11: VECTOR VALUED FUNCTIONS

In the previous chapter, we learned about vectors and were introduced to the
power of vectors within mathematics. In this chapter, we’ll build on this foun-
dation to define functions whose input is a real number and whose output is a
vector. We'll see how to graph these functions and apply calculus techniques
to analyze their behavior. Most importantly, we’ll see why we are interested in
doing this: we’ll see beautiful applications to the study of moving objects.

11.1 Vector-Valued Functions

We are very familiar with real valued functions, that is, functions whose output
is a real number. This section introduces vector—valued functions — functions
whose output is a vector.

Definition 11.1.1 Vector-Valued Functions

A vector—valued function is a function of the form

r(t) = (f(t),g(t)) or F(t) = (f(t),g(t),h(t)),

where f, g and h are real valued functions.

=

The domain of 7is the set of all values of t for which r{t) is defined. The
range of r'is the set of all possible output vectors {(t).

Evaluating and Graphing Vector—Valued Functions

Evaluating a vector—valued function at a specific value of t is straightforward;
simply evaluate each component function at that value of t. For instance, if
At) = (£, +t—1), then 7(—2) = (4,1). We can sketch this vector, as is
donein Figure 11.1.1(a). Plotting lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector-valued function is the set of all terminal points of (t), where the
initial point of each vector is always the origin. In Figure 11.1.1(b) we sketch the
graph of ; we can indicate individual points on the graph with their respective
vector, as shown.

Vector—valued functions are closely related to parametric equations of graphs.
While in both methods we plot points (x(t), y(t)) or (x(t), y(t), z(t)) to produce
a graph, in the context of vector-valued functions each such point represents a
vector. The implications of this will be more fully realized in the next section as
we apply calculus ideas to these functions.

(a)

(b)

Figure 11.1.1: Sketching the graph of a
vector—valued function.
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(b)

Figure 11.1.2: Sketching the vector—
valued function of Example 11.1.1.

X

Figure 11.1.3: The graph of r{t) in Exam-
ple 11.1.2.
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Example 11.1.1
Graph F(t) = <t3 —t,

Graphing vector-valued functions

1 5 .
———— ), for —2 <t < 2. Sketch r{—1) and 7(2).
t2+1

SOLUTION We start by making a table of t, x and y values as shown
in Figure 11.1.2(a). Plotting these points gives an indication of what the graph

looks like. In Figure 11.1.2(b), we indicate these points and sketch the full graph.
We also highlight r(—1) and r(2) on the graph.

Example 11.1.2 Graphing vector—valued functions.
Graph 7(t) = (cost,sint,t) for0 < t < 4.

SOLUTION We can again plot points, but careful consideration of this
function is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius 1 centered at the origin.
Noticing that the z component is t, we see that as the graph winds around the
z-axis, it is also increasing at a constant rate in the positive z direction, forming a

spiral. Thisis graphed in Figure 11.1.3. Inthe graph r(77/4) ~ (0.707, —0.707, 5.498)

is highlighted to help us understand the graph.

Algebra of Vector-Valued Functions

Definition 11.1.2 Operations on Vector-Valued Functions

Let r1(t) = (f1(t),g1(t)) and i (t) = (f>(t),g2(t)) be vector-valued
functions in R? and let ¢ be a scalar. Then:

1. Fi(t) £ 5(t) = (f(t) £ (1), 01(t) £ g2(t) ).
2. cri(t) = (cfi(t), cgi(t) ).

A similar definition holds for vector—valued functions in R3.

This definition states that we add, subtract and scale vector-valued functions
component-wise. Combining vector-valued functions in this way can be very
useful (as well as create interesting graphs).

Example 11.1.3  Adding and scaling vector-valued functions.
Let 71 (t) = (0.2t,0.3t), i>(t) = (cost,sint) and 7(t) = r1(t) + r>(t). Graph
ri(t), r2(t), r(t) and 57(t) on —10 < t < 10.

Notes:



SOLUTION We can graph r; and 1 easily by plotting points (or just using
technology). Let’s think about each for a moment to better understand how
vector—valued functions work.

We can rewrite 71(t) = (0.2t,0.3t) as r;(t) = t(0.2,0.3). That is, the
function r; scales the vector (0.2,0.3) by t. This scaling of a vector produces a
line in the direction of (0.2,0.3).

We are familiar with 75 (t) = (cos t,sint); it traces out a circle, centered at
the origin, of radius 1. Figure 11.1.4(a) graphs 71 (t) and 75 (t).

