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Figure 11.1.1: Sketching the graph of a
vector–valued funcƟon.

11: V��ãÊÙ V�½ç�� FçÄ�ã®ÊÄÝ
In the previous chapter, we learned about vectors and were introduced to the
power of vectors within mathemaƟcs. In this chapter, we’ll build on this foun-
daƟon to define funcƟons whose input is a real number and whose output is a
vector. We’ll see how to graph these funcƟons and apply calculus techniques
to analyze their behavior. Most importantly, we’ll see why we are interested in
doing this: we’ll see beauƟful applicaƟons to the study of moving objects.

11.1 Vector–Valued FuncƟons
We are very familiar with real valued funcƟons, that is, funcƟons whose output
is a real number. This secƟon introduces vector–valued funcƟons – funcƟons
whose output is a vector.

DefiniƟon 11.1.1 Vector–Valued FuncƟons

A vector–valued funcƟon is a funcƟon of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f, g and h are real valued funcƟons.

The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

EvaluaƟng and Graphing Vector–Valued FuncƟons

EvaluaƟng a vector–valued funcƟon at a specific value of t is straighƞorward;
simply evaluate each component funcƟon at that value of t. For instance, if
r⃗(t) =

⟨
t2, t2 + t− 1

⟩
, then r⃗(−2) = ⟨4, 1⟩. We can sketch this vector, as is

done in Figure 11.1.1(a). Ploƫng lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector–valued funcƟon is the set of all terminal points of r⃗(t), where the
iniƟal point of each vector is always the origin. In Figure 11.1.1(b) we sketch the
graph of r⃗ ; we can indicate individual points on the graph with their respecƟve
vector, as shown.

Vector–valued funcƟons are closely related to parametric equaƟons of graphs.
While in bothmethods we plot points

(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to produce

a graph, in the context of vector–valued funcƟons each such point represents a
vector. The implicaƟons of this will be more fully realized in the next secƟon as
we apply calculus ideas to these funcƟons.
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Figure 11.1.2: Sketching the vector–
valued funcƟon of Example 11.1.1.

Figure 11.1.3: The graph of r⃗(t) in Exam-
ple 11.1.2.

Chapter 11 Vector Valued FuncƟons

Example 11.1.1 Graphing vector–valued funcƟons
Graph r⃗(t) =

⟨
t3 − t,

1
t2 + 1

⟩
, for−2 ≤ t ≤ 2. Sketch r⃗(−1) and r⃗(2).

SÊ½çã®ÊÄ We start by making a table of t, x and y values as shown
in Figure 11.1.2(a). Ploƫng these points gives an indicaƟon of what the graph
looks like. In Figure 11.1.2(b), we indicate these points and sketch the full graph.
We also highlight r⃗(−1) and r⃗(2) on the graph.

Example 11.1.2 Graphing vector–valued funcƟons.
Graph r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π.

SÊ½çã®ÊÄ We can again plot points, but careful consideraƟon of this
funcƟon is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius 1 centered at the origin.
NoƟcing that the z component is t, we see that as the graph winds around the
z-axis, it is also increasing at a constant rate in the posiƟve z direcƟon, forming a
spiral. This is graphed in Figure 11.1.3. In the graph r⃗(7π/4) ≈ (0.707,−0.707, 5.498)
is highlighted to help us understand the graph.

Algebra of Vector–Valued FuncƟons

DefiniƟon 11.1.2 OperaƟons on Vector–Valued FuncƟons

Let r⃗1(t) = ⟨f1(t), g1(t)⟩ and r⃗2(t) = ⟨f2(t), g2(t)⟩ be vector–valued
funcƟons in R2 and let c be a scalar. Then:

1. r⃗1(t)± r⃗2(t) = ⟨ f1(t)± f2(t), g1(t)± g2(t) ⟩.

2. c⃗r1(t) = ⟨ cf1(t), cg1(t) ⟩.

A similar definiƟon holds for vector–valued funcƟons in R3.

This definiƟon states that we add, subtract and scale vector-valued funcƟons
component–wise. Combining vector–valued funcƟons in this way can be very
useful (as well as create interesƟng graphs).

Example 11.1.3 Adding and scaling vector–valued funcƟons.
Let r⃗1(t) = ⟨ 0.2t, 0.3t ⟩, r⃗2(t) = ⟨ cos t, sin t ⟩ and r⃗(t) = r⃗1(t) + r⃗2(t). Graph
r⃗1(t), r⃗2(t), r⃗(t) and 5⃗r(t) on−10 ≤ t ≤ 10.

Notes:
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Figure 11.1.4: Graphing the funcƟons in
Example 11.1.3.

11.1 Vector–Valued FuncƟons

SÊ½çã®ÊÄ We can graph r⃗1 and r⃗2 easily by ploƫng points (or just using
technology). Let’s think about each for a moment to beƩer understand how
vector–valued funcƟons work.

We can rewrite r⃗1(t) = ⟨ 0.2t, 0.3t ⟩ as r⃗1(t) = t ⟨0.2, 0.3⟩. That is, the
funcƟon r⃗1 scales the vector ⟨0.2, 0.3⟩ by t. This scaling of a vector produces a
line in the direcƟon of ⟨0.2, 0.3⟩.

We are familiar with r⃗2(t) = ⟨ cos t, sin t ⟩; it traces out a circle, centered at
the origin, of radius 1. Figure 11.1.4(a) graphs r⃗1(t) and r⃗2(t).

Adding r⃗1(t) to r⃗2(t) produces r⃗(t) = ⟨ cos t+ 0.2t, sin t+ 0.3t ⟩, graphed in
Figure 11.1.4(b). The linear movement of the line combines with the circle to
create loops that move in the direcƟon of ⟨0.2, 0.3⟩. (We encourage the reader
to experiment by changing r⃗1(t) to ⟨2t, 3t⟩, etc., and observe the effects on the
loops.)

MulƟplying r⃗(t) by 5 scales the funcƟon by 5, producing 5⃗r(t) = ⟨5 cos t +
1, 5 sin t + 1.5⟩, which is graphed in Figure 11.1.4(c) along with r⃗(t). The new
funcƟon is “5 Ɵmes bigger” than r⃗(t). Note how the graph of 5⃗r(t) in (c) looks
idenƟcal to the graph of r⃗(t) in (b). This is due to the fact that the x and y bounds
of the plot in (c) are exactly 5 Ɵmes larger than the bounds in (b).

Example 11.1.4 Adding and scaling vector–valued funcƟons.
A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure
11.1.5. Find an equaƟon describing the cycloid, where the circle has radius 1.

..
p

Figure 11.1.5: Tracing a cycloid.

SÊ½çã®ÊÄ This problem is not very difficult if we approach it in a clever
way. We start by leƫng p⃗(t) describe the posiƟon of the point p on the circle,
where the circle is centered at the origin and only rotates clockwise (i.e., it does
not roll). This is relaƟvely simple given our previous experienceswith parametric
equaƟons; p⃗(t) = ⟨cos t,− sin t⟩.

We now want the circle to roll. We represent this by leƫng c⃗(t) represent
the locaƟon of the center of the circle. It should be clear that the y component
of c⃗(t) should be 1; the center of the circle is always going to be 1 if it rolls on a
horizontal surface.

The x component of c⃗(t) is a linear funcƟon of t: f(t) = mt for some scalarm.
When t = 0, f(t) = 0 (the circle starts centered on the y-axis). When t = 2π,
the circle has made one complete revoluƟon, traveling a distance equal to its

Notes:
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Chapter 11 Vector Valued FuncƟons

circumference, which is also 2π. This gives us a point on our line f(t) = mt, the
point (2π, 2π). It should be clear thatm = 1 and f(t) = t. So c⃗(t) = ⟨t, 1⟩.

Wenow combine p⃗ and c⃗ together to form the equaƟonof the cycloid: r⃗(t) =
p⃗(t) + c⃗(t) = ⟨cos t+ t,− sin t+ 1⟩, which is graphed in Figure 11.1.6.

Displacement

A vector–valued funcƟon r⃗(t) is oŌen used to describe the posiƟon of amov-
ing object at Ɵme t. At t = t0, the object is at r⃗(t0); at t = t1, the object is at
r⃗(t1). Knowing the locaƟons r⃗(t0) and r⃗(t1) give no indicaƟon of the path taken
between them, but oŌen we only care about the difference of the locaƟons,
r⃗(t1)− r⃗(t0), the displacement.

DefiniƟon 11.1.3 Displacement

Let r⃗(t) be a vector–valued funcƟon and let t0 < t1 be values in the
domain. The displacement d⃗ of r⃗, from t = t0 to t = t1, is

d⃗ = r⃗(t1)− r⃗(t0).

When the displacement vector is drawnwith iniƟal point at r⃗(t0), its terminal
point is r⃗(t1). We think of it as the vector which points from a starƟng posiƟon
to an ending posiƟon.

Example 11.1.5 Finding and graphing displacement vectors
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
. Graph r⃗(t) on−1 ≤ t ≤ 1, and find the displace-

ment of r⃗(t) on this interval.

SÊ½çã®ÊÄ The funcƟon r⃗(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” ⟨cos t, sin t⟩ parametrizaƟon. At t0 = −1, we have
r⃗(t0) = ⟨0,−1⟩; at t1 = 1, we have r⃗(t1) = ⟨0, 1⟩. The displacement of r⃗(t) on
[−1, 1] is thus d⃗ = ⟨0, 1⟩ − ⟨0,−1⟩ = ⟨0, 2⟩ .

A graph of r⃗(t) on [−1, 1] is given in Figure 11.1.7, along with the displace-
ment vector d⃗ on this interval.

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi–circular path the object in Example 11.1.5 took,
we can quickly verify that the object ended up a distance of 2 units from its iniƟal
locaƟon. That is, we can compute || d⃗ || = 2. However, measuring distance from
the starƟng point is different from measuring distance traveled. Being a semi–

Notes:
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circle, we can measure the distance traveled by this object as π ≈ 3.14 units.
Knowing distance from the starƟng point allows us to compute average rate of
change.

DefiniƟon 11.1.4 Average Rate of Change

Let r⃗(t) be a vector–valued funcƟon, where each of its component func-
Ɵons is conƟnuous on its domain, and let t0 < t1. The average rate of
change of r⃗(t) on [t0, t1] is

average rate of change =
r⃗(t1)− r⃗(t0)

t1 − t0
.

Example 11.1.6 Average rate of change
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
as in Example 11.1.5. Find the average rate of

change of r⃗(t) on [−1, 1] and on [−1, 5].

SÊ½çã®ÊÄ We computed in Example 11.1.5 that the displacement of
r⃗(t) on [−1, 1]was d⃗ = ⟨0, 2⟩. Thus the average rate of change of r⃗(t) on [−1, 1]
is:

r⃗(1)− r⃗(−1)
1− (−1)

=
⟨0, 2⟩
2

= ⟨0, 1⟩ .

We interpret this as follows: the object followed a semi–circular path, meaning
it moved towards the right then moved back to the leŌ, while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of ⟨0, 1⟩ per unit of Ɵme.

We canquickly see that the displacement on [−1, 5] is the sameas on [−1, 1],
so d⃗ = ⟨0, 2⟩. The average rate of change is different, though:

r⃗(5)− r⃗(−1)
5− (−1)

=
⟨0, 2⟩
6

= ⟨0, 1/3⟩ .

As it took “3 Ɵmes as long” to arrive at the same place, this average rate of
change on [−1, 5] is 1/3 the average rate of change on [−1, 1].

We considered average rates of change in SecƟons 1.1 and 2.1 as we studied
limits and derivaƟves. The same is true here; in the following secƟon we apply
calculus concepts to vector–valued funcƟons as we find limits, derivaƟves, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivaƟve; displacement gives us one applicaƟon of integraƟon.

Notes:
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Exercises 11.1
Terms and Concepts

1. Vector–valued funcƟons are closely related to
of graphs.

2. When sketching vector–valued funcƟons, technically one
isn’t graphing points, but rather .

3. It can be useful to think of as a vector that points
from a starƟng posiƟon to an ending posiƟon.

4. In the context of vector–valued funcƟons, average rate of
change is divided by Ɵme.

Problems

In Exercises 5 – 12, sketch the vector–valued funcƟon on the
given interval.

5. r⃗(t) =
⟨
t2, t2 − 1

⟩
, for−2 ≤ t ≤ 2.

6. r⃗(t) =
⟨
t2, t3

⟩
, for−2 ≤ t ≤ 2.

7. r⃗(t) =
⟨
1/t, 1/t2

⟩
, for−2 ≤ t ≤ 2.

8. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

9. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

10. r⃗(t) = ⟨3 sin(πt), 2 cos(πt)⟩, on [0, 2].

11. r⃗(t) = ⟨3 cos t, 2 sin(2t)⟩, on [0, 2π].

12. r⃗(t) = ⟨2 sec t, tan t⟩, on [−π, π].

In Exercises 13 – 16, sketch the vector–valued funcƟon on the
given interval inR3. Technologymay be useful in creaƟng the
sketch.

13. r⃗(t) = ⟨2 cos t, t, 2 sin t⟩, on [0, 2π].

14. r⃗(t) = ⟨3 cos t, sin t, t/π⟩ on [0, 2π].

15. r⃗(t) = ⟨cos t, sin t, sin t⟩ on [0, 2π].

16. r⃗(t) = ⟨cos t, sin t, sin(2t)⟩ on [0, 2π].

In Exercises 17 – 20, find || r⃗(t) ||.

17. r⃗(t) =
⟨
t, t2
⟩
.

18. r⃗(t) = ⟨5 cos t, 3 sin t⟩.

19. r⃗(t) = ⟨2 cos t, 2 sin t, t⟩.

20. r⃗(t) =
⟨
cos t, t, t2

⟩
.

