = 1.8+ 7.2t
z = 3.1+ 1.1t

In Exercises 23 – 26, find the distance from the point to the
line.

23. Q = (1, 1, 1), ℓ⃗(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩

24. Q = (2, 5, 6), ℓ⃗(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩

25. Q = (0, 3), ℓ⃗(t) = ⟨2, 0⟩+ t ⟨1, 1⟩

26. Q = (1, 1), ℓ⃗(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩

In Exercises 27 – 28, find the distance between the two lines.

27. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

28. ℓ⃗1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩,
ℓ⃗2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩.

Exercises 29 – 31 explore special cases of the distance formu-
las found in Key Idea 10.5.1.

29. Let Q be a point on the line ℓ⃗(t). Show why the distance
formula correctly gives the distance from the point to the
line as 0.

30. Let lines ℓ⃗1(t) and ℓ⃗2(t) be intersecƟng lines. Show why
the distance formula correctly gives the distance between
these lines as 0.
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31. Let lines ℓ⃗1(t) and ℓ⃗2(t) be parallel.

(a) Showwhy the distance formula for distance between
lines cannot be used as stated to find the distance be-
tween the lines.

(b) Show why leƫng c⃗ = (
#     ‰P1P2 × d⃗2)× d⃗2 allows one to

use the formula.
(c) Show how one can use the formula for the distance

between a point and a line to find the distance be-
tween parallel lines.
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Figure 10.6.1: IllustraƟng defining a plane
with a sheet of cardboard and a nail.

10.6 Planes

10.6 Planes
Any flat surface, such as a wall, table top or sƟff piece of cardboard can be
thought of as represenƟng part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and sƟck it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 10.6.1.

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different locaƟons in space. TilƟng the nail (but keeping P fixed) Ɵlts
the cardboard. Both moving and ƟlƟng the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the locaƟon of P in space, and 2)
the direcƟon of the nail.

The previous secƟon showed that one can define a line given a point on the
line and the direcƟon of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direcƟon the plane “faces” (using the descripƟon above, the
direcƟon of the nail). Once again, the direcƟon informaƟon will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane”mean? Choose any twopoints P
and Q in the plane, and consider the vector #  ‰PQ. We say a vector n⃗ is orthogonal
to the plane if n⃗ is perpendicular to #  ‰PQ for all choices of P and Q; that is, if
n⃗ · #  ‰PQ = 0 for all P and Q.

This gives us way of wriƟng an equaƟon describing the plane. Let P =
(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if, #  ‰PQ is orthogonal to n⃗. Knowing #  ‰PQ = ⟨x− x0, y− y0, z− z0⟩, consider:

#  ‰PQ · n⃗ = 0
⟨x− x0, y− y0, z− z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y− y0) + c(z− z0) = 0 (10.9)

EquaƟon (10.9) defines an implicit funcƟon describing the plane. More algebra
produces:

ax+ by+ cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by+ cz = d. (10.10)

As long as c ̸= 0, we can solve for z:

z =
1
c
(d− ax− by). (10.11)

Notes:
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Figure 10.6.2: Sketching the plane in Ex-
ample 10.6.1.

Chapter 10 Vectors

EquaƟon (10.11) is especially useful asmany computer programs can graph func-
Ɵons in this form. EquaƟons (10.9) and (10.10) have specific names, given next.

DefiniƟon 10.6.1 EquaƟons of a Plane in Standard and General
Forms

The plane passing through the point P = (x0, y0, z0) with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equaƟon with standard form

a(x− x0) + b(y− y0) + c(z− z0) = 0;

the equaƟon’s general form is

ax+ by+ cz = d.

A key to remember throughout this secƟon is this: to find the equaƟon of a
plane, we need a point and a normal vector. We will give several examples of
finding the equaƟon of a plane, and in each one different types of informaƟon
are given. In each case, we need to use the given informaƟon to find a point on
the plane and a normal vector.