Adding 1 (t) to ra(t) produces r(t) = (cost + 0.2t,sint + 0.3t ), graphed in
Figure 11.1.4(b). The linear movement of the line combines with the circle to
create loops that move in the direction of (0.2, 0.3). (We encourage the reader
to experiment by changing 7 (t) to (2t, 3t), etc., and observe the effects on the
loops.)

Multiplying F(t) by 5 scales the function by 5, producing 5r(t) = (Scost +
1,5sint + 1.5), which is graphed in Figure 11.1.4(c) along with r{(t). The new
function is “5 times bigger” than r(t). Note how the graph of 5r(t) in (c) looks
identical to the graph of 7(t) in (b). This is due to the fact that the xand y bounds
of the plot in (c¢) are exactly 5 times larger than the bounds in (b).

Example 11.1.4  Adding and scaling vector-valued functions.

A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure
11.1.5. Find an equation describing the cycloid, where the circle has radius 1.

v~ N

Figure 11.1.5: Tracing a cycloid.

SOLUTION This problem is not very difficult if we approach it in a clever
way. We start by letting g(t) describe the position of the point p on the circle,
where the circle is centered at the origin and only rotates clockwise (i.e., it does
notroll). This is relatively simple given our previous experiences with parametric
equations; g(t) = (cost, —sint).

We now want the circle to roll. We represent this by letting ¢(t) represent
the location of the center of the circle. It should be clear that the y component
of ¢(t) should be 1; the center of the circle is always going to be 1 if it rolls on a
horizontal surface.

The x component of ¢(t) is a linear function of t: f(t) = mt for some scalar m.
When t = 0, f(t) = 0 (the circle starts centered on the y-axis). When t = 27,
the circle has made one complete revolution, traveling a distance equal to its

Notes:

11.1 Vector—Valued Functions
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(c)

Figure 11.1.4: Graphing the functions in
Example 11.1.3.
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5 10 15

Figure 11.1.6: The cycloid in Example
11.1.4.

<

Ql

Figure 11.1.7: Graphing the displacement
of a position function in Example 11.1.5.
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circumference, which is also 2. This gives us a point on our line f(t) = mt, the
point (27, 27). It should be clear that m = 1 and f(t) = t. So (t) = (¢, 1).

We now combine p and ctogether to form the equation of the cycloid: r(t) =
p(t) 4+ c(t) = (cost + t, —sint + 1), which is graphed in Figure 11.1.6.

Displacement

A vector—valued function r{t) is often used to describe the position of a mov-
ing object at time t. Att = t, the object is at r{tp); at t = t;, the object is at
7(t1). Knowing the locations 7(tp) and r(t;) give no indication of the path taken
between them, but often we only care about the difference of the locations,
F(t;) — r(to), the displacement.

Definition 11.1.3 Displacement

Let 7(t) be a vector—valued function and let t; < t; be values in the
domain. The displacement d of 7, fromt =ty to t = ty, is

d = F(ty) — F(to).

When the displacement vector is drawn with initial point at r{ty), its terminal
point is r(t; ). We think of it as the vector which points from a starting position
to an ending position.

Example 11.1.5 Finding and graphing displacement vectors
Let 7(t) = (cos(3t),sin(5t)). Graph F(t) on —1 < t < 1, and find the displace-
ment of r(t) on this interval.

SOLUTION The function r{(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” {cost, sin t) parametrization. At t, = —1, we have
f(to) = (0,—1); at t; = 1, we have r(t;) = (0, 1). The displacement of r{t) on
[—1,1]isthusd = (0,1) — (0, —1) = (0,2).

A graph of 7(t) on [—1, 1] is given in Figure 11.1.7, along with the displace-
ment vector d on this interval.

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi—circular path the object in Example 11.1.5 took,
we can quickly verify that the object ended up a distance of 2 units from its initial
location. That is, we can compute || d || = 2. However, measuring distance from
the starting point is different from measuring distance traveled. Being a semi—

Notes:



circle, we can measure the distance traveled by this object as 7 ~ 3.14 units.
Knowing distance from the starting point allows us to compute average rate of
change.

Definition 11.1.4 Average Rate of Change

Let 7(t) be a vector-valued function, where each of its component func-
tions is continuous on its domain, and let t; < t;. The average rate of
change of 7(t) on [to, t1] is

r(t1) — r(to)

average rate of change =
t; — to

Example 11.1.6  Average rate of change
Let /(t) = (cos(3t),sin(3t)) as in Example 11.1.5. Find the average rate of
change of r(t) on [—1,1] and on [—1, 5].