In Exercises 21 – 30, create a vector–valued funcƟon whose
graph matches the given descripƟon.

21. A circle of radius 2, centered at (1, 2), traced counter–
clockwise once on [0, 2π].

22. A circle of radius 3, centered at (5, 5), traced clockwise
once on [0, 2π].

23. An ellipse, centered at (0, 0) with verƟcal major axis of
length 10 and minor axis of length 3, traced once counter–
clockwise on [0, 2π].

24. An ellipse, centered at (3,−2)with horizontal major axis of
length 6 and minor axis of length 4, traced once clockwise
on [0, 2π].

25. A line through (2, 3) with a slope of 5.

26. A line through (1, 5) with a slope of−1/2.

27. The line through points (1, 2, 3) and (4, 5, 6), where
r⃗(0) = ⟨1, 2, 3⟩ and r⃗(1) = ⟨4, 5, 6⟩.

28. The line through points (1, 2) and (4, 4), where
r⃗(0) = ⟨1, 2⟩ and r⃗(1) = ⟨4, 4⟩.

29. A verƟcally oriented helix with radius of 2 that starts at
(2, 0, 0) and ends at (2, 0, 4π) aŌer 1 revoluƟon on [0, 2π].

30. A verƟcally oriented helix with radius of 3 that starts at
(3, 0, 0) and ends at (3, 0, 3) aŌer 2 revoluƟons on [0, 1].

In Exercises 31 – 34, find the average rate of change of r⃗(t) on
the given interval.

31. r⃗(t) =
⟨
t, t2
⟩
on [−2, 2].

32. r⃗(t) = ⟨t, t+ sin t⟩ on [0, 2π].

33. r⃗(t) = ⟨3 cos t, 2 sin t, t⟩ on [0, 2π].

34. r⃗(t) =
⟨
t, t2, t3

⟩
on [−1, 3].
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Note: we can define one-sided limits in a
manner very similar to DefiniƟon 11.2.1.

11.2 Calculus and Vector–Valued FuncƟons

11.2 Calculus and Vector–Valued FuncƟons
The previous secƟon introduced us to a new mathemaƟcal object, the vector–
valued funcƟon. We now apply calculus concepts to these funcƟons. We start
with the limit, then work our way through derivaƟves to integrals.

Limits of Vector–Valued FuncƟons

The iniƟal definiƟon of the limit of a vector–valued funcƟon is a bit inƟmidat-
ing, as was the definiƟon of the limit in DefiniƟon 1.2.1. The theorem following
the definiƟon shows that in pracƟce, taking limits of vector–valued funcƟons is
no more difficult than taking limits of real–valued funcƟons.

DefiniƟon 11.2.1 Limits of Vector–Valued FuncƟons

Let I be an open interval containing c, and let r⃗(t) be a vector–valued
funcƟon defined on I, except possibly at c. The limit of r⃗(t), as t ap-
proaches c, is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > 0, there exists a δ > 0 such that for all t ̸= c,
if |t− c| < δ, we have || r⃗(t)− L⃗ || < ε.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Theorem 11.2.1 states that we can compute limits of vector–valued func-
Ɵons component–wise.

Theorem 11.2.1 Limits of Vector–Valued FuncƟons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector–valued funcƟon in R2 defined
on an open interval I containing c, except possibly at c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t)
⟩
.

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector–valued funcƟon in R3 de-
fined on an open interval I containing c, except possibly at c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
⟩

Notes:
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Note: Using one-sided limits, we can also
define conƟnuity on closed intervals as
done before.

Chapter 11 Vector Valued FuncƟons

Example 11.2.1 Finding limits of vector–valued funcƟons
Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Find lim

t→0
r⃗(t).

SÊ½çã®ÊÄ Weapply the theoremand compute limits component–wise.

lim
t→0

r⃗(t) =
⟨
lim
t→0

sin t
t

, lim
t→0

t2 − 3t+ 3 , lim
t→0

cos t
⟩

= ⟨1, 3, 1⟩ .

ConƟnuity

DefiniƟon 11.2.2 ConƟnuity of Vector–Valued FuncƟons

Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c.

1. r⃗(t) is conƟnuous at c if lim
t→c

r⃗(t) = r⃗(c).

2. If r⃗(t) is conƟnuous at all c in I, then r⃗(t) is conƟnuous on I.

We again have a theorem that lets us evaluate conƟnuity component–wise.

Theorem 11.2.2 ConƟnuity of Vector–Valued FuncƟons

Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c. Then r⃗(t) is conƟnuous at c if, and only if, each of its component
funcƟons is conƟnuous at c.

Example 11.2.2 EvaluaƟng conƟnuity of vector–valued funcƟons
Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Determine whether r⃗ is conƟnuous at

t = 0 and t = 1.

SÊ½çã®ÊÄ While the second and third components of r⃗(t) are defined
at t = 0, the first component, (sin t)/t, is not. Since the first component is not
even defined at t = 0, r⃗(t) is not defined at t = 0, and hence it is not conƟnuous
at t = 0.

At t = 1 each of the component funcƟons is conƟnuous. Therefore r⃗(t) is
conƟnuous at t = 1.

Notes:
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Alternate notaƟons for the derivaƟve of r⃗
include:

r⃗ ′(t) = d
dt
(
r⃗(t)

)
=

d⃗r
dt
.

11.2 Calculus and Vector–Valued FuncƟons

DerivaƟves

Consider a vector–valued funcƟon r⃗ defined on an open interval I containing
t0 and t1. We can compute the displacement of r⃗ on [t0, t1], as shown in Figure
11.2.1(a). Recall that dividing the displacement vector by t1 − t0 gives the aver-
age rate of change on [t0, t1], as shown in (b).

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

t1 − t0

.

r⃗ ′(t0)

(a) (b)

Figure 11.2.1: IllustraƟng displacement, leading to an understanding of the derivaƟve of vector–valued funcƟons.

The derivaƟve of a vector–valued funcƟon is ameasure of the instantaneous
rate of change, measured by taking the limit as the length of [t0, t1] goes to 0.
Instead of thinking of an interval as [t0, t1], we think of it as [c, c + h] for some
value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)
h

for any value of h ̸= 0. We take the limit as h → 0 tomeasure the instantaneous
rate of change; this is the derivaƟve of r⃗.

DefiniƟon 11.2.3 DerivaƟve of a Vector–Valued FuncƟon

Let r⃗(t) be conƟnuous on an open interval I containing c.

1. The derivaƟve of r⃗ at t = c is

r⃗ ′(c) = lim
h→0

r⃗(c+ h)− r⃗(c)
h

.

2. The derivaƟve of r⃗ is

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)
h

.

Notes:
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Note: again, using one-sided limits, we
can define differenƟability on closed in-
tervals. We’ll make use of this a few Ɵmes
in this chapter.
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Figure 11.2.2: Graphing the derivaƟve
of a vector–valued funcƟon in Example
11.2.3.

Chapter 11 Vector Valued FuncƟons

If a vector–valued funcƟon has a derivaƟve for all c in an open interval I, we
say that r⃗(t) is differenƟable on I.

Once again we might view this definiƟon as inƟmidaƟng, but recall that we
can evaluate limits component–wise. The following theorem verifies that this
means we can compute derivaƟves component–wise as well, making the task
not too difficult.

Theorem 11.2.3 DerivaƟves of Vector–Valued FuncƟons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t) ⟩ .

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t), h ′(t) ⟩ .

Example 11.2.3 DerivaƟves of vector–valued funcƟons
Let r⃗(t) =

⟨
t2, t
⟩
.

1. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

2. Compute r⃗ ′(1) and sketch this vector with its iniƟal point at the origin and
at r⃗(1).

SÊ½çã®ÊÄ

1. Theorem 11.2.3 allows us to compute derivaƟves component–wise, so

r⃗ ′(t) = ⟨2t, 1⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure 11.2.2(a). Note how plot-
Ɵng the two of these together, in this way, is not very illuminaƟng. When
dealing with real–valued funcƟons, ploƫng f(x) with f ′(x) gave us useful
informaƟon as we were able to compare f and f ′ at the same x-values.
When dealing with vector–valued funcƟons, it is hard to tell which points
on the graph of r⃗ ′ correspond to which points on the graph of r⃗.

2. We easily compute r⃗ ′(1) = ⟨2, 1⟩, which is drawn in Figure 11.2.2 with its
iniƟal point at the origin, as well as at r⃗(1) = ⟨1, 1⟩ . These are sketched
in Figure 11.2.2(b).

Notes:
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Figure 11.2.3: Viewing a vector–valued
funcƟon, and its derivaƟve at one point,
from two different perspecƟves.
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Figure 11.2.4: Graphing a curve in space
with its tangent line.

11.2 Calculus and Vector–Valued FuncƟons

Example 11.2.4 DerivaƟves of vector–valued funcƟons
Let r⃗(t) = ⟨cos t, sin t, t⟩. Compute r⃗ ′(t) and r⃗ ′(π/2). Sketch r⃗ ′(π/2) with its
iniƟal point at the origin and at r⃗(π/2).

SÊ½çã®ÊÄ We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin t, cos t, 1⟩. At t = π/2, we
have r⃗ ′(π/2) = ⟨−1, 0, 1⟩. Figure 11.2.3 shows two graphs of r⃗(t), from differ-
ent perspecƟves, with r⃗ ′(π/2) ploƩed with its iniƟal point at the origin and at
r⃗(π/2).

In Examples 11.2.3 and 11.2.4, sketching a parƟcular derivaƟvewith its iniƟal
point at the origin did not seem to reveal anything significant. However, when
we sketched the vector with its iniƟal point on the corresponding point on the
graph, we did see something significant: the vector appeared to be tangent to
the graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the derivaƟve to define this term.

DefiniƟon 11.2.4 Tangent Vector, Tangent Line

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I
containing c, where r⃗ ′(c) ̸= 0⃗.

1. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

2. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direcƟon parallel to r⃗ ′(c). An equaƟon of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

Example 11.2.5 Finding tangent lines to curves in space
Let r⃗(t) =

⟨
t, t2, t3

⟩
on [−1.5, 1.5]. Find the vector equaƟon of the line tangent

to the graph of r⃗ at t = −1.

SÊ½çã®ÊÄ To find the equaƟon of a line, we need a point on the line
and the line’s direcƟon. The point is given by r⃗(−1) = ⟨−1, 1,−1⟩. (To be clear,
⟨−1, 1,−1⟩ is a vector, not a point, but we use the point “pointed to” by this
vector.)

The direcƟon comes from r⃗ ′(−1). We compute, component–wise, r⃗ ′(t) =⟨
1, 2t, 3t2

⟩
. Thus r⃗ ′(−1) = ⟨1,−2, 3⟩.

The vector equaƟon of the line is ℓ(t) = ⟨−1, 1,−1⟩+ t ⟨1,−2, 3⟩. This line
and r⃗(t) are sketched, from two perspecƟves, in Figure 11.2.4 (a) and (b).

Notes:
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Example 11.2.6 Finding tangent lines to curves
Find the equaƟons of the lines tangent to r⃗(t) =

⟨
t3, t2

⟩
at t = −1 and t = 0.

SÊ½çã®ÊÄ We find that r⃗ ′(t) =
⟨
3t2, 2t

⟩
. At t = −1, we have

r⃗(−1) = ⟨−1, 1⟩ and r⃗ ′(−1) = ⟨3,−2⟩ ,

so the equaƟon of the line tangent to the graph of r⃗(t) at t = −1 is

ℓ(t) = ⟨−1, 1⟩+ t ⟨3,−2⟩ .

This line is graphed with r⃗(t) in Figure 11.2.5.

At t = 0, we have r⃗ ′(0) = ⟨0, 0⟩ = 0⃗! This implies that the tangent line
“has no direcƟon.” We cannot apply DefiniƟon 11.2.4, hence cannot find the
equaƟon of the tangent line.

We were unable to compute the equaƟon of the tangent line to r⃗(t) =⟨
t3, t2

⟩
at t = 0 because r⃗ ′(0) = 0⃗. The graph in Figure 11.2.5 shows that there

is a cusp at this point. This leads us to another definiƟon of smooth, previously
defined by DefiniƟon 9.2.2 in SecƟon 9.2.

DefiniƟon 11.2.5 Smooth Vector–Valued FuncƟons

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I
where r⃗ ′(t) is conƟnuous on I. r⃗(t) is smooth on I if r⃗ ′(t) ̸= 0⃗ on I.

Having established derivaƟves of vector–valued funcƟons, we now explore
the relaƟonships between the derivaƟve and other vector operaƟons. The fol-
lowing theorem states how the derivaƟve interacts with vector addiƟon and the
various vector products.

Notes:
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11.2 Calculus and Vector–Valued FuncƟons

Theorem 11.2.4 ProperƟes of DerivaƟves of Vector–Valued
FuncƟons

Let r⃗ and s⃗ be differenƟable vector–valued funcƟons, let f be a differen-
Ɵable real–valued funcƟon, and let c be a real number.

1.
d
dt

(⃗
r(t)± s⃗(t)

)
= r⃗ ′(t)± s⃗ ′(t)

2.
d
dt

(
c⃗r(t)

)
= c⃗r ′(t)

3. d
dt

(
f(t)⃗r(t)

)
= f ′(t)⃗r(t) + f(t)⃗r ′(t) Product Rule

4. d
dt

(⃗
r(t) · s⃗(t)

)
= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

5. d
dt

(⃗
r(t)× s⃗(t)

)
= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

6. d
dt

(⃗
r
(
f(t)
))

= r⃗ ′
(
f(t)
)
f ′(t) Chain Rule

Example 11.2.7 Using derivaƟve properƟes of vector–valued funcƟons
Let r⃗(t) =

⟨
t, t2 − 1

⟩
and let u⃗(t) be the unit vector that points in the direcƟon

of r⃗(t).