Example 10.6.1 Finding the equaƟon of a plane.
Write the equaƟon of the plane that passes through the points P = (1, 1, 0),
Q = (1, 2,−1) and R = (0, 1, 2) in standard form.

SÊ½çã®ÊÄ We need a vector n⃗ that is orthogonal to the plane. Since P,
Q and R are in the plane, so are the vectors #  ‰PQ and # ‰PR; #  ‰PQ × # ‰PR is orthogonal
to #  ‰PQ and # ‰PR and hence the plane itself.

It is straighƞorward to compute n⃗ =
#  ‰PQ × # ‰PR = ⟨2, 1, 1⟩. We can use any

point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.
Following DefiniƟon 10.6.1, the equaƟon of the plane in standard form is

2(x− 1) + (y− 1) + z = 0.

The plane is sketched in Figure 10.6.2.

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 10.6.2 Finding the equaƟon of a plane.
Verify that lines ℓ1 and ℓ2, whose parametric equaƟons are given below, inter-

Notes:
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Figure 10.6.3: Sketching the plane in Ex-
ample 10.6.2.

Figure 10.6.4: The line and plane in Exam-
ple 10.6.3.

10.6 Planes

sect, then give the equaƟon of the plane that contains these two lines in general
form.

ℓ1 :
x = −5+ 2s
y = 1+ s
z = −4+ 2s

ℓ2 :
x = 2+ 3t
y = 1− 2t
z = 1+ t

SÊ½çã®ÊÄ The lines clearly are not parallel. If they do not intersect,
they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersecƟon, we set the x, y and z equaƟons equal to
each other and solve for s and t:

−5+ 2s = 2+ 3t
1+ s = 1− 2t

−4+ 2s = 1+ t
⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the direcƟons of lines ℓ1 and ℓ2,

respecƟvely. A normal vector to the plane containing these the two lines will
also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector n⃗ by compuƟng
n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.

We can pick any point in the plane with which to write our equaƟon; each
line gives us infinite choices of points. We choose P, the point of intersecƟon.
We follow DefiniƟon 10.6.1 to write the plane’s equaƟon in general form:

5(x+ 1) + 4(y− 3)− 7z = 0
5x+ 5+ 4y− 12− 7z = 0

5x+ 4y− 7z = 7.

The plane’s equaƟon in general form is 5x+ 4y− 7z = 7; it is sketched in Figure
10.6.3.

Example 10.6.3 Finding the equaƟon of a plane
Give the equaƟon, in standard form, of the plane that passes through the point
P = (−1, 0, 1) and is orthogonal to the linewith vector equaƟon ℓ⃗(t) = ⟨−1, 0, 1⟩+
t ⟨1, 2, 2⟩.

SÊ½çã®ÊÄ As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direcƟon of the line given by d⃗ = ⟨1, 2, 2⟩. We use this as
our normal vector. Thus the plane’s equaƟon, in standard form, is

(x+ 1) + 2y+ 2(z− 1) = 0.

The line and plane are sketched in Figure 10.6.4.

Notes:
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Figure 10.6.5: Graphing the planes and
their line of intersecƟon in Example
10.6.4.

Chapter 10 Vectors

Example 10.6.4 Finding the intersecƟon of two planes
Give the parametric equaƟons of the line that is the intersecƟon of the planes
p1 and p2, where:

p1 : x− (y− 2) + (z− 1) = 0
p2 : −2(x− 2) + (y+ 1) + (z− 3) = 0

SÊ½çã®ÊÄ To find an equaƟon of a line, we need a point on the line and
the direcƟon of the line.

We can find a point on the line by solving each equaƟon of the planes for z:

p1 : z = −x+ y− 1
p2 : z = 2x− y− 2

We can now set these two equaƟons equal to each other (i.e., we are finding
values of x and y where the planes have the same z value):

−x+ y− 1 = 2x− y− 2
2y = 3x− 1

y =
1
2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that y = 1.
We can now use the equaƟons of either plane to find z: when x = 1 and y = 1,
z = −1 on both planes. We have found a point P on the line: P = (1, 1,−1).