SOLUTION We computed in Example 11.1.5 that the displacement of
7(t) on [—1,1] was d = (0, 2). Thus the average rate of change of 7(t) on [—1, 1]
is:

F(1) —r(-1) _ (0,2) — (0,1).
1—(-1) 2
We interpret this as follows: the object followed a semi—circular path, meaning
it moved towards the right then moved back to the left, while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of (0, 1) per unit of time.

We can quickly see that the displacement on [—1, 5] isthe same ason [—1, 1],

sod = (0, 2). The average rate of change is different, though:

r(5) —rf(=1) _ (0,2

5—(-1) Za

= (0,1/3).

As it took “3 times as long” to arrive at the same place, this average rate of
change on [—1, 5] is 1/3 the average rate of change on [—1, 1].

We considered average rates of change in Sections 1.1 and 2.1 as we studied
limits and derivatives. The same is true here; in the following section we apply
calculus concepts to vector—valued functions as we find limits, derivatives, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivative; displacement gives us one application of integration.

Notes:

11.1 Vector—Valued Functions
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Exercises 11.1

Terms and Concepts

1. Vector—valued functions are closely related to
of graphs.

2. When sketching vector—valued functions, technically one
isn’t graphing points, but rather

3. It can be useful to think of as a vector that points
from a starting position to an ending position.

4. In the context of vector-valued functions, average rate of

change is divided by time.

Problems

In Exercises 5 — 12, sketch the vector-valued function on the
given interval.

5. Ft) = (£, —1),for—2<t <2

6. 7(t) = (£, ), for—2 < t < 2.

7. A(t) = (1/t,1/),for =2 < t < 2.

8. 7(t) = (£t’,sint), for =27 <t < 2.

9. At) = (&t sint), for =27 <t < 2.
10. r(t) = (3sin(nt), 2 cos(nt)), on [0, 2].
11. r(t) = (3 cost, 2sin(2t)), on [0, 27].
12. r(t) = (2sect,tant), on [—m, 7.

In Exercises 13 — 16, sketch the vector—valued function on the
given interval in R3. Technology may be useful in creating the
sketch.

13. r(t) = (2cost,t,2sint), on [0, 27].
14. r(t) = (3cost,sint, t/m) on [0, 27].
15. r(t) = (cost,sint,sint) on [0, 27].

16. r(t) = {(cost,sint,sin(2t)) on [0, 27].

In Exercises 17 — 20, find || (¢t) ||.
17. 7(t) = (t,t*).
18. r(t) = (5cost,3sint).
19. r(t) = (2cost,2sint,t).
20. 7(t) = (cost,t,t*).

In Exercises 21 — 30, create a vector-valued function whose
graph matches the given description.

21. A circle of radius 2, centered at (1,2), traced counter—
clockwise once on [0, 27].

22. A circle of radius 3, centered at (5,5), traced clockwise
once on [0, 27].

23. An ellipse, centered at (0,0) with vertical major axis of
length 10 and minor axis of length 3, traced once counter—
clockwise on [0, 27].

24. Anellipse, centered at (3, —2) with horizontal major axis of
length 6 and minor axis of length 4, traced once clockwise
on [0, 2m].

25. Aline through (2, 3) with a slope of 5.

26. Aline through (1,5) with a slope of —1/2.

27. The line through points (1,2, 3) and (4, 5, 6), where
r(0) = (1,2,3) and F(1) = (4,5,6).

28. The line through points (1, 2) and (4,4), where
7(0) = (1,2) and (1) = (4,4).

29. A vertically oriented helix with radius of 2 that starts at
(2,0,0) and ends at (2, 0, 4) after 1 revolution on [0, 27].

30. A vertically oriented helix with radius of 3 that starts at
(3,0,0) and ends at (3,0, 3) after 2 revolutions on [0, 1].

In Exercises 31 — 34, find the average rate of change of r(t) on
the given interval.

31 7(t) = (t,) on [-2,2].
32. r(t) = (t,t +sint) on [0, 27].
33. r(t) = (3cost, 2sint,t) on [0, 27].

34. 7(t) = (t,£, ) on [-1,3].



11.2 Calculus and Vector—Valued Functions

The previous section introduced us to a new mathematical object, the vector—
valued function. We now apply calculus concepts to these functions. We start
with the limit, then work our way through derivatives to integrals.