1. Graph r⃗(t) and u⃗(t) on the same axes, on [−2, 2].

2. Find u⃗ ′(t) and sketch u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0). Sketch each with iniƟal
point the corresponding point on the graph of u⃗.

SÊ½çã®ÊÄ

1. To form the unit vector that points in the direcƟon of r⃗, we need to divide
r⃗(t) by its magnitude.

|| r⃗(t) || =
√

t2 + (t2 − 1)2 ⇒ u⃗(t) =
1√

t2 + (t2 − 1)2
⟨
t, t2 − 1

⟩
.

r⃗(t) and u⃗(t) are graphed in Figure 11.2.6. Note how the graph of u⃗(t)
forms part of a circle; this must be the case, as the length of u⃗(t) is 1 for
all t.

Notes:
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Chapter 11 Vector Valued FuncƟons

2. To compute u⃗ ′(t), we use Theorem 11.2.4, wriƟng

u⃗(t) = f(t)⃗r(t), where f(t) =
1√

t2 + (t2 − 1)2
=
(
t2+(t2−1)2

)−1/2
.

(We could write

u⃗(t) =

⟨
t√

t2 + (t2 − 1)2
,

t2 − 1√
t2 + (t2 − 1)2

⟩

and then take the derivaƟve. It is amaƩer of preference; this laƩermethod
requires two applicaƟons of theQuoƟent Rulewhere ourmethod uses the
Product and Chain Rules.)
We find f ′(t) using the Chain Rule:

f ′(t) = −1
2
(
t2 + (t2 − 1)2

)−3/2(2t+ 2(t2 − 1)(2t)
)

= − 2t(2t2 − 1)
2
(√

t2 + (t2 − 1)2
)3

We now find u⃗ ′(t) using part 3 of Theorem 11.2.4:

u⃗ ′(t) = f ′(t)⃗u(t) + f(t)⃗u ′(t)

= − 2t(2t2 − 1)
2
(√

t2 + (t2 − 1)2
)3 ⟨t, t2 − 1

⟩
+

1√
t2 + (t2 − 1)2

⟨1, 2t⟩ .

This is admiƩedly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute u⃗ ′(−2), u⃗ ′(−1)
and u⃗ ′(0):

u⃗ ′(−2) =
⟨
− 15
13

√
13

,− 10
13

√
13

⟩
≈ ⟨−0.320,−0.213⟩

u⃗ ′(−1) = ⟨0,−2⟩
u⃗ ′(0) = ⟨1, 0⟩

Each of these is sketched in Figure 11.2.7. Note how the length of the
vector gives an indicaƟon of how quickly the circle is being traced at that
point. When t = −2, the circle is being drawn relaƟvely slow; when t =
−1, the circle is being traced much more quickly.

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is

Notes:
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11.2 Calculus and Vector–Valued FuncƟons

illustrated in Figure 11.2.7; each tangent vector is perpendicular to the line that
passes through its iniƟal point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = 0,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = 0.

This is true of any vector–valued funcƟon that has a constant length, that is,
that traces out part of a circle. It has important implicaƟons later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

Theorem 11.2.5 Vector–Valued FuncƟons of Constant Length

Let r⃗(t) be a vector–valued funcƟon of constant length that is differen-
Ɵable on an open interval I. That is, || r⃗(t) || = c for all t in I (equivalently,
r⃗(t) · r⃗(t) = c2 for all t in I). Then r⃗(t) · r⃗ ′(t) = 0 for all t in I.

IntegraƟon

Before formally defining integrals of vector–valued funcƟons, consider the
following equaƟon that our calculus experience tells us should be true:∫ b

a
r⃗ ′(t) dt = r⃗(b)− r⃗(a).

That is, the integral of a rate of change funcƟon should give total change. In
the context of vector–valued funcƟons, this total change is displacement. The
above equaƟon is true; we now develop the theory to show why.

We can define anƟderivaƟves and the indefinite integral of vector–valued
funcƟons in the samemanner we defined indefinite integrals in DefiniƟon 5.1.1.
However, we cannot define the definite integral of a vector–valued funcƟon as
we did in DefiniƟon 5.2.1. That definiƟonwas based on the signed area between
a funcƟon y = f(x) and the x-axis. An area–based definiƟon will not be useful
in the context of vector–valued funcƟons. Instead, we define the definite inte-
gral of a vector–valued funcƟon in a manner similar to that of Theorem 5.3.2,
uƟlizing Riemann sums.

Notes:
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DefiniƟon11.2.6 AnƟderivaƟves, Indefinite and Definite Integrals
of Vector–Valued FuncƟons

Let r⃗(t) be a conƟnuous vector–valued funcƟon on [a, b]. An anƟderiva-
Ɵve of r⃗(t) is a funcƟon R⃗(t) such that R⃗′(t) = r⃗(t).

The set of all anƟderivaƟves of r⃗(t) is the indefinite integral of r⃗(t), de-
noted by ∫

r⃗(t) dt.

The definite integral of r⃗(t) on [a, b] is∫ b

a
r⃗(t) dt = lim

||∆t||→0

n∑
i=1

r⃗(ci)∆ti,

where∆ti is the length of the i th subinterval of a parƟƟon of [a, b], ||∆t||
is the length of the largest subinterval in the parƟƟon, and ci is any value
in the i th subinterval of the parƟƟon.

It is probably difficult to infer meaning from the definiƟon of the definite
integral. The important thing to realize from the definiƟon is that it is built upon
limits, which we can evaluate component–wise.

The following theorem simplifies the computaƟon of definite integrals; the
rest of this secƟon and the following secƟon will give meaning and applicaƟon
to these integrals.

Theorem 11.2.6 Indefinite and Definite Integrals of Vector–Valued
FuncƟons

Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector–valued funcƟon in R2 that are conƟn-
uous on [a, b].

1.
∫

r⃗(t) dt =
⟨∫

f(t) dt,
∫

g(t) dt
⟩

2.
∫ b

a
r⃗(t) dt =

⟨∫ b

a
f(t) dt,

∫ b

a
g(t) dt

⟩

A similar statement holds for vector–valued funcƟons in R3.

Notes:
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11.2 Calculus and Vector–Valued FuncƟons

Example 11.2.8 EvaluaƟng a definite integral of a vector–valued funcƟon

Let r⃗(t) =
⟨
e2t, sin t

⟩
. Evaluate

∫ 1

0
r⃗(t) dt.

SÊ½çã®ÊÄ We follow Theorem 11.2.6.∫ 1

0
r⃗(t) dt =

∫ 1

0

⟨
e2t, sin t

⟩
dt

=

⟨∫ 1

0
e2t dt ,

∫ 1

0
sin t dt

⟩
=

⟨
1
2
e2t
∣∣∣1
0
,− cos t

∣∣∣1
0

⟩
=

⟨
1
2
(e2 − 1) ,− cos(1) + 1

⟩
≈ ⟨3.19, 0.460⟩ .

Example 11.2.9 Solving an iniƟal value problem
Let r⃗ ′′(t) = ⟨2, cos t, 12t⟩. Find r⃗(t), where r⃗(0) = ⟨−7,−1, 2⟩ and
r⃗ ′(0) = ⟨5, 3, 0⟩ .

SÊ½çã®ÊÄ Knowing r⃗ ′′(t) = ⟨2, cos t, 12t⟩, we find r⃗ ′(t) by evaluaƟng
the indefinite integral.∫

r⃗ ′′(t) dt =
⟨∫

2 dt ,
∫

cos t dt ,
∫

12t dt
⟩

=
⟨
2t+ C1, sin t+ C2, 6t2 + C3

⟩
=
⟨
2t, sin t, 6t2

⟩
+ ⟨C1, C2, C3⟩

=
⟨
2t, sin t, 6t2

⟩
+ C⃗.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C⃗. Knowing r⃗ ′(0) = ⟨5, 3, 0⟩ allows us to solve for C⃗:

r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ C⃗

r⃗ ′(0) = ⟨0, 0, 0⟩+ C⃗

⟨5, 3, 0⟩ = C⃗.

So r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ ⟨5, 3, 0⟩ =

⟨
2t+ 5, sin t+ 3, 6t2

⟩
. To find r⃗(t),

we integrate once more.

∫
r⃗ ′(t) dt =

⟨∫
2t+ 5 dt,

∫
sin t+ 3 dt,

∫
6t2 dt

⟩
=
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗.

Notes:
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With r⃗(0) = ⟨−7,−1, 2⟩, we solve for C⃗:

r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗

r⃗(0) = ⟨0,−1, 0⟩+ C⃗

⟨−7,−1, 2⟩ = ⟨0,−1, 0⟩+ C⃗

⟨−7, 0, 2⟩ = C⃗.

So r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+⟨−7, 0, 2⟩ =

⟨
t2 + 5t− 7,− cos t+ 3t, 2t3 + 2

⟩
.

What does the integraƟon of a vector–valued funcƟon mean? There are
many applicaƟons, but none as direct as “the area under the curve” that we
used in understanding the integral of a real–valued funcƟon.

A key understanding for us comes from considering the integral of a deriva-
Ɵve: ∫ b

a
r⃗ ′(t) dt = r⃗(t)

∣∣∣b
a
= r⃗(b)− r⃗(a).

IntegraƟng a rate of change funcƟon gives displacement.
NoƟng that vector–valued funcƟons are closely related to parametric equa-

Ɵons, we can describe the arc length of the graph of a vector–valued funcƟon
as an integral. Given parametric equaƟons x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

∫ b

a

√
f ′(t)2 + g ′(t)2 dt,

as stated in Theorem 9.3.1. If r⃗(t) = ⟨f(t), g(t)⟩, note that
√

f ′(t)2 + g ′(t)2 =
|| r⃗ ′(t) ||. Therefore we can express the arc length of the graph of a vector–
valued funcƟon as an integral of the magnitude of its derivaƟve.

Theorem 11.2.7 Arc Length of a Vector–Valued FuncƟon

Let r⃗(t) be a vector–valued funcƟon where r⃗ ′(t) is conƟnuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =
∫ b

a
|| r⃗ ′(t) || dt.

Note that we are actually integraƟng a scalar–funcƟon here, not a vector–
valued funcƟon.

The next secƟon takes what we have established thus far and applies it to
objects in moƟon. We will let r⃗(t) describe the path of an object in the plane or
in space and will discover the informaƟon provided by r⃗ ′(t) and r⃗ ′′(t).

Notes:

648



Exercises 11.2
Terms and Concepts
1. Limits, derivaƟves and integrals of vector–valued funcƟons

are all evaluated –wise.

2. The definite integral of a rate of change funcƟon gives
.

3. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t)
on the same axes?

4. Theorem 11.2.4 contains three product rules. What are the
three different types of products used in these rules?

Problems
In Exercises 5 – 8, evaluate the given limit.

5. lim
t→5

⟨
2t+ 1, 3t2 − 1, sin t

⟩
6. lim

t→3

⟨
et, t

2 − 9
t+ 3

⟩

7. lim
t→0

⟨ t
sin t

, (1+ t)
1
t

⟩

8. lim
h→0

r⃗(t+ h)− r⃗(t)
h

, where r⃗(t) =
⟨
t2, t, 1

⟩
.

In Exercises 9 – 10, idenƟfy the interval(s) on which r⃗(t) is
conƟnuous.

9. r⃗(t) =
⟨
t2, 1/t

⟩
10. r⃗(t) =

⟨
cos t, et, ln t

⟩
In Exercises 11 – 16, find the derivaƟve of the given funcƟon.

11. r⃗(t) =
⟨
cos t, et, ln t

⟩
12. r⃗(t) =

⟨
1
t
,
2t− 1
3t+ 1

, tan t
⟩

13. r⃗(t) = (t2) ⟨sin t, 2t+ 5⟩

14. r(t) =
⟨
t2 + 1, t− 1

⟩
· ⟨sin t, 2t+ 5⟩

15. r⃗(t) =
⟨
t2 + 1, t− 1, 1

⟩
× ⟨sin t, 2t+ 5, 1⟩

16. r⃗(t) = ⟨cosh t, sinh t⟩

In Exercises 17 – 20, find r⃗ ′(t). Sketch r⃗(t) and r⃗ ′(1), with the
iniƟal point of r⃗ ′(1) at r⃗(1).

17. r⃗(t) =
⟨
t2 + t, t2 − t

⟩

18. r⃗(t) =
⟨
t2 − 2t+ 2, t3 − 3t2 + 2t

⟩
19. r⃗(t) =

⟨
t2 + 1, t3 − t

⟩
20. r⃗(t) =

⟨
t2 − 4t+ 5, t3 − 6t2 + 11t− 6

⟩
In Exercises 21 – 24, give the equaƟon of the line tangent to
the graph of r⃗(t) at the given t value.

21. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
at t = 1.

22. r⃗(t) = ⟨3 cos t, sin t⟩ at t = π/4.

23. r⃗(t) = ⟨3 cos t, 3 sin t, t⟩ at t = π.

24. r⃗(t) =
⟨
et, tan t, t

⟩
at t = 0.

In Exercises 25 – 28, find the value(s) of t for which r⃗(t) is not
smooth.

25. r⃗(t) = ⟨cos t, sin t− t⟩

26. r⃗(t) =
⟨
t2 − 2t+ 1, t3 + t2 − 5t+ 3

⟩
27. r⃗(t) = ⟨cos t− sin t, sin t− cos t, cos(4t)⟩

28. r⃗(t) =
⟨
t3 − 3t+ 2,− cos(πt), sin2(πt)

⟩
Exercises 29 – 32 ask you to verify parts of Theorem 11.2.4.
In each let f(t) = t3, r⃗(t) =

⟨
t2, t− 1, 1

⟩
and s⃗(t) =⟨

sin t, et, t
⟩
. Compute the various derivaƟves as indicated.