We now need the direcƟon of the line. Since the line lies in each plane,
its direcƟon is orthogonal to a normal vector for each plane. Considering the
equaƟons for p1 and p2, we can quickly determine their normal vectors. For p1,
n⃗1 = ⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩ . A direcƟon orthogonal to both of
these direcƟons is their cross product: d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩ .

The parametric equaƟons of the line through P = (1, 1,−1) in the direcƟon
of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1 y = −3t+ 1 z = −t− 1.

The planes and line are graphed in Figure 10.6.5.

Example 10.6.5 Finding the intersecƟon of a plane and a line
Find the point of intersecƟon, if any, of the line ℓ(t) = ⟨3,−3,−1⟩+ t ⟨−1, 2, 1⟩
and the plane with equaƟon in general form 2x+ y+ z = 4.

SÊ½çã®ÊÄ TheequaƟonof the plane shows that the vector n⃗ = ⟨2, 1, 1⟩
is a normal vector to the plane, and the equaƟon of the line shows that the line

Notes:
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Figure 10.6.6: IllustraƟng the intersecƟon
of a line and a plane in Example 10.6.5.

Figure 10.6.7: IllustraƟng finding the dis-
tance from a point to a plane.

10.6 Planes

moves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthogonal, we know
there is a point of intersecƟon. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersecƟng or the
line was in the plane itself.)

To find the point of intersecƟon, we need to find a t value such that ℓ(t)
saƟsfies the equaƟon of the plane. RewriƟng the equaƟon of the line with para-
metric equaƟons will help:

ℓ(t) =


x = 3− t
y = −3+ 2t
z = −1+ t

.

Replacing x, y and z in the equaƟon of the plane with the expressions containing
t found in the equaƟon of the line allows us to determine a t value that indicates
the point of intersecƟon:

2x+ y+ z = 4
2(3− t) + (−3+ 2t) + (−1+ t) = 4

t = 2.

When t = 2, the point on the line saƟsfies the equaƟon of the plane; that point
is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of intersecƟon between
the plane and the line, illustrated in Figure 10.6.6.

Distances

Just as itwas useful to finddistances betweenpoints and lines in the previous
secƟon, it is also oŌen necessary to find the distance from a point to a plane.

Consider Figure 10.6.7, where a plane with normal vector n⃗ is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projecƟon of #  ‰PQ
onto n⃗. That is, we want:

∣∣∣∣ proj n⃗ #  ‰PQ
∣∣∣∣ = ∣∣∣∣∣

∣∣∣∣∣ n⃗ ·
#  ‰PQ

|| n⃗ ||2
n⃗

∣∣∣∣∣
∣∣∣∣∣ = |⃗n · #  ‰PQ|

|| n⃗ ||
(10.12)

EquaƟon (10.12) is important as it doesmore than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
as well: the distance between parallel planes and the distance from a line and a
plane. Because EquaƟon (10.12) is important, we restate it as a Key Idea.

Notes:
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Key Idea 10.6.1 Distance from a Point to a Plane

Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h from Q to the plane is

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

,

where P is any point in the plane.

Example 10.6.6 Distance between a point and a plane
Find the distance between the point Q = (2, 1, 4) and the plane with equaƟon
2x− 5y+ 6z = 9.

SÊ½çã®ÊÄ Using the equaƟon of the plane, we find the normal vector
n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever saƟsfies the equaƟon. Leƫng x and y be 0 seems
simple; this makes z = 1.5. Thus we let P = ⟨0, 0, 1.5⟩, and #  ‰PQ = ⟨2, 1, 2.5⟩ .

The distance h from Q to the plane is given by Key Idea 10.6.1:

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

=
| ⟨2,−5, 6⟩ · ⟨2, 1, 2.5⟩ |

|| ⟨2,−5, 6⟩ ||

=
|14|√
65

≈ 1.74.