Limits of Vector—Valued Functions

The initial definition of the limit of a vector—valued function is a bit intimidat-
ing, as was the definition of the limit in Definition 1.2.1. The theorem following
the definition shows that in practice, taking limits of vector—valued functions is
no more difficult than taking limits of real-valued functions.

Definition 11.2.1 Limits of Vector-Valued Functions

Let / be an open interval containing ¢, and let 7(t) be a vector—valued
function defined on I, except possibly at c. The limit of r(t), as t ap-
proaches ¢, is L, expressed as

lim 7(t) = L.

limr(t) = L,

means that given any € > 0, there exists a § > 0 such that for all t # ¢,
if |t —c| < 0, we have || F(t) — L|| <e.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Theorem 11.2.1 states that we can compute limits of vector—valued func-
tions component—wise.

Theorem 11.2.1 Limits of Vector-Valued Functions

1. Let 7(t) = (f(t),g(t)) be a vector-valued function in R? defined
on an open interval | containing c, except possibly at c. Then

fm ) = (Ime). Im(o))

2. Let7(t) = (f(t),g(t), h(t) ) be a vector—valued function in R® de-
fined on an open interval / containing c, except possibly at c. Then

lim 7(t) = <Iimf(t) L limg(t), lim h(t)>

t—c t—c t—c t—c

Notes:

11.2 Calculus and Vector—Valued Functions

Note: we can define one-sided limits in a
manner very similar to Definition 11.2.1.
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Note: Using one-sided limits, we can also
define continuity on closed intervals as
done before.
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Example 11.2.1 Finding limits of vector-valued functions

" sint .
LetF(t) = ( 2, 2 — 3t + 3, cost ). Find lim F(t).
t t—0

SOLUTION We apply the theorem and compute limits component—wise.
~ . sint .
lim F(t) = <I|m — , limt* —3t+ 3, lim cos t>
t—0 t—0 t t—0 t—0

=(1,3,1).

Continuity

Definition 11.2.2 Continuity of Vector—Valued Functions

Let 7(t) be a vector—valued function defined on an open interval / con-
taining c.

1. 7(t) is continuous at c if !im r(t) = r(c).
—c

2. If 7(t) is continuous at all ¢ in /, then 7(t) is continuous on /.

We again have a theorem that lets us evaluate continuity component—wise.

Theorem 11.2.2 Continuity of Vector-Valued Functions

Let 7(t) be a vector-valued function defined on an open interval / con-
taining c. Then 7(t) is continuous at c if, and only if, each of its component
functions is continuous at c.

Example 11.2.2 Evaluating continuity of vector-valued functions
. sint . . .
Let 7(t) = <t’ £ —3t+3, cos t> . Determine whether r is continuous at

t=0andt=1.

SOLUTION While the second and third components of r{t) are defined
att = 0, the first component, (sint)/t, is not. Since the first component is not
even defined at t = 0, 7(t) is not defined at t = 0, and hence it is not continuous
att=0.

At t = 1 each of the component functions is continuous. Therefore r{t) is
continuous at t = 1.

Notes:



11.2 Calculus and Vector—Valued Functions

Derivatives

Consider a vector—valued function rdefined on an open interval | containing
to and t;. We can compute the displacement of 7 on [to, 1], as shown in Figure
11.2.1(a). Recall that dividing the displacement vector by t; — t; gives the aver-
age rate of change on [ty, t;], as shown in (b).

# (1) F(t1) — F(to)
t —to

(a)

Figure 11.2.1: lllustrating displacement, leading to an understanding of the derivative of vector—valued functions.

The derivative of a vector—valued function is a measure of the instantaneous
rate of change, measured by taking the limit as the length of [to, t;] goes to 0.
Instead of thinking of an interval as [to, t;], we think of it as [c, ¢ + h] for some
value of h (hence the interval has length h). The average rate of change is

F(c+ h) — F(c)
h

for any value of h # 0. We take the limit as h — 0 to measure the instantaneous
rate of change; this is the derivative of .

Definition 11.2.3 Derivative of a Vector—Valued Function

Let r(t) be continuous on an open interval / containing c.

1. The derivative of Fatt = cis
. . rflc+h)—r1c
7'(c) = lim u _ o
h—0 h Alternate notations for the derivative of
include:

2. The derivative of 'is ., d . dF
. . r(t):&(r(t))za
F(t+h) —F(t)

—;/tzl.
ri(t) = lim

Notes:

639



Chapter 11 Vector Valued Functions

Note: again, using one-sided limits, we
can define differentiability on closed in-
tervals. We'll make use of this a few times
in this chapter.