29. Simplify f(t)⃗r(t), then find its derivaƟve; show this is the
same as f ′(t)⃗r(t) + f(t)⃗r ′(t).

30. Simplify r⃗(t) · s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

31. Simplify r⃗(t)× s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

32. Simplify r⃗
(
f(t)
)
, then find its derivaƟve; show this is the

same as r⃗ ′
(
f(t)
)
f ′(t).

In Exercises 33 – 36, evaluate the given definite or indefinite
integral.

33.
∫ ⟨

t3, cos t, tet
⟩
dt

34.
∫ ⟨

1
1+ t2

, sec2 t
⟩

dt

35.
∫ π

0
⟨− sin t, cos t⟩ dt

36.
∫ 2

−2
⟨2t+ 1, 2t− 1⟩ dt
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In Exercises 37 – 40, solve the given iniƟal value problems.

37. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin t⟩ and r⃗(0) = ⟨2, 2⟩.

38. Find r⃗(t), given that r⃗ ′(t) = ⟨1/(t+ 1), tan t⟩ and
r⃗(0) = ⟨1, 2⟩.

39. Find r⃗(t), given that r⃗ ′′(t) =
⟨
t2, t, 1

⟩
,

r⃗ ′(0) = ⟨1, 2, 3⟩ and r⃗(0) = ⟨4, 5, 6⟩.

40. Find r⃗(t), given that r⃗ ′′(t) =
⟨
cos t, sin t, et

⟩
,

r⃗ ′(0) = ⟨0, 0, 0⟩ and r⃗(0) = ⟨0, 0, 0⟩.

In Exercises 41 – 44 , find the arc length of r⃗(t) on the indi-

cated interval.

41. r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩ on [0, 2π].

42. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩ on [0, 2π].

43. r⃗(t) =
⟨
t3, t2, t3

⟩
on [0, 1].

44. r⃗(t) =
⟨
e−t cos t, e−t sin t

⟩
on [0, 1].

45. Prove Theorem 11.2.5; that is, show if r⃗(t) has constant
length and is differenƟable, then r⃗(t) · r⃗ ′(t) = 0. (Hint:
use the Product Rule to compute d

dt

(⃗
r(t) · r⃗(t)

)
.)
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Figure 11.3.1: Graphing the posiƟon, ve-
locity and acceleraƟon of an object in Ex-
ample 11.3.1.

11.3 The Calculus of MoƟon

11.3 The Calculus of MoƟon
A common use of vector–valued funcƟons is to describe themoƟon of an object
in the plane or in space. A posiƟon funcƟon r⃗(t) gives the posiƟon of an object
at Ɵme t. This secƟon explores how derivaƟves and integrals are used to study
the moƟon described by such a funcƟon.

DefiniƟon 11.3.1 Velocity, Speed and AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon in R2 or R3.

1. Velocity, denoted v⃗(t), is the instantaneous rate of posiƟon
change; that is, v⃗(t) = r⃗ ′(t).

2. Speed is the magnitude of velocity, || v⃗(t) ||.

3. AcceleraƟon, denoted a⃗(t), is the instantaneous rate of velocity
change; that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

Example 11.3.1 Finding velocity and acceleraƟon
An object is moving with posiƟon funcƟon r⃗(t) =

⟨
t2 − t, t2 + t

⟩
, −3 ≤ t ≤ 3,

where distances are measured in feet and Ɵme is measured in seconds.

1. Find v⃗(t) and a⃗(t).

2. Sketch r⃗(t); plot v⃗(−1), a⃗(−1), v⃗(1) and a⃗(1), each with their iniƟal point
at their corresponding point on the graph of r⃗(t).

3. When is the object’s speed minimized?

SÊ½çã®ÊÄ

1. Taking derivaƟves, we find

v⃗(t) = r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩ and a⃗(t) = r⃗ ′′(t) = ⟨2, 2⟩ .

Note that acceleraƟon is constant.

2. v⃗(−1) = ⟨−3,−1⟩, a⃗(−1) = ⟨2, 2⟩; v⃗(1) = ⟨1, 3⟩, a⃗(1) = ⟨2, 2⟩.
These are ploƩed with r⃗(t) in Figure 11.3.1(a).
We can think of acceleraƟon as “pulling” the velocity vector in a certain
direcƟon. At t = −1, the velocity vector points down and to the leŌ; at
t = 1, the velocity vector has been pulled in the ⟨2, 2⟩ direcƟon and is

Notes:
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Figure 11.3.2: Ploƫng velocity and accel-
eraƟon vectors for Object 1 in Example
11.3.2.

Chapter 11 Vector Valued FuncƟons

now poinƟng up and to the right. In Figure 11.3.1(b) we plot more veloc-
ity/acceleraƟon vectors, making more clear the effect acceleraƟon has on
velocity.
Since a⃗(t) is constant in this example, as t grows large v⃗(t) becomes almost
parallel to a⃗(t). For instance, when t = 10, v⃗(10) = ⟨19, 21⟩, which is
nearly parallel to ⟨2, 2⟩.

3. The object’s speed is given by

|| v⃗(t) || =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

To find the minimal speed, we could apply calculus techniques (such as
set the derivaƟve equal to 0 and solve for t, etc.) but we can find it by
inspecƟon. Inside the square root we have a quadraƟc which is minimized
when t = 0. Thus the speed is minimized at t = 0, with a speed of

√
2

Ō/s.
The graph in Figure 11.3.1(b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between −3
and 3. Dots that are far apart imply the object traveled a far distance in
1 second, indicaƟng high speed; dots that are close together imply the
object did not travel far in 1 second, indicaƟng a low speed. The dots are
closest together near t = 0, implying the speed is minimized near that
value.

Example 11.3.2 Analyzing MoƟon
Two objects follow an idenƟcal path at different rates on [−1, 1]. The posiƟon
funcƟon for Object 1 is r⃗1(t) =

⟨
t, t2
⟩
; the posiƟon funcƟon for Object 2 is

r⃗2(t) =
⟨
t3, t6

⟩
, where distances are measured in feet and Ɵme is measured

in seconds. Compare the velocity, speed and acceleraƟon of the two objects on
the path.

SÊ½çã®ÊÄ We begin by compuƟng the velocity and acceleraƟon func-
Ɵon for each object:

v⃗1(t) = ⟨1, 2t⟩ v⃗2(t) =
⟨
3t2, 6t5

⟩
a⃗1(t) = ⟨0, 2⟩ a⃗2(t) =

⟨
6t, 30t4

⟩
We immediately see that Object 1 has constant acceleraƟon, whereas Object 2
does not.

At t = −1, we have v⃗1(−1) = ⟨1,−2⟩ and v⃗2(−1) = ⟨3,−6⟩; the velocity
of Object 2 is three Ɵmes that of Object 1 and so it follows that the speed of
Object 2 is three Ɵmes that of Object 1 (3

√
5 Ō/s compared to

√
5 Ō/s.)

Notes:
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Figure 11.3.3: Comparing the posiƟons of
Objects 1 and 2 in Example 11.3.2.

11.3 The Calculus of MoƟon

At t = 0, the velocity of Object 1 is v⃗(1) = ⟨1, 0⟩ and the velocity of Object
2 is 0⃗! This tells us that Object 2 comes to a complete stop at t = 0.

In Figure 11.3.2, we see the velocity and acceleraƟon vectors for Object 1
ploƩed for t = −1,−1/2, 0, 1/2 and t = 1. Note again how the constant accel-
eraƟon vector seems to “pull” the velocity vector from poinƟng down, right to
up, right. We could plot the analogous picture for Object 2, but the velocity and
acceleraƟon vectors are rather large (⃗a2(−1) = ⟨−6, 30⟩!)

Instead, we simply plot the locaƟons of Object 1 and 2 on intervals of 1/5th
of a second, shown in Figure 11.3.3(a) and (b). Note how the x-values of Object
1 increase at a steady rate. This is because the x-component of a⃗(t) is 0; there is
no acceleraƟon in the x-component. The dots are not evenly spaced; the object
is moving faster near t = −1 and t = 1 than near t = 0.

In part (b) of the Figure, we see the points ploƩed for Object 2. Note the
large change in posiƟon from t = −1 to t = −0.8; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop at t = 0. While it looks like there are 3 points near the origin,
there are in reality 5 points there.

Since the objects begin and end at the same locaƟon, they have the same
displacement. Since they begin and end at the same Ɵme, with the same dis-
placement, they have the same average rate of change (i.e, they have the same
average velocity). Since they follow the same path, they have the same distance
traveled. Even though these three measurements are the same, the objects ob-
viously travel the path in very different ways.

Example 11.3.3 Analyzing the moƟon of a whirling ball on a string
A young boy whirls a ball, aƩached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes 2 revoluƟons per
second. The string has length 2Ō.

1. Find the posiƟon funcƟon r⃗(t) that describes this situaƟon.

2. Find the acceleraƟon of the ball and give a physical interpretaƟon of it.

3. A tree stands 10Ō in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

SÊ½çã®ÊÄ

1. The ball whirls in a circle. Since the string is 2Ō long, the radius of the
circle is 2. The posiƟon funcƟon r⃗(t) = ⟨2 cos t, 2 sin t⟩ describes a circle
with radius 2, centered at the origin, but makes a full revoluƟon every
2π seconds, not two revoluƟons per second. Wemodify the period of the

Notes:
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trigonometric funcƟons to be 1/2 bymulƟplying t by 4π. The final posiƟon
funcƟon is thus

r⃗(t) = ⟨2 cos(4πt), 2 sin(4πt)⟩ .

(Plot this for 0 ≤ t ≤ 1/2 to verify that one revoluƟon is made in 1/2 a
second.)

2. To find a⃗(t), we take the derivaƟve of r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−8π sin(4πt), 8π cos(4πt)⟩
a⃗(t) = r⃗ ′′(t) =

⟨
−32π2 cos(4πt),−32π2 sin(4πt)

⟩
= −32π2 ⟨cos(4πt), sin(4πt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude and points
in the opposite direcƟon. Why is this?

Recall the classic physics equaƟon, “Force=mass× acceleraƟon.” A force
acƟng on a mass induces acceleraƟon (i.e., the mass moves); acceleraƟon
acƟng on a mass induces a force (gravity gives our mass a weight). Thus
force and acceleraƟon are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
aƩached to the boy’s handby a string. The string applies a force to the ball,
affecƟng it’s moƟon: the string accelerates the ball. This is not accelera-
Ɵon in the sense of “it travels faster;” rather, this acceleraƟon is changing
the velocity of the ball. In what direcƟon is this force/acceleraƟon being
applied? In the direcƟon of the string, towards the boy’s hand.

Themagnitude of the acceleraƟon is related to the speed at which the ball
is traveling. A ball whirling quickly is rapidly changing direcƟon/velocity.
When velocity is changing rapidly, the acceleraƟon must be “large.”

3. When the boy releases the string, the string no longer applies a force to
the ball, meaning acceleraƟon is 0⃗ and the ball can nowmove in a straight
line in the direcƟon of v⃗(t).

Let t = t0 be the Ɵme when the boy lets go of the string. The ball will be
at r⃗(t0), traveling in the direcƟon of v⃗(t0). We want to find t0 so that this
line contains the point (0, 10) (since the tree is 10Ō directly in front of the
boy).

There are many ways to find this Ɵme value. We choose one that is rela-
Ɵvely simple computaƟonally. As shown in Figure 11.3.4, the vector from
the release point to the tree is ⟨0, 10⟩− r⃗(t0). This line segment is tangent
to the circle, which means it is also perpendicular to r⃗(t0) itself, so their
dot product is 0.

Notes:
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r⃗(t0) ·
(
⟨0, 10⟩ − r⃗(t0)

)
= 0

⟨2 cos(4πt0), 2 sin(4πt0)⟩ · ⟨−2 cos(4πt0), 10− 2 sin(4πt0)⟩ = 0
−4 cos2(4πt0) + 20 sin(4πt0)− 4 sin2(4πt0) = 0

20 sin(4πt0)− 4 = 0
sin(4πt0) = 1/5

4πt0 = sin−1(1/5)
4πt0 ≈ 0.2+ 2πn,

where n is an integer. Solving for t0 we have:

t0 ≈ 0.016+ n/2

This is a wonderful formula. Every 1/2 second aŌer t = 0.016s the boy
can release the string (since the ball makes 2 revoluƟons per second, he
has two chances each second to release the ball).

Example 11.3.4 Analyzing moƟon in space
An object moves in a spiral with posiƟon funcƟon r⃗(t) = ⟨cos t, sin t, t⟩, where
distances are measured in meters and Ɵme is in minutes. Describe the object’s
speed and acceleraƟon at Ɵme t.

SÊ½çã®ÊÄ With r⃗(t) = ⟨cos t, sin t, t⟩, we have:

v⃗(t) = ⟨− sin t, cos t, 1⟩ and
a⃗(t) = ⟨− cos t,− sin t, 0⟩ .

The speed of the object is || v⃗(t) || =
√
(− sin t)2 + cos2 t+ 1 =

√
2m/min;

it moves at a constant speed. Note that the object does not accelerate in the
z-direcƟon, but rather moves up at a constant rate of 1m/min.

The objects in Examples 11.3.3 and 11.3.4 traveled at a constant speed. That
is, || v⃗(t) || = c for some constant c. Recall Theorem 11.2.5, which states that
if a vector–valued funcƟon r⃗(t) has constant length, then r⃗(t) is perpendicular
to its derivaƟve: r⃗(t) · r⃗ ′(t) = 0. In these examples, the velocity funcƟon has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleraƟon: v⃗(t) · a⃗(t) = 0. A quick check verifies this.