Wecanuse Key Idea 10.6.1 to findother distances. Given twoparallel planes,
we can find the distance between these planes by leƫng P be a point on one
plane and Q a point on the other. If ℓ is a line parallel to a plane, we can use the
Key Idea to find the distance between them as well: again, let P be a point in the
plane and letQ be any point on the line. (One can also use Key Idea 10.5.1.) The
Exercise secƟon contains problems of these types.

These past two secƟons have not explored lines and planes in space as an ex-
ercise of mathemaƟcal curiosity. However, there are many, many applicaƟons
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraŌ may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air fricƟon. Many
equaƟons that help determine air flow and heat dissipaƟon are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximaƟng a surface
with millions of small planes one can more readily model the needed behavior.

Notes:
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Exercises 10.6
Terms and Concepts

1. In order to find the equaƟon of a plane, what two pieces of
informaƟon must one have?

2. What is the relaƟonship between a plane and one of its nor-
mal vectors?

Problems
In Exercises 3 – 6, give any two points in the given plane.

3. 2x− 4y+ 7z = 2

4. 3(x+ 2) + 5(y− 9)− 4z = 0

5. x = 2

6. 4(y+ 2)− (z− 6) = 0

In Exercises 7 – 20, give the equaƟon of the described plane
in standard and general forms.

7. Passes through (2, 3, 4) and has normal vector
n⃗ = ⟨3,−1, 7⟩.

8. Passes through (1, 3, 5) and has normal vector
n⃗ = ⟨0, 2, 4⟩.

9. Passes through the points (1, 2, 3), (3,−1, 4) and (1, 0, 1).

10. Passes through the points (5, 3, 8), (6, 4, 9) and (3, 3, 3).

11. Contains the intersecƟng lines
ℓ⃗1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

12. Contains the intersecƟng lines
ℓ⃗1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ⃗2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩.

13. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

14. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ⃗2(t) = ⟨4, 4, 4⟩+ t ⟨4, 1, 3⟩.

15. Contains the point (2,−6, 1) and the line

ℓ(t) =


x = 2+ 5t
y = 2+ 2t
z = −1+ 2t

16. Contains the point (5, 7, 3) and the line

ℓ(t) =


x = t
y = t
z = t

17. Contains the point (5, 7, 3) and is orthogonal to the line
ℓ⃗(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩.

18. Contains the point (4, 1, 1) and is orthogonal to the line

ℓ(t) =


x = 4+ 4t
y = 1+ 1t
z = 1+ 1t

19. Contains the point (−4, 7, 2) and is parallel to the plane
3(x− 2) + 8(y+ 1)− 10z = 0.

20. Contains the point (1, 2, 3) and is parallel to the plane
x = 5.

In Exercises 21 – 22, give the equaƟon of the line that is the
intersecƟon of the given planes.

21. p1 : 3(x− 2) + (y− 1) + 4z = 0, and
p2 : 2(x− 1)− 2(y+ 3) + 6(z− 1) = 0.

22. p1 : 5(x− 5) + 2(y+ 2) + 4(z− 1) = 0, and
p2 : 3x− 4(y− 1) + 2(z− 1) = 0.

In Exercises 23 – 26, find the point of intersecƟon between
the line and the plane.

23. line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩,
plane: 5x− y− z = −3

24. line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩,
plane: 3x+ y− 2z = 8

25. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = 4

26. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = −4

In Exercises 27 – 30, find the given distances.

27. The distance from the point (1, 2, 3) to the plane
3(x− 1) + (y− 2) + 5(z− 2) = 0.

28. The distance from the point (2, 6, 2) to the plane
2(x− 1)− y+ 4(z+ 1) = 0.

29. The distance between the parallel planes
x+ y+ z = 0 and
(x− 2) + (y− 3) + (z+ 4) = 0
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30. The distance between the parallel planes
2(x− 1) + 2(y+ 1) + (z− 2) = 0 and
2(x− 3) + 2(y− 1) + (z− 3) = 0

31. Show why if the point Q lies in a plane, then the distance

formula correctly gives the distance from the point to the
plane as 0.

32. How is Exercise 30 in SecƟon 10.5 easier to answer once we
have an understanding of planes?
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