(b)
Figure 11.2.2: Graphing the derivative

of a vector-valued function in Example
11.2.3.
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If a vector—valued function has a derivative for all c in an open interval /, we
say that 7(t) is differentiable on /.

Once again we might view this definition as intimidating, but recall that we
can evaluate limits component—wise. The following theorem verifies that this
means we can compute derivatives component—wise as well, making the task
not too difficult.

Theorem 11.2.3 Derivatives of Vector—Valued Functions

1. Letr(t) = (f(t),g(t)). Then

Example 11.2.3 Derivatives of vector-valued functions
Let 7(t) = (t2,t).

1. Sketch r{(t) and r’(t) on the same axes.

2. Compute r’(1) and sketch this vector with its initial point at the origin and
atr(1).

SOLUTION

1. Theorem 11.2.3 allows us to compute derivatives component—wise, so
F'(t) = (2t,1).

r(t) and r'(t) are graphed together in Figure 11.2.2(a). Note how plot-
ting the two of these together, in this way, is not very illuminating. When
dealing with real-valued functions, plotting f(x) with f’(x) gave us useful
information as we were able to compare f and f’ at the same x-values.
When dealing with vector—valued functions, it is hard to tell which points
on the graph of ¥’ correspond to which points on the graph of 1.

2. We easily compute r’(1) = (2, 1), which is drawn in Figure 11.2.2 with its
initial point at the origin, as well as at r(1) = (1,1). These are sketched
in Figure 11.2.2(b).

Notes:



Example 11.2.4 Derivatives of vector-valued functions
Let 7(t) = (cost,sint,t). Compute r’(t) and 7’'(7/2). Sketch r'(7/2) with its
initial point at the origin and at (7 /2).

SOLUTION We compute 7" as 7’(t) = (—sint,cost,1). Att = 7/2, we
have r’/(7/2) = (—1,0,1). Figure 11.2.3 shows two graphs of r(t), from differ-
ent perspectives, with r’ (7 /2) plotted with its initial point at the origin and at

F(m/2).

In Examples 11.2.3 and 11.2.4, sketching a particular derivative with its initial
point at the origin did not seem to reveal anything significant. However, when
we sketched the vector with its initial point on the corresponding point on the
graph, we did see something significant: the vector appeared to be tangent to
the graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the derivative to define this term.

Definition 11.2.4 Tangent Vector, Tangent Line

Let 7(t) be a differentiable vector—valued function on an open interval /
containing ¢, where r’(c) # 0.

1. Avector VVis tangent to the graph of 7(t) at t = cif Vis parallel to
2!
r'(c).

2. The tangent line to the graph of r(t) at t = c is the line through
7(c) with direction parallel to r’(c). An equation of the tangent
line is

0(t) = F(c) + t7'(c).

11.2

Example 11.2.5 Finding tangent lines to curves in space
Let 7(t) = (t,t2,t*) on [—1.5,1.5]. Find the vector equation of the line tangent
to the graph of Fatt = —1.

SOLUTION To find the equation of a line, we need a point on the line
and the line’s direction. The point is given by r(—1) = (—1,1, —1). (To be clear,
(—1,1,—1) is a vector, not a point, but we use the point “pointed to” by this
vector.)

The direction comes from r/(—1). We compute, component—wise, r’(t)
(1,2t,3t%). Thus F'(—1) = (1,-2,3).

The vector equation of the lineis £(t) = (—1,1,—1) +t(1,—2,3). Thisline
and r{(t) are sketched, from two perspectives, in Figure 11.2.4 (a) and (b).

Notes:

Calculus and Vector—Valued Functions

r'(7/2)

(b)

Figure 11.2.3: Viewing a vector-valued
function, and its derivative at one point,
from two different perspectives.

Figure 11.2.4: Graphing a curve in space
with its tangent line.
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\ 24 7(t)

Figure 11.2.5: Graphing r(t) and its tan-
gent line in Example 11.2.6.
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Example 11.2.6 Finding tangent lines to curves
Find the equations of the lines tangent to 7(t) = (t*,t*) att = —1and t = 0.

SOLUTION We find that 7/(t) = (3t%,2t). Att = —1, we have

f(—-1)=(-1,1) and 7'(-1)=(3,-2),

so the equation of the line tangent to the graph of 7(t) at t = —1/is

) = (—1,1) +(3,-2) .

This line is graphed with 7(t) in Figure 11.2.5.