There is an intuiƟve understanding of this. If acceleraƟon is parallel to veloc-
ity, then it is only affecƟng the object’s speed; it does not change the direcƟon
of travel. (For example, consider a dropped stone. AcceleraƟon and velocity are

Notes:
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Note: This text uses g = 32Ō/s2 when us-
ing Imperial units, and g = 9.8m/s2 when
using SI units.
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parallel – straight down – and the direcƟon of velocity never changes, though
speed does increase.) If acceleraƟon is not perpendicular to velocity, then there
is some acceleraƟon in the direcƟon of travel, influencing the speed. If speed
is constant, then acceleraƟon must be orthogonal to velocity, as it then only
affects direcƟon, and not speed.

Key Idea 11.3.1 Objects With Constant Speed

If an objectmoveswith constant speed, then its velocity and acceleraƟon
vectors are orthogonal. That is, v⃗(t) · a⃗(t) = 0.

ProjecƟle MoƟon

An important applicaƟon of vector–valued posiƟon funcƟons is projecƟle
moƟon: the moƟon of objects under only the influence of gravity. We will mea-
sure Ɵme in seconds, and distances will either be inmeters or feet. Wewill show
that we can completely describe the path of such an object knowing its iniƟal
posiƟon and iniƟal velocity (i.e., where it is and where it is going.)

Suppose an object has iniƟal posiƟon r⃗(0) = ⟨x0, y0⟩ and iniƟal velocity
v⃗(0) = ⟨vx, vy⟩. It is customary to rewrite v⃗(0) in terms of its speed v0 and
direcƟon u⃗, where u⃗ is a unit vector. Recall all unit vectors in R2 can be wriƩen
as ⟨cos θ, sin θ⟩, where θ is an angle measure counter–clockwise from the x-axis.
(We refer to θ as the angle of elevaƟon.) Thus v⃗(0) = v0 ⟨cos θ, sin θ⟩ .

Since the acceleraƟon of the object is known, namely a⃗(t) = ⟨0,−g⟩, where
g is the gravitaƟonal constant, we can find r⃗(t) knowing our two iniƟal condi-
Ɵons. We first find v⃗(t):

v⃗(t) =
∫

a⃗(t) dt

v⃗(t) =
∫

⟨0,−g⟩ dt

v⃗(t) = ⟨0,−gt⟩+ C⃗.

Knowing v⃗(0) = v0 ⟨cos θ, sin θ⟩, we have C⃗ = v0 ⟨cos θ, sin θ⟩ and so

v⃗(t) =
⟨
v0 cos θ,−gt+ v0 sin θ

⟩
.

Notes:
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11.3 The Calculus of MoƟon

We integrate once more to find r⃗(t):

r⃗(t) =
∫

v⃗(t) dt

r⃗(t) =
∫ ⟨

v0 cos θ,−gt+ v0 sin θ
⟩
dt

r⃗(t) =
⟨(

v0 cos θ
)
t,−1

2
gt2 +

(
v0 sin θ

)
t
⟩
+ C⃗.

Knowing r⃗(0) = ⟨x0, y0⟩, we conclude C⃗ = ⟨x0, y0⟩ and

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
.

Key Idea 11.3.2 ProjecƟle MoƟon

The posiƟon funcƟon of a projecƟle propelled from an iniƟal posiƟon of
r⃗0 = ⟨x0, y0⟩, with iniƟal speed v0, with angle of elevaƟon θ and neglect-
ing all acceleraƟons but gravity is

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
.

Leƫng v⃗0 = v0 ⟨cos θ, sin θ⟩, r⃗(t) can be wriƩen as

r⃗(t) =
⟨
0,−1

2
gt2
⟩
+ v⃗0t+ r⃗0.

We demonstrate how to use this posiƟon funcƟon in the next two examples.

Example 11.3.5 ProjecƟle MoƟon
Sydney shoots her Red Ryder® bb gun across level ground from an elevaƟon of
4Ō, where the barrel of the gun makes a 5◦ angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the adverƟsed rate
of 350Ō/s and ignoring air resistance.

SÊ½çã®ÊÄ A direct applicaƟon of Key Idea 11.3.2 gives

r⃗(t) =
⟨
(350 cos 5◦)t,−16t2 + (350 sin 5◦)t+ 4

⟩
≈
⟨
346.67t,−16t2 + 30.50t+ 4

⟩
,

Notes:
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wherewe set her iniƟal posiƟon to be ⟨0, 4⟩. We need to findwhen the bb lands,
then we can find where. We accomplish this by seƫng the y-component equal
to 0 and solving for t:

−16t2 + 30.50t+ 4 = 0

t =
−30.50±

√
30.502 − 4(−16)(4)
−32

t ≈ 2.03s.

(We discarded a negaƟve soluƟon that resulted from our quadraƟc equaƟon.)
We have found that the bb lands 2.03s aŌer firing; with t = 2.03, we find

the x-component of our posiƟon funcƟon is 346.67(2.03) = 703.74Ō. The bb
lands about 704 feet away.

Example 11.3.6 ProjecƟle MoƟon
Alex holds his sister’s bb gun at a height of 3Ō and wants to shoot a target that
is 6Ō above the ground, 25Ō away. At what angle should he hold the gun to hit
his target? (We sƟll assume the muzzle velocity is 350Ō/s.)

SÊ½çã®ÊÄ The posiƟon funcƟon for the path of Alex’s bb is

r⃗(t) =
⟨
(350 cos θ)t,−16t2 + (350 sin θ)t+ 3

⟩
.

We need to find θ so that r⃗(t) = ⟨25, 6⟩ for some value of t. That is, we want to
find θ and t such that

(350 cos θ)t = 25 and − 16t2 + (350 sin θ)t+ 3 = 6.

This is not trivial (though not “hard”). We start by solving each equaƟon for cos θ
and sin θ, respecƟvely.

cos θ =
25
350t

and sin θ =
3+ 16t2

350t
.

Using the Pythagorean IdenƟty cos2 θ + sin2 θ = 1, we have(
25
350t

)2

+

(
3+ 16t2

350t

)2

= 1

MulƟply both sides by (350t)2:

252 + (3+ 16t2)2 = 3502t2

256t4 − 122, 404t2 + 634 = 0.

Notes:
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This is a quadraƟc in t2. That is, we can apply the quadraƟc formula to find t2,
then solve for t itself.

t2 =
122, 404±

√
122, 4042 − 4(256)(634)

512
t2 = 0.0052, 478.135
t = ±0.072, ±21.866

Clearly the negaƟve t values do not fit our context, so we have t = 0.072 and
t = 21.866. Using cos θ = 25/(350t), we can solve for θ:

θ = cos−1
(

25
350 · 0.072

)
and cos−1

(
25

350 · 21.866

)
θ = 7.03◦ and 89.8◦.

Alex has two choices of angle. He can hold the rifle at an angle of about 7◦ with
the horizontal and hit his target 0.07s aŌer firing, or he can hold his rifle almost
straight up, with an angle of 89.8◦, where he’ll hit his target about 22s later. The
first opƟon is clearly the opƟon he should choose.

Distance Traveled

Consider a driver who sets her cruise–control to 60mph, and travels at this
speed for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starƟng posiƟon is the driver?

The first is easy to answer: she traveled 60 miles. The second is impossible to
answer with the given informaƟon. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly–winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by || v⃗(t) ||.

Theorem 11.3.1 Distance Traveled

Let v⃗(t) be a velocity funcƟon for a moving object. The distance traveled
by the object on [a, b] is:

distance traveled =

∫ b

a
|| v⃗(t) || dt.

Note that this is just a restatement of Theorem 11.2.7: arc length is the same as
distance traveled, just viewed in a different context.

Notes:
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Figure 11.3.5: The path of the parƟcle,
from two perspecƟves, in Example 11.3.7.
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Example 11.3.7 Distance Traveled, Displacement, and Average Speed
AparƟclemoves in spacewith posiƟon funcƟon r⃗(t) =

⟨
t, t2, sin(πt)

⟩
on [−2, 2],

where t is measured in seconds and distances are in meters. Find:

1. The distance traveled by the parƟcle on [−2, 2].

2. The displacement of the parƟcle on [−2, 2].

3. The parƟcle’s average speed.

SÊ½çã®ÊÄ

1. We use Theorem 11.3.1 to establish the integral:

distance traveled =

∫ 2

−2
|| v⃗(t) || dt

=

∫ 2

−2

√
1+ (2t)2 + π2 cos2(πt) dt.

This cannot be solved in terms of elementary funcƟons so we turn to nu-
merical integraƟon, finding the distance to be 12.88m.

2. The displacement is the vector

r⃗(2)− r⃗(−2) = ⟨2, 4, 0⟩ − ⟨−2, 4, 0⟩ = ⟨4, 0, 0⟩ .

That is, the parƟcle ends with an x-value increased by 4 and with y- and
z-values the same (see Figure 11.3.5).

3. We found above that the parƟcle traveled 12.88mover 4 seconds. We can
compute average speed by dividing: 12.88/4 = 3.22m/s.
We should also consider DefiniƟon 5.4.1 of SecƟon 5.4, which says that
the average value of a funcƟon f on [a, b] is 1

b−a

∫ b
a f(x) dx. In our context,

the average value of the speed is

average speed =
1

2− (−2)

∫ 2

−2
|| v⃗(t) || dt ≈ 1

4
12.88 = 3.22m/s.

Note how the physical context of a parƟcle traveling gives meaning to a
more abstract concept learned earlier.

In DefiniƟon 5.4.1 of Chapter 5 we defined the average value of a funcƟon
f(x) on [a, b] to be

1
b− a

∫ b

a
f(x) dx.

Notes:
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Note how in Example 11.3.7 we computed the average speed as

distance traveled
travel Ɵme

=
1

2− (−2)

∫ 2

−2
|| v⃗(t) || dt;

that is, we just found the average value of || v⃗(t) || on [−2, 2].
Likewise, given posiƟon funcƟon r⃗(t), the average velocity on [a, b] is

displacement
travel Ɵme

=
1

b− a

∫ b

a
r⃗ ′(t) dt =

r⃗(b)− r⃗(a)
b− a

;

that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

Key Idea 11.3.3 Average Speed, Average Velocity

Let r⃗(t) be a differenƟable posiƟon funcƟon on [a, b].

The average speed is:

distance traveled
travel Ɵme

=

∫ b
a || v⃗(t) || dt

b− a
=

1
b− a

∫ b

a
|| v⃗(t) || dt.

The average velocity is:

displacement
travel Ɵme

=

∫ b
a r⃗ ′(t) dt
b− a

=
1

b− a

∫ b

a
r⃗ ′(t) dt.

The next two secƟons invesƟgate more properƟes of the graphs of vector–
valued funcƟons and we’ll apply these new ideas to what we just learned about
moƟon.

Notes:
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Exercises 11.3
Terms and Concepts

1. How is velocity different from speed?

2. What is the difference between displacement and distance
traveled?

3. What is the difference between average velocity and aver-
age speed?

4. Distance traveled is the same as , just
viewed in a different context.

5. Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

6. Explain why it is not possible to have an average velocity
with a large magnitude but a small average speed.

Problems
In Exercises 7 – 10 , a posiƟon funcƟon r⃗(t) is given. Find v⃗(t)
and a⃗(t).

7. r⃗(t) = ⟨2t+ 1, 5t− 2, 7⟩

8. r⃗(t) =
⟨
3t2 − 2t+ 1,−t2 + t+ 14

⟩
9. r⃗(t) = ⟨cos t, sin t⟩

10. r⃗(t) = ⟨t/10,− cos t, sin t⟩

In Exercises 11 – 14 , a posiƟon funcƟon r⃗(t) is given. Sketch
r⃗(t) on the indicated interval. Find v⃗(t) and a⃗(t), then add
v⃗(t0) and a⃗(t0) to your sketch, with their iniƟal points at r⃗(t0),
for the given value of t0.

11. r⃗(t) = ⟨t, sin t⟩ on [0, π/2]; t0 = π/4

12. r⃗(t) =
⟨
t2, sin t2

⟩
on [0, π/2]; t0 =

√
π/4

13. r⃗(t) =
⟨
t2 + t,−t2 + 2t

⟩
on [−2, 2]; t0 = 1

14. r⃗(t) =
⟨
2t+ 3
t2 + 1

, t2
⟩

on [−1, 1]; t0 = 0

In Exercises 15 – 24 , a posiƟon funcƟon r⃗(t) of an object is
given. Find the speed of the object in terms of t, and find
where the speed is minimized/maximized on the indicated
interval.

15. r⃗(t) =
⟨
t2, t
⟩
on [−1, 1]

16. r⃗(t) =
⟨
t2, t2 − t3

⟩
on [−1, 1]

17. r⃗(t) = ⟨5 cos t, 5 sin t⟩ on [0, 2π]

18. r⃗(t) = ⟨2 cos t, 5 sin t⟩ on [0, 2π]

19. r⃗(t) = ⟨sec t, tan t⟩ on [0, π/4]

20. r⃗(t) = ⟨t+ cos t, 1− sin t⟩ on [0, 2π]

21. r⃗(t) = ⟨12t, 5 cos t, 5 sin t⟩ on [0, 4π]

22. r⃗(t) =
⟨
t2 − t, t2 + t, t

⟩
on [0, 1]

23. r⃗(t) =
⟨
t, t2,

√
1− t2

⟩
on [−1, 1]

24. ProjecƟleMoƟon: r⃗(t) =
⟨
(v0 cos θ)t,−

1
2
gt2 + (v0 sin θ)t

⟩
on
[
0, 2v0 sin θ

g

]
In Exercises 25 – 28 , posiƟon funcƟons r⃗1(t) and r⃗2(s) for two
objects are given that follow the same path on the respecƟve
intervals.

(a) Show that the posiƟons are the same at the indicated
t0 and s0 values; i.e., show r⃗1(t0) = r⃗2(s0).

(b) Find the velocity, speed and acceleraƟon of the two
objects at t0 and s0, respecƟvely.

25. r⃗1(t) =
⟨
t, t2
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
s2, s4

⟩
on [0, 1]; s0 = 1

26. r⃗1(t) = ⟨3 cos t, 3 sin t⟩ on [0, 2π]; t0 = π/2
r⃗2(s) = ⟨3 cos(4s), 3 sin(4s)⟩ on [0, π/2]; s0 = π/8

27. r⃗1(t) = ⟨3t, 2t⟩ on [0, 2]; t0 = 2
r⃗2(s) = ⟨6s− 6, 4s− 4⟩ on [1, 2]; s0 = 2

28. r⃗1(t) =
⟨
t,
√
t
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
sin t,

√
sin t

⟩
on [0, π/2]; s0 = π/2

In Exercises 29 – 32 , find the posiƟon funcƟon of an object
given its acceleraƟon and iniƟal velocity and posiƟon.

29. a⃗(t) = ⟨2, 3⟩; v⃗(0) = ⟨1, 2⟩, r⃗(0) = ⟨5,−2⟩

30. a⃗(t) = ⟨2, 3⟩; v⃗(1) = ⟨1, 2⟩, r⃗(1) = ⟨5,−2⟩

31. a⃗(t) = ⟨cos t,− sin t⟩; v⃗(0) = ⟨0, 1⟩, r⃗(0) = ⟨0, 0⟩

32. a⃗(t) = ⟨0,−32⟩; v⃗(0) = ⟨10, 50⟩, r⃗(0) = ⟨0, 0⟩

In Exercises 33 – 36 , find the displacement, distance traveled,
average velocity and average speed of the described object
on the given interval.

33. An object with posiƟon funcƟon r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [0, 2π].
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34. An object with posiƟon funcƟon r⃗(t) = ⟨5 cos t,−5 sin t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [0, π].

35. An object with velocity funcƟon v⃗(t) = ⟨cos t, sin t⟩, where
distances are measured in feet and Ɵme is in seconds, on
[0, 2π].

36. An object with velocity funcƟon v⃗(t) = ⟨1, 2,−1⟩, where
distances are measured in feet and Ɵme is in seconds, on
[0, 10].

Exercises 37 – 42 ask you to solve a variety of problems based
on the principles of projecƟle moƟon.

37. A boy whirls a ball, aƩached to a 3Ō string, above his head
in a counter–clockwise circle. The ball makes 2 revoluƟons
per second.
At what t-values should the boy release the string so that
the ball heads directly for a tree standing 10Ō in front of
him?

38. David faces Goliath with only a stone in a 3Ō sling, which
he whirls above his head at 4 revoluƟons per second. They
stand 20Ō apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is traveling
when released?

(c) Assume David releases the stone from a height of 6Ō
and Goliath’s forehead is 9Ō above the ground. What
angle of elevaƟonmustDavid apply to the stone to hit
Goliath’s head?

39. A hunter aims at a deer which is 40 yards away. Her cross-
bow is at a height of 5Ō, and she aims for a spot on the
deer 4Ō above the ground. The crossbow fires her arrows
at 300Ō/s.

(a) At what angle of elevaƟon should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of 20mph, by approximately howmuch
should she lead the deer in order to hit it in the de-
sired locaƟon?

40. A baseball player hits a ball at 100mph, with an iniƟal height
of 3Ō and an angle of elevaƟon of 20◦, at Boston’s Fenway
Park. The ball flies towards the famed “Green Monster,” a
wall 37Ō high located 310Ō from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevaƟon is 21◦, the ball
clears the Green Monster.

41. A Cessna flies at 1000Ō at 150mph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignoring
wind resistance, how far horizontally will the supplies travel
before they land?

42. A football quarterback throws a pass from a height of 6Ō,
intending to hit his receiver 20yds away at a height of 5Ō.

(a) If the ball is thrown at a rate of 50mph, what angle of
elevaƟon is needed to hit his intended target?

(b) If the ball is thrown at with an angle of elevaƟon of
8◦, what iniƟal ball speed is needed to hit his target?
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Figure 11.4.1: Ploƫng unit tangent vec-
tors in Example 11.4.1.

Chapter 11 Vector Valued FuncƟons

11.4 Unit Tangent and Normal Vectors
Unit Tangent Vector

Given a smooth vector–valued funcƟon r⃗(t), we defined in DefiniƟon 11.2.4
that any vector parallel to r⃗ ′(t0) is tangent to the graphof r⃗(t) at t = t0. It is oŌen
useful to consider just the direcƟon of r⃗ ′(t) and not its magnitude. Therefore
we are interested in the unit vector in the direcƟon of r⃗ ′(t). This leads to a
definiƟon.

DefiniƟon 11.4.1 Unit Tangent Vector

Let r⃗(t) be a smooth funcƟon on an open interval I. The unit tangent
vector T⃗(t) is

T⃗(t) =
1

|| r⃗ ′(t) ||
r⃗ ′(t).

Example 11.4.1 CompuƟng the unit tangent vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We apply DefiniƟon 11.4.1 to find T⃗(t).

T⃗(t) =
1

|| r⃗ ′(t) ||
r⃗ ′(t)

=
1√(

− 3 sin t
)2

+
(
3 cos t

)2
+ 42

⟨−3 sin t, 3 cos t, 4⟩

=

⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
.

We can now easily compute T⃗(0) and T⃗(1):

T⃗(0) =
⟨
0,

3
5
,
4
5

⟩
; T⃗(1) =

⟨
−3
5
sin 1,

3
5
cos 1,

4
5

⟩
≈ ⟨−0.505, 0.324, 0.8⟩ .

These are ploƩed in Figure 11.4.1 with their iniƟal points at r⃗(0) and r⃗(1), re-
specƟvely. (They look rather “short” since they are only length 1.)

The unit tangent vector T⃗(t) always has a magnitude of 1, though it is some-
Ɵmes easy to doubt that is true. We can help solidify this thought in our minds
by compuƟng || T⃗(1) ||:

|| T⃗(1) || ≈
√

(−0.505)2 + 0.3242 + 0.82 = 1.000001.

Notes:
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Figure 11.4.2: Ploƫng unit tangent vec-
tors in Example 11.4.2.
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Figure 11.4.3: Given a direcƟon in the
plane, there are always two direcƟons or-
thogonal to it.

Note: T⃗(t) is a unit vector, by definiƟon.
This does not imply that T⃗ ′(t) is also a unit
vector.

11.4 Unit Tangent and Normal Vectors

We have rounded in our computaƟon of T⃗(1), so we don’t get 1 exactly. We
leave it to the reader to use the exact representaƟon of T⃗(1) to verify it has
length 1.

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length 5. In the next example the length of r⃗ ′(t) is variable, leav-
ing us with a formula that is not as clean.

Example 11.4.2 CompuƟng the unit tangent vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We find r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩, and

|| r⃗ ′(t) || =
√

(2t− 1)2 + (2t+ 1)2 =
√

8t2 + 2.

Therefore

T⃗(t) =
1√

8t2 + 2
⟨2t− 1, 2t+ 1⟩ =

⟨
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

When t = 0, we have T⃗(0) =
⟨
−1/

√
2, 1/

√
2
⟩
; when t = 1, we have T⃗(1) =⟨

1/
√
10, 3/

√
10
⟩
.We leave it to the reader to verify each of these is a unit vec-

tor. They are ploƩed in Figure 11.4.2

Unit Normal Vector

Just as knowing the direcƟon tangent to a path is important, knowing a direc-
Ɵon orthogonal to a path is important. When dealingwith real-valued funcƟons,
we defined the normal line at a point to the be the line through the point that
was perpendicular to the tangent line at that point. We can do a similar thing
with vector–valued funcƟons. Given r⃗(t) inR2, we have 2 direcƟons perpendic-
ular to the tangent vector, as shown in Figure 11.4.3. It is good to wonder “Is
one of these two direcƟons preferable over the other?”

Given r⃗(t) inR3, there are infinitely many vectors orthogonal to the tangent
vector at a given point. Again, wemight wonder “Is one of these infinite choices
preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R2 and R3 is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 11.2.5, which states
that if r⃗(t) has constant length, then r⃗(t) is orthogonal to r⃗ ′(t) for all t. We know
T⃗(t), the unit tangent vector, has constant length. Therefore T⃗(t) is orthogonal
to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direcƟon, we define this newly found vector to be a unit vector.

Notes:
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Figure 11.4.4: Ploƫng unit tangent and
normal vectors in Example 11.4.4.

Chapter 11 Vector Valued FuncƟons

DefiniƟon 11.4.2 Unit Normal Vector

Let r⃗(t) be a vector–valued funcƟon where the unit tangent vector, T⃗(t),
is smooth on an open interval I. The unit normal vector N⃗(t) is

N⃗(t) =
1

|| T⃗ ′(t) ||
T⃗ ′(t).

Example 11.4.3 CompuƟng the unit normal vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Example 11.4.1. Sketch both T⃗(π/2) and
N⃗(π/2) with iniƟal points at r⃗(π/2).

SÊ½çã®ÊÄ In Example 11.4.1, we found T⃗(t) =
⟨
(−3/5) sin t, (3/5) cos t, 4/5

⟩
.

Therefore

T⃗ ′(t) =
⟨
−3
5
cos t,−3

5
sin t, 0

⟩
and || T⃗ ′(t) || = 3

5
.

Thus

N⃗(t) =
T⃗ ′(t)
3/5

= ⟨− cos t,− sin t, 0⟩ .

We compute T⃗(π/2) = ⟨−3/5, 0, 4/5⟩ and N⃗(π/2) = ⟨0,−1, 0⟩. These are
sketched in Figure 11.4.4.

The previous example was once again “too nice.” In general, the expression
for T⃗(t) contains fracƟons of square–roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

Example 11.4.4 CompuƟng the unit normal vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Example 11.4.2. Find N⃗(t) and sketch r⃗(t) with

the unit tangent and normal vectors at t = −1, 0 and 1.

SÊ½çã®ÊÄ In Example 11.4.2, we found

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

Finding T⃗ ′(t) requires two applicaƟons of the QuoƟent Rule:

Notes:
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Figure 11.4.5: Ploƫng unit tangent and
normal vectors in Example 11.4.4.

11.4 Unit Tangent and Normal Vectors

T ′(t) =

⟨√
8t2 + 2(2)− (2t− 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2
,

√
8t2 + 2(2)− (2t+ 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2

⟩

=

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by it’s magni-
tude.

|| T⃗ ′(t) || =

√
16(2t+ 1)2
(8t2 + 2)3

+
16(1− 2t)2
(8t2 + 2)3

=

√
16(8t2 + 2)
(8t2 + 2)3

=
4

8t2 + 2
.

Finally,

N⃗(t) =
1

4/(8t2 + 2)

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

=

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

Using this formula for N⃗(t), we compute the unit tangent and normal vectors
for t = −1, 0 and 1 and sketch them in Figure 11.4.5.

The final result for N⃗(t) in Example 11.4.4 is suspiciously similar to T⃗(t).
There is a clear reason for this. If u⃗ = ⟨u1, u2⟩ is a unit vector in R2, then the
only unit vectors orthogonal to u⃗ are ⟨−u2, u1⟩ and ⟨u2,−u1⟩. Given T⃗(t), we
can quickly determine N⃗(t) if we know which term to mulƟply by (−1).

Consider again Figure 11.4.5, where we have ploƩed some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direcƟon that r⃗(t) “turns” allows us to quickly find N⃗(t).

Notes:
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Note: Keep in mind that both aT and
aN are funcƟons of t; that is, the scalar
changes depending on t. It is convenƟon
to drop the “(t)” notaƟon from aT(t) and
simply write aT.

Chapter 11 Vector Valued FuncƟons

Theorem 11.4.1 Unit Normal Vectors in R2

Let r⃗(t) be a vector–valued funcƟon in R2 where T⃗ ′(t) is smooth on an
open interval I. Let t0 be in I and T⃗(t0) = ⟨t1, t2⟩ Then N⃗(t0) is either

N⃗(t0) = ⟨−t2, t1⟩ or N⃗(t0) = ⟨t2,−t1⟩ ,

whichever is the vector that points to the concave side of the graph of r⃗.

ApplicaƟon to AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon. It is a fact (stated later in Theorem 11.4.2)
that acceleraƟon, a⃗(t), lies in the plane defined by T⃗ and N⃗. That is, there are
scalar funcƟons aT(t) and aN(t) such that

a⃗(t) = aT(t)⃗T(t) + aN(t)N⃗(t).

We generally drop the “of t” part of the notaƟon and just write aT and aN.
The scalar aT measures “howmuch” acceleraƟon is in the direcƟon of travel,

that is, it measures the component of acceleraƟon that affects the speed. The
scalar aN measures “how much” acceleraƟon is perpendicular to the direcƟon
of travel, that is, it measures the component of acceleraƟon that affects the
direcƟon of travel.

We can find aT using the orthogonal projecƟon of a⃗(t) onto T⃗(t) (review Def-
iniƟon 10.3.3 in SecƟon 10.3 if needed). Recalling that since T⃗(t) is a unit vector,
T⃗(t) · T⃗(t) = 1, so we have

proj T⃗(t) a⃗(t) =
a⃗(t) · T⃗(t)
T⃗(t) · T⃗(t)

T⃗(t) =
(⃗
a(t) · T⃗(t)

)︸ ︷︷ ︸
aT

T⃗(t).

Thus the amount of a⃗(t) in the direcƟon of T⃗(t) is aT = a⃗(t) · T⃗(t). The same
logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of compuƟng aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.