Att = 0, we have F/(0) = (0,0) = 0! This implies that the tangent line
“has no direction.” We cannot apply Definition 11.2.4, hence cannot find the
equation of the tangent line.

We were unable to compute the equation of the tangent line to r(t) =
(£,£2) att = 0 because 7’(0) = 0. The graph in Figure 11.2.5 shows that there
is a cusp at this point. This leads us to another definition of smooth, previously
defined by Definition 9.2.2 in Section 9.2.

Definition 11.2.5 Smooth Vector-Valued Functions

Let {t) be a differentiable vector-valued function on an open interval /
where 7’(t) is continuous on /. r{(t) is smooth on /if 7’(t) # 0 on /.

Having established derivatives of vector—valued functions, we now explore
the relationships between the derivative and other vector operations. The fol-
lowing theorem states how the derivative interacts with vector addition and the
various vector products.

Notes:



11.2 Calculus and Vector—Valued Functions

Theorem 11.2.4 Properties of Derivatives of Vector-Valued
Functions

Let Fand s be differentiable vector—valued functions, let f be a differen-
tiable real-valued function, and let ¢ be a real number.

= %(F(t) + E(t)) =F/(t) £5'()
2 %(c?(t)) — (1)
> %(f(t)?(ﬂ) = f/()F(t) + (7' (1) Product Rule

) -5(6)) = 7/(e) - $(8) + 7(t) - 571 Product Rule

Sl

w
Sl
—~ T~

r(t) x §(t)) =7'(t) x s(t) + r(t) x 57(¢) Product Rule

d/, . .
6. = r(f(t))) = 7' (f(t) f'(t) Chain Rule
y
3 A
Example 11.2.7 Using derivative properties of vector-valued functions
Let 7(t) = (t,t* — 1) and let t(t) be the unit vector that points in the direction |
of F(t).
(1)
1. Graph 7(t) and d(t) on the same axes, on [—2, 2]. 1 40

2. Find 4’(t) and sketch 4’(—2), G’(—1) and &’(0). Sketch each with initial

5 . : X
point the corresponding point on the graph of u. -2 \\ / 2

— T

SOLUTION Figure 11.2.6: Graphing r{(t) and &(t) in
Example 11.2.7.
1. To form the unit vector that points in the direction of F, we need to divide

F(t) by its magnitude.
17t [ =ve+(#-1)2 = u(t) (t,2 —1).

1

7(t) and u(t) are graphed in Figure 11.2.6. Note how the graph of u(t)
forms part of a circle; this must be the case, as the length of u(t) is 1 for
all t.

Notes:
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2. To compute U’(t), we use Theorem 11.2.4, writing

G(t) = f(OF(t), where f(t):M: (E+(E-1))

—1/2

(We could write

1
u(t)
i(t) = t t?—1
i X VEF(E -1 /2 (- 1)
K’\ and then take the derivative. Itis a matter of preference; this latter method
- requires two applications of the Quotient Rule where our method uses the
Product and Chain Rules.)

-2 We find f'(t) using the Chain Rule:

1

Figure 11.2.7: Graphing some of the f/(t)
2

2 2 4\2\73/2 2
derivatives of 4(t) in Example 11.2.7. (t +(-1) ) (Zt +2(t 1)(2t))

2t(2t2 — 1)
22+ @ —12)

We now find &' (t) using part 3 of Theorem 11.2.4:

a@'(t) = f' (i) + f(0a’ (v)
2t - ) R
T JErEo) (t,22 —1) + o (1,2t).

This is admittedly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute d’(—2), d'(—1)
and 4'(0):

<y

' 2)—< = 19 >~< 0.320,-0.213)
13v/13° 1313 R

i'(-1) =(0,-2)
i@'(0) = (1,0)

Each of these is sketched in Figure 11.2.7. Note how the length of the
vector gives an indication of how quickly the circle is being traced at that
point. When t = —2, the circle is being drawn relatively slow; when t =
—1, the circle is being traced much more quickly.

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is

Notes:
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illustrated in Figure 11.2.7; each tangent vector is perpendicular to the line that
passes through its initial point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: 4’(t) is orthogonal to i(t).
Recall that the dot product serves as a test for orthogonality: if i - V = 0,
then & is orthogonal to V. Thus in the above example, u(t) - 4’ (t) = 0.
This is true of any vector-valued function that has a constant length, that is,
that traces out part of a circle. It has important implications later on, so we state

it as a theorem (and leave its formal proof as an Exercise.)

Theorem 11.2.5 Vector-Valued Functions of Constant Length

Let r{(t) be a vector—valued function of constant length that is differen-
tiable on an open interval I. Thatis, || 7(t) || = cforall tin I (equivalently,
r(t) - F(t) = ¢ forall tin ). Then F(t) - 7/(t) = O forall tin /.

Integration

Before formally defining integrals of vector-valued functions, consider the
following equation that our calculus experience tells us should be true:

That is, the integral of a rate of change function should give total change. In
the context of vector—valued functions, this total change is displacement. The
above equation js true; we now develop the theory to show why.

We can define antiderivatives and the indefinite integral of vector—valued
functions in the same manner we defined indefinite integrals in Definition 5.1.1.
However, we cannot define the definite integral of a vector—valued function as
we did in Definition 5.2.1. That definition was based on the signed area between
a function y = f(x) and the x-axis. An area—based definition will not be useful
in the context of vector—valued functions. Instead, we define the definite inte-
gral of a vector-valued function in a manner similar to that of Theorem 5.3.2,
utilizing Riemann sums.

Notes:

11.2 Calculus and Vector—Valued Functions
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Definition 11.2.6 Antiderivatives, Indefinite and Definite Integrals
of Vector—Valued Functions

Let F(t) be a continuous vector—valued function on [a, b]. An antideriva-
tive of r{t) is a function R(t) such that R'(t) = r(t).

The set of all antiderivatives of r{t) is the indefinite integral of r{t), de-

noted by
/ r(t) dt.

The definite integral of r{t) on [a, b] is

n

b
ft)dt= i rc) At;,
/,, fteyde = m S i)

i=1

where At; is the length of the i*" subinterval of a partition of [a, b], || At||
is the length of the largest subinterval in the partition, and ¢; is any value
in the i™" subinterval of the partition.

It is probably difficult to infer meaning from the definition of the definite
integral. The important thing to realize from the definition is that it is built upon
limits, which we can evaluate component—wise.

The following theorem simplifies the computation of definite integrals; the
rest of this section and the following section will give meaning and application
to these integrals.

Theorem 11.2.6 Indefinite and Definite Integrals of Vector—Valued
Functions

Let 7(t) = (f(t), g(t)) be a vector—valued function in R? that are contin-
uous on [a, b].

1. /F(t) dt = </f(t) dt,/g(t) dt>
2. /abF(t) dt = </abf(t) dt,/abg(t) dt>

A similar statement holds for vector—valued functions in R3.

Notes:



Example 11.2.8 Evaluating a definite integral of a vector—valued function
1

Let F(t) = (e*,sint). Evaluate/ F(t) dt.
0

SOLUTION We follow Theorem 11.2.6.

/0‘1 r(t) dt = /01 (e*,sint) dt
= </letht /1sintdt>
)

e’ —1),—cos(1) + 1>

—cost

e

(e
1
<<3 19,0.460) .

Example 11.2.9 Solving an initial value problem
Let "/ (t) = (2, cost, 12t). Find (t), where r(0) = (—7,—1,2) and
r'(0) = (5,3,0).

SoLUTION Knowing 7" (t) = (2, cost, 12t), we find 7’(t) by evaluating
the indefinite integral.

/F"(t) dt = </2dt,/costdt7/12tdt>

= (2t +Cy,sint+ G, 68> 4 C3)
= (2t,sint,6t%) + (C1, G, G3)
= (2t,sint,6t*) + C.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C. Knowing F’(O) = (5, 3,0) allows us to solve for C:

(2t,sint, 6t%) + C
(0,0,0) +C
C.

(0)
<57 37 O>

So7'(t) = (2t,sint,6t%) + (5,3,0) = (2t + 5,sint + 3,6t%). To find 7(t),
we integrate once more.

/F’(t)dt: </2t+5dt7/sint+3dt,/6t2dt>

= (t 4+ 5t,— cost + 3t,2t>) + C.

Notes:

11.2 Calculus and Vector—Valued Functions
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With 7(0) = (=7, —1,2), we solve for C:

F(t) = (£ +5t, —cost + 3t,28) + C
7(0) = (0,—1,0) 4+ C
(=7,-1,2) = (0,-1,0) + C
(=7,0,2) = C.

Sor(t) = (t* 4 5t,—cost + 3t,2t3)+(—7,0,2) = (t* + 5t — 7, —cos t + 3t,2t> + 2) .

What does the integration of a vector-valued function mean? There are
many applications, but none as direct as “the area under the curve” that we
used in understanding the integral of a real-valued function.