Notes:
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11.4 Unit Tangent and Normal Vectors

Theorem 11.4.2 AcceleraƟon in the Plane Defined by T⃗ and N⃗

Let r⃗(t) be a posiƟon funcƟon with acceleraƟon a⃗(t) and unit tangent and
normal vectors T⃗(t) and N⃗(t). Then a⃗(t) lies in the plane defined by T⃗(t) and
N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗(t) = d
dt

(
|| v⃗(t) ||

)
aN = a⃗(t) · N⃗(t) =

√
|| a⃗(t) ||2 − a2T =

|| a⃗(t)× v⃗(t) ||
|| v⃗(t) ||

= || v⃗(t) || || T⃗ ′(t) ||

Note the second formula for aT:
d
dt

(
|| v⃗(t) ||

)
. This measures the rate of

change of speed, which again is the amount of acceleraƟon in the direcƟon of
travel.

Example 11.4.5 CompuƟng aT and aN
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Examples 11.4.1 and 11.4.3. Find aT and aN.

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨−3 cos t,−3 sin t, 0⟩
and

T⃗(t) =
⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
and N⃗(t) = ⟨− cos t,− sin t, 0⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗(t) = 9
5
cos t sin t− 9

5
cos t sin t+ 0 = 0.

aN = a⃗(t) · N⃗(t) = 3 cos2 t+ 3 sin2 t+ 0 = 3.

Thus a⃗(t) = 0⃗T(t) + 3N⃗(t) = 3N⃗(t), which is clearly the case.
What is the pracƟcal interpretaƟon of these numbers? aT = 0 means the

object is moving at a constant speed, and hence all acceleraƟon comes in the
form of direcƟon change.

Example 11.4.6 CompuƟng aT and aN
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Examples 11.4.2 and 11.4.4. Find aT and aN.

Notes:
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Figure 11.4.6: Graphing r⃗(t) in Example
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SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨2, 2⟩ and

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
and N⃗(t) =

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

While we can compute aN using N⃗(t), we instead demonstrate using another
formula from Theorem 11.4.2.

aT = a⃗(t) · T⃗(t) = 4t− 2√
8t2 + 2

+
4t+ 2√
8t2 + 2

=
8t√

8t2 + 2
.

aN =
√
|| a⃗(t) ||2 − a2T =

√
8−

(
8t√

8t2 + 2

)2

=
4√

8t2 + 2
.

When t = 2, aT =
16√
34

≈ 2.74 and aN =
4√
34

≈ 0.69. We interpret this to

mean that at t = 2, the parƟcle is acceleraƟng mostly by increasing speed, not
by changing direcƟon. As the path near t = 2 is relaƟvely straight, this should
make intuiƟve sense. Figure 11.4.6 gives a graph of the path for reference.

Contrast this with t = 0, where aT = 0 and aN = 4/
√
2 ≈ 2.82. Here the

parƟcle’s speed is not changing and all acceleraƟon is in the form of direcƟon
change.

Example 11.4.7 Analyzing projecƟle moƟon
A ball is thrown from a height of 240Ōwith an iniƟal speed of 64Ō/s and an angle
of elevaƟon of 30◦. Find the posiƟon funcƟon r⃗(t) of the ball and analyze aT and
aN.

SÊ½çã®ÊÄ Using Key Idea 11.3.2 of SecƟon 11.3 we form the posiƟon
funcƟon of the ball:

r⃗(t) =
⟨(
64 cos 30◦

)
t,−16t2 +

(
64 sin 30◦

)
t+ 240

⟩
,

which we plot in Figure 11.4.7.
From thiswefind v⃗(t) = ⟨64 cos 30◦,−32t+ 64 sin 30◦⟩ and a⃗(t) = ⟨0,−32⟩.

CompuƟng T⃗(t) is not difficult, and with some simplificaƟon we find

T⃗(t) =
⟨ √

3√
t2 − 2t+ 4

,
1− t√

t2 − 2t+ 4

⟩
.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗(t) = 32t− 32√
t2 − 2t+ 4

.

Notes:
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t aT aN
0 −16 27.7
1 0 32
2 16 27.7
3 24.2 20.9
4 27.7 16
5 29.4 12.7

Figure 11.4.8: A table of values of aT and
aN in Example 11.4.7.

11.4 Unit Tangent and Normal Vectors

We choose to not find N⃗(t) andfindaN through the formulaaN =
√

|| a⃗(t) ||2 − a2T :

aN =

√
322 −

(
32t− 32√
t2 − 2t+ 4

)2

=
32

√
3√

t2 − 2t+ 4
.

Figure 11.4.8 gives a table of values of aT and aN. When t = 0, we see the
ball’s speed is decreasing; when t = 1 the speed of the ball is unchanged. This
corresponds to the fact that at t = 1 the ball reaches its highest point.

AŌer t = 1 we see that aN is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the acceleraƟon is in the form of
speeding up the ball, and not in changing its direcƟon.

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of moƟon. The work in Example 11.4.7 gave quanƟtaƟve analysis
of what we intuiƟvely knew.

The next secƟon provides two more important steps towards this analysis.
We currently describe posiƟon only in terms of Ɵme. In everyday life, though,
we oŌen describe posiƟon in terms of distance (“The gas staƟon is about 2miles
ahead, on the leŌ.”). The arc length parameter allows us to reference posiƟon
in terms of distance traveled.

We also intuiƟvely know that some paths are straighter than others – and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quanƟtaƟve
measurement of how curvy a curve is.

Notes:
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Exercises 11.4
Terms and Concepts
1. If T⃗(t) is a unit tangent vector, what is || T⃗(t) ||?

2. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?

3. The acceleraƟon vector a⃗(t) lies in the plane defined by
what two vectors?

4. aT measures how much the acceleraƟon is affecƟng the
of an object.

Problems
In Exercises 5 – 8 , given r⃗(t), find T⃗(t) and evaluate it at the
indicated value of t.

5. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

6. r⃗(t) = ⟨t, cos t⟩, t = π/4

7. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

8. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 9 – 12 , find the equaƟon of the line tangent to
the curve at the indicated t-value using the unit tangent vec-
tor. Note: these are the same problems as in Exercises 5 –
8.

9. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

10. r⃗(t) = ⟨t, cos t⟩, t = π/4

11. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

12. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 13 – 16 , find N⃗(t) using DefiniƟon 11.4.2. Con-
firm the result using Theorem 11.4.1.

13. r⃗(t) = ⟨3 cos t, 3 sin t⟩

14. r⃗(t) =
⟨
t, t2
⟩

15. r⃗(t) = ⟨cos t, 2 sin t⟩

16. r⃗(t) =
⟨
et, e−t⟩

In Exercises 17 – 20 , a posiƟon funcƟon r⃗(t) is given along
with its unit tangent vector T⃗(t) evaluated at t = a, for some
value of a.

(a) Confirm that T⃗(a) is as stated.
(b) Using a graph of r⃗(t) and Theorem 11.4.1, find N⃗(a).

17. r⃗(t) = ⟨3 cos t, 5 sin t⟩; T⃗(π/4) =
⟨
− 3√

34
,

5√
34

⟩
.

18. r⃗(t) =
⟨
t, 1
t2 + 1

⟩
; T⃗(1) =

⟨
2√
5
,− 1√

5

⟩
.

19. r⃗(t) = (1+ 2 sin t) ⟨cos t, sin t⟩; T⃗(0) =
⟨

2√
5
,

1√
5

⟩
.

20. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
; T⃗(π/4) =

⟨
− 1√

2
,

1√
2

⟩
.

In Exercises 21 – 24 , find N⃗(t).

21. r⃗(t) = ⟨4t, 2 sin t, 2 cos t⟩

22. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩

23. r⃗(t) = ⟨a cos t, a sin t, bt⟩; a > 0

24. r⃗(t) = ⟨cos(at), sin(at), t⟩

In Exercises 25 – 30 , find aT and aN given r⃗(t). Sketch r⃗(t) on
the indicated interval, and comment on the relaƟve sizes of
aT and aN at the indicated t values.

25. r⃗(t) =
⟨
t, t2
⟩
on [−1, 1]; consider t = 0 and t = 1.

26. r⃗(t) = ⟨t, 1/t⟩ on (0, 4]; consider t = 1 and t = 2.

27. r⃗(t) = ⟨2 cos t, 2 sin t⟩ on [0, 2π]; consider t = 0 and
t = π/2.

28. r⃗(t) =
⟨
cos(t2), sin(t2)

⟩
on (0, 2π]; consider t =

√
π/2

and t =
√
π.

29. r⃗(t) = ⟨a cos t, a sin t, bt⟩ on [0, 2π], where a, b > 0; con-
sider t = 0 and t = π/2.

30. r⃗(t) = ⟨5 cos t, 4 sin t, 3 sin t⟩ on [0, 2π]; consider t = 0
and t = π/2.
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Figure 11.5.1: Introducing the arc length
parameter.

11.5 The Arc Length Parameter and Curvature

11.5 The Arc Length Parameter and Curvature
In normal conversaƟon we describe posiƟon in terms of both Ɵme and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you
are, you might answer “I am 20 minutes from your house,” or you might say “I
am 10 miles from your house.” Both answers provide your friend with a general
idea of where you are.

Currently, our vector–valued funcƟons have defined pointswith a parameter
t, whichweoŌen take to represent Ɵme. Consider Figure 11.5.1(a), where r⃗(t) =⟨
t2 − t, t2 + t

⟩
is graphed and the points corresponding to t = 0, 1 and 2 are

shown. Note how the arc length between t = 0 and t = 1 is smaller than the
arc length between t = 1 and t = 2; if the parameter t is Ɵme and r⃗ is posiƟon,
we can say that the parƟcle traveled faster on [1, 2] than on [0, 1].

Now consider Figure 11.5.1(b), where the same graph is parametrized by a
different variable s. Points corresponding to s = 0 through s = 6 are ploƩed.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph from s = 0
to s = 3 is 3, the arc length from s = 2 to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an iniƟal locaƟon (i.e., s = 0), one would compute r⃗(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametrizaƟon of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [0, t] with

arc length =

∫ t

0
|| r⃗ ′(u) || du.

We can turn this into a funcƟon: as t varies, we find the arc length s from 0 to t.
This funcƟon is

s(t) =
∫ t

0
|| r⃗ ′(u) || du. (11.1)

This establishes a relaƟonship between s and t. Knowing this relaƟonship
explicitly, we can rewrite r⃗(t) as a funcƟon of s: r⃗(s). We demonstrate this in an
example.

Example 11.5.1 Finding the arc length parameter
Let r⃗(t) = ⟨3t− 1, 4t+ 2⟩. Parametrize r⃗ with the arc length parameter s.

SÊ½çã®ÊÄ Using EquaƟon (11.1), we write

s(t) =
∫ t

0
|| r⃗ ′(u) || du.

Notes:
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Figure 11.5.2: Graphing r⃗ in Example
11.5.1 with parameters t and s.
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We can integrate this, explicitly finding a relaƟonship between s and t:

s(t) =
∫ t

0
|| r⃗ ′(u) || du

=

∫ t

0

√
32 + 42 du

=

∫ t

0
5 du

= 5t.

Since s = 5t, we can write t = s/5 and replace t in r⃗(t) with s/5:

r⃗(s) = ⟨3(s/5)− 1, 4(s/5) + 2⟩ =
⟨
3
5
s− 1,

4
5
s+ 2

⟩
.

Clearly, as shown in Figure 11.5.2, the graph of r⃗ is a line, where t = 0 corre-
sponds to the point (−1, 2). What point on the line is 2 units away from this
iniƟal point? We find it with r⃗(2) = ⟨1/5, 18/5⟩.

Is the point (1/5, 18/5) really 2 units away from (−1, 2)? We use the Dis-
tance Formula to check:

d =

√(
1
5
− (−1)

)2

+

(
18
5

− 2
)2

=

√
36
25

+
64
25

=
√
4 = 2.

Yes, r⃗(2) is indeed 2 units away, in the direcƟon of travel, from the iniƟal point.

Things worked out very nicely in Example 11.5.1; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integraƟng a square–root. There are a number
of things that we can learn about the arc length parameter from EquaƟon (11.1),
though, that are incredibly useful.

First, take the derivaƟve of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 5.4.1) states that

ds
dt

= s ′(t) = || r⃗ ′(t) ||. (11.2)

Leƫng t represent Ɵme and r⃗(t) represent posiƟon, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuiƟon.

The Chain Rule states that
d⃗r
dt

=
d⃗r
ds

· ds
dt

r⃗ ′(t) = r⃗ ′(s) · || r⃗ ′(t) ||.

Notes:
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Figure 11.5.3: Establishing the concept of
curvature.

11.5 The Arc Length Parameter and Curvature

Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)

|| r⃗ ′(t) ||
= T⃗(t), (11.3)

where T⃗(t) is the unit tangent vector. EquaƟon 11.3 is oŌen misinterpreted, as
one is tempted to think it states r⃗ ′(t) = T⃗(t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem 11.5.1 Arc Length Parameter

Let r⃗(s) be a vector–valued funcƟon. The parameter s is the arc length
parameter if, and only if, || r⃗ ′(s) || = 1.

Curvature

Consider points A and B on the curve graphed in Figure 11.5.3(a). One can
readily argue that the curve curvesmore sharply at A than at B. It is useful to use
a number to describe how sharply the curve bends; that number is the curvature
of the curve.

Wederive this number in the followingway. Consider Figure 11.5.3(b), where
unit tangent vectors are graphed around points A and B. NoƟce how the direc-
Ɵon of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

DefiniƟon 11.5.1 Curvature

Let r⃗(s) be a vector–valued funcƟon where s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∣∣∣∣∣
∣∣∣∣∣ d⃗Tds

∣∣∣∣∣
∣∣∣∣∣ = ∣∣∣∣ T⃗ ′(s)

∣∣∣∣ .

If r⃗(s) is parametrized by the arc length parameter, then

T⃗(s) =
r⃗ ′(s)

|| r⃗ ′(s) ||
and N⃗(s) =

T⃗ ′(s)
|| T⃗ ′(s) ||

.

Notes:
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Having defined || T⃗ ′(s) || = κ, we can rewrite the second equaƟon as

T⃗ ′(s) = κN⃗(s). (11.4)

We already knew that T⃗ ′(s) is in the same direcƟon as N⃗(s); that is, we can think
of T⃗(s) as being “pulled” in the direcƟon of N⃗(s). How “hard” is it being pulled?
By a factor of κ. When the curvature is large, T⃗(s) is being “pulled hard” and the
direcƟon of T⃗(s) changes rapidly. When κ is small, T(s) is not being pulled hard
and hence its direcƟon is not changing rapidly.

We use DefiniƟon 11.5.1 to find the curvature of the line in Example 11.5.1.

Example 11.5.2 Finding the curvature of a line
Use DefiniƟon 11.5.1 to find the curvature of r⃗(t) = ⟨3t− 1, 4t+ 2⟩.

SÊ½çã®ÊÄ In Example 11.5.1, we found that the arc length parameter
was defined by s = 5t, so r⃗(s) = ⟨3s/5− 1, 4s/5+ 2⟩ parametrized r⃗ with the
arc length parameter. To find κ, we need to find T⃗ ′(s).

T⃗(s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨3/5, 4/5⟩ .

Therefore

T⃗ ′(s) = ⟨0, 0⟩

and

κ =
∣∣∣∣ T⃗ ′(s)

∣∣∣∣ = 0.

It probably comes as no surprise that the curvature of a line is 0. (How “curvy”
is a line? It is not curvy at all.)

While the definiƟon of curvature is a beauƟful mathemaƟcal concept, it is
nearly impossible to use most of the Ɵme; wriƟng r⃗ in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of cal-
culaƟng this value that are much easier. There is a tradeoff: the definiƟon is
“easy” to understand though hard to compute, whereas these other formulas
are easy to compute though it may be hard to understand why they work.

Notes:
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11.5 The Arc Length Parameter and Curvature

Theorem 11.5.2 Formulas for Curvature

Let C be a smooth curve in the plane or in space.

1. If C is defined by y = f(x), then

κ =
|f ′′(x)|(

1+
(
f ′(x)

)2)3/2 .
2. If C is defined as a vector–valued funcƟon in the plane, r⃗(t) =

⟨x(t), y(t)⟩, then

κ =
|x ′y ′′ − x ′′y ′|(
(x ′)2 + (y ′)2

)3/2 .
3. If C is defined in space by a vector–valued funcƟon r⃗(t), then

κ =
|| T⃗ ′(t) ||
|| r⃗ ′(t) ||

=
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||3
=

a⃗(t) · N⃗(t)
|| v⃗(t) ||2

.

We pracƟce using these formulas.

Example 11.5.3 Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by c⃗(t) = ⟨r cos t, r sin t⟩.

SÊ½çã®ÊÄ Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)

We compute κ using the second part of Theorem 11.5.2.

κ =
|(−r sin t)(−r sin t)− (−r cos t)(r cos t)|(

(−r sin t)2 + (r cos t)2
)3/2

=
r2(sin2 t+ cos2 t)(

r2(sin2 t+ cos2 t)
)3/2

=
r2

r3
=

1
r
.

We have found that a circle with radius r has curvature κ = 1/r.

Example 11.5.3 gives a great result. Before this example, if we were told

Notes:
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Chapter 11 Vector Valued FuncƟons

“The curve has a curvature of 5 at point A,” we would have no idea what this
really meant. Is 5 “big” – does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of the
curve at P. A circle that:

• passes through P,

• lies on the concave side of C,

• has a common tangent line as C at P and

• has radius r = 1/κ (hence has curvature κ)

is the osculaƟng circle, or circle of curvature, to C at P, and r is the radius of cur-
vature. Figure 11.5.4 shows the graph of the curve seen earlier in Figure 11.5.3
and its osculaƟng circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “osculaƟng” comes from a LaƟn word related to kissing; an osculaƟng cir-
cle “kisses” the graph at a parƟcular point. Many beauƟful ideas inmathemaƟcs
have come from studying the osculaƟng circles to a curve.)

Example 11.5.4 Finding curvature
Find the curvature of the parabola defined by y = x2 at the vertex and at x = 1.

SÊ½çã®ÊÄ We use the first formula found in Theorem 11.5.2.

κ(x) =
|2|(

1+ (2x)2
)3/2

=
2(

1+ 4x2
)3/2 .

At the vertex (x = 0), the curvature is κ = 2. At x = 1, the curvature
is κ = 2/(5)3/2 ≈ 0.179. So at x = 0, the curvature of y = x2 is that of
a circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
≈ 1/0.179 ≈ 5.59. This is illustrated in Figure 11.5.5. At x = 3, the curvature is
0.009; the graph is nearly straight as the curvature is very close to 0.

Example 11.5.5 Finding curvature
Find where the curvature of r⃗(t) =

⟨
t, t2, 2t3

⟩
is maximized.

Notes:
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Figure 11.5.6: Understanding the curva-
ture of a curve in space.

11.5 The Arc Length Parameter and Curvature

SÊ½çã®ÊÄ Weuse the third formula in Theorem11.5.2 as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
⟨
1, 2t, 6t2

⟩
, r⃗ ′′(t) = ⟨0, 2, 12t⟩ , and r⃗ ′(t)×⃗r ′′(t) =

⟨
12t2,−12t, 2

⟩
.

Thus

κ(t) =
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||3

=
||
⟨
12t2,−12t, 2

⟩
||

|| ⟨1, 2t, 6t2⟩ ||3

=

√
144t4 + 144t2 + 4(√
1+ 4t2 + 36t4

)3
While this is not a parƟcularly “nice” formula, it does explicitly tell us what the
curvature is at a given t value. To maximize κ(t), we should solve κ′(t) = 0 for
t. This is doable, but very Ɵme consuming. Instead, consider the graph of κ(t)
as given in Figure 11.5.6(a). We see that κ is maximized at two t values; using a
numerical solver, we find these values are t ≈ ±0.189. In part (b) of the figure
we graph r⃗(t) and indicate the points where curvature is maximized.

Curvature and MoƟon

Let r⃗(t) be a posiƟon funcƟon of an object, with velocity v⃗(t) = r⃗ ′(t) and
acceleraƟon a⃗(t) = r⃗ ′′(t). In SecƟon 11.4 we established that acceleraƟon is in
the plane formed by T⃗(t) and N⃗(t), and that we can find scalars aT and aN such
that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Theorem 11.4.2 gives formulas for aT and aN:

aT =
d
dt

(
|| v⃗(t) ||

)
and aN =

|| v⃗(t)× a⃗(t) ||
|| v⃗(t) ||

.

We understood that the amount of acceleraƟon in the direcƟon of T⃗ relates only
to how the speed of the object is changing, and that the amount of acceleraƟon
in the direcƟon of N⃗ relates to how the direcƟon of travel of the object is chang-
ing. (That is, if the object travels at constant speed, aT = 0; if the object travels
in a constant direcƟon, aN = 0.)

In EquaƟon (11.2) at the beginning of this secƟon, we found s ′(t) = || v⃗(t) ||.
We can combine this fact with the above formula for aT to write

aT =
d
dt

(
|| v⃗(t) ||

)
=

d
dt
(
s ′(t)

)
= s ′′(t).

Notes:
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OperaƟng
Speed (mph)

Minimum
Radius (Ō)

35 310
40 430
45 540

Figure 11.5.7: OperaƟng speed and mini-
mum radius in highway cloverleaf design.

Chapter 11 Vector Valued FuncƟons

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect to
Ɵme. We see once more that the component of acceleraƟon in the direcƟon of
travel relates only to speed, not to a change in direcƟon.

Now compare the formula for aN above to the formula for curvature in The-
orem 11.5.2:

aN =
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||
and κ =

|| r⃗ ′(t)× r⃗ ′′(t) ||
|| r⃗ ′(t) ||3

=
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||3
.

Thus

aN = κ|| v⃗(t) ||2 (11.5)

= κ
(
s ′(t)

)2
This last equaƟon shows that the component of acceleraƟon that changes

the object’s direcƟon is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up (i.e., increasing s ′(t)), the door pushes harder
against you (aN has increased). If you keep your speed constant but Ɵghten the
turn (i.e., increase κ), once again the door will push harder against you.

Puƫng our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)⃗T(t) + κ|| v⃗(t) ||2N⃗(t).

This is not a parƟcularly pracƟcal way of finding aT and aN, but it reveals some
great concepts about how acceleraƟon interacts with speed and the shape of a
curve.

Example 11.5.6 Curvature and road design
The minimum radius of the curve in a highway cloverleaf is determined by the
operaƟng speed, as given in the table in Figure 11.5.7. For each curve and speed,
compute aN.

SÊ½çã®ÊÄ Using EquaƟon (11.5), we can compute the acceleraƟon
normal to the curve in each case. We start by converƟng each speed from “miles
per hour” to “feet per second” by mulƟplying by 5280/3600.

Notes:
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35mph, 310Ō ⇒ 51.33Ō/s, κ = 1/310
aN = κ || v⃗(t) ||2

=
1

310
(
51.33

)2
= 8.50Ō/s2.

40mph, 430Ō ⇒ 58.67Ō/s, κ = 1/430

aN =
1

430
(
58.67

)2
= 8.00Ō/s2.

45mph,540Ō ⇒ 66Ō/s, κ = 1/540

aN =
1

540
(
66
)2

= 8.07Ō/s2.

Note that each acceleraƟon is similar; this is by design. Considering the classic
“Force=mass× acceleraƟon” formula, this acceleraƟon must be kept small in
order for the Ɵres of a vehicle to keep a “grip” on the road. If one travels on a
turn of radius 310Ō at a rate of 50mph, the acceleraƟon is double, at 17.35Ō/s2.
If the acceleraƟon is too high, the fricƟonal force created by the Ɵresmay not be
enough to keep the car from sliding. Civil engineers rouƟnely compute a “safe”
design speed, then subtract 5-10mph to create the posted speed limit for addi-
Ɵonal safety.

We end this chapter with a reflecƟon on what we’ve covered. We started
with vector–valued funcƟons, which may have seemed at the Ɵme to be just
another way of wriƟng parametric equaƟons. However, we have seen that the
vector perspecƟve has given us great insight into the behavior of funcƟons and
the study of moƟon. Vector–valued posiƟon funcƟons convey displacement,
distance traveled, speed, velocity, acceleraƟon and curvature informaƟon, each
of which has great importance in science and engineering.

Notes:
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Exercises 11.5
Terms and Concepts
1. It is common to describe posiƟon in terms of both

and/or .

2. A measure of the “curviness” of a curve is .

3. Give two shapes with constant curvature.

4. Describe in your own words what an “osculaƟng circle” is.

5. Complete the idenƟty: T⃗ ′(s) = N⃗(s).

6. Given a posiƟon funcƟon r⃗(t), how are aT and aN affected
by the curvature?

Problems
In Exercises 7 – 10 , a posiƟon funcƟon r⃗(t) is given, where
t = 0 corresponds to the iniƟal posiƟon. Find the arc length
parameter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

7. r⃗(t) = ⟨2t, t,−2t⟩

8. r⃗(t) = ⟨7 cos t, 7 sin t⟩

9. r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩

10. r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩

In Exercises 11 – 22 , a curve C is described alongwith 2 points
on C.

(a) Using a sketch, determine at which of these points the
curvature is greater.

(b) Find the curvature κ of C, and evaluate κ at each of the
2 given points.

11. C is defined by y = x3 − x; points given at x = 0 and
x = 1/2.

12. C is defined by y =
1

x2 + 1
; points given at x = 0 and

x = 2.

13. C is defined by y = cos x; points given at x = 0 and
x = π/2.

14. C is defined by y =
√
1− x2 on (−1, 1); points given at

x = 0 and x = 1/2.

15. C is defined by r⃗(t) = ⟨cos t, sin(2t)⟩; points given at t = 0
and t = π/4.

16. C is defined by r⃗(t) =
⟨
cos2 t, sin t cos t

⟩
; points given at

t = 0 and t = π/3.

17. C is defined by r⃗(t) =
⟨
t2 − 1, t3 − t

⟩
; points given at t = 0

and t = 5.

18. C is defined by r⃗(t) = ⟨tan t, sec t⟩; points given at t = 0
and t = π/6.

19. C is defined by r⃗(t) = ⟨4t+ 2, 3t− 1, 2t+ 5⟩; points given
at t = 0 and t = 1.

20. C is defined by r⃗(t) =
⟨
t3 − t, t3 − 4, t2 − 1

⟩
; points given

at t = 0 and t = 1.

21. C is defined by r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩; points given at
t = 0 and t = π/2.

22. C is defined by r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩; points
given at t = 0 and t = π/2.

In Exercises 23 – 26 , find the value of x or t where curvature
is maximized.

23. y = 1
6
x3

24. y = sin x

25. r⃗(t) =
⟨
t2 + 2t, 3t− t2

⟩
26. r⃗(t) = ⟨t, 4/t, 3/t⟩

In Exercises 27 – 30 , find the radius of curvature at the indi-
cated value.

27. y = tan x, at x = π/4

28. y = x2 + x− 3, at x = π/4

29. r⃗(t) = ⟨cos t, sin(3t)⟩, at t = 0

30. r⃗(t) = ⟨5 cos(3t), t⟩, at t = 0

In Exercises 31 – 34 , find the equaƟon of the osculaƟng circle
to the curve at the indicated t-value.

31. r⃗(t) =
⟨
t, t2
⟩
, at t = 0

32. r⃗(t) = ⟨3 cos t, sin t⟩, at t = 0

33. r⃗(t) = ⟨3 cos t, sin t⟩, at t = π/2

34. r⃗(t) =
⟨
t2 − t, t2 + t

⟩
, at t = 0

682