A key understanding for us comes from considering the integral of a deriva-
tive:

b b
/ F'(t)dt =F(t)| =7rb)—Fa).

Integrating a rate of change function gives displacement.

Noting that vector—valued functions are closely related to parametric equa-
tions, we can describe the arc length of the graph of a vector—valued function
as an integral. Given parametric equations x = f(t), y = g(t), the arc length on
[a, b] of the graph is

b
Arc Length = / V()2 + g’ (t)? dt,
a
as stated in Theorem 9.3.1. If r{t) = (f(t), g(t)), note that \/f'(t)> + g’(t)> =

|| ¥/(t) || Therefore we can express the arc length of the graph of a vector—
valued function as an integral of the magnitude of its derivative.

Theorem 11.2.7 Arc Length of a Vector-Valued Function

Let r{t) be a vector—valued function where r”’(t) is continuous on [a, b].
The arc length L of the graph of r{t) is

b
L= [

Note that we are actually integrating a scalar—function here, not a vector—
valued function.

The next section takes what we have established thus far and applies it to
objects in motion. We will let r{t) describe the path of an object in the plane or
in space and will discover the information provided by r’(t) and 7" (t).

Notes:
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Exercises 11.2

Terms and Concepts

1. Limits, derivatives and integrals of vector—valued functions
are all evaluated —wise.

2. The definite integral of a rate of change function gives

3. Why is it generally not useful to graph both 7(t) and 7'(t)
on the same axes?

4. Theorem 11.2.4 contains three product rules. What are the
three different types of products used in these rules?

Problems
In Exercises 5 — 8, evaluate the given limit.

5. lim (2t +1,3t" —

t—5

2 —
6. lim <et, t 9>
t—3 t+ 3

7. I|m<S”: ,(A+1)

1,sint)

=

)

8. lim , where r(t) =

h—0

r(t+ h) —r(t)
h

(#,1,1).

In Exercises 9 — 10, identify the interval(s) on which r{t) is
continuous.

=(£,1/t)
10. 7(t) = (cost,e',Int)

In Exercises 11 - 16, find the derivative of the given function.

11. 7(t) = (cost,e',Int)
. 1 2t—-1
12. f(t)=( -, ,tant
t’3t+1
13. 7(t) = (£) (sint, 2t + 5)

14. r(t) = (£ +1,t — 1) - (sint, 2t + 5)

15. F(t) = (£ +1,t — 1,1) x (sint, 2t +5,1)
16. r(t) = (cosht,sinht)

In Exercises 17 - 20, find 7’/ (t). Sketch 7(t) and ' (1), with the
initial point of 7/ (1) at 7(1).

17. F(t) = (& + 1, — 1)

18. F(t) = (? — 2t 4+ 2, —3¢° + 2t)
19. /(t) = (£ + 1,6 —t)
20. 7(t) = (t* —4t+5,£ — 6t + 11t — 6)

In Exercises 21 — 24, give the equation of the line tangent to
the graph of r(t) at the given t value.

21. A(t) = ( +t,£ —tyatt=1.
22, 7(t) = (3cost,sint) at t = /4.
23. 7(t) = (3cost,3sint, t)att = .
24. F(t) = (¢',tant,t) att = 0.

In Exercises 25 — 28, find the value(s) of t for which r{(t) is not
smooth.

25. 7(t) = {cost,sint — t)

26. A(t) = (? —2t+ 1,6 + £ — 5t +3)

27. 7(t) = (cost — sint,sint — cost, cos(4t))
28. F(t) = (£ — 3t + 2, — cos(t),sin’ (wt))

Exercises 29 — 32 ask you to verify parts of Theorem 11.2.4.
In each let f(t) = (#,t—1,1) and 5(t) =
(sint, €', t). Compute the various derivatives as indicated.

29. Simplify f(t)r(t), then find its derivative; show this is the

same as f'()F(t) + f(t)F' (¢).

-,

30. Simplify r(t) - 5(t), then find its derivative; show this is the
same as 7' (t) - $(t) + F(t) - 57 (¢).

31. Simplify r(t) x 5(t), then find its derivative; show this is the
same as 7' (t) x 3(t) + F(t) x $'(¢t).

32. simplify 7(f(t)), then find its derivative; show this is the
same as 7' (f(t))f'(

In Exercises 33 — 36, evaluate the given definite or indefinite
integral.

33. /<t3,cost, te') dt
1
34. — = sec’t) dt
142

35. / (—sint,cost) dt
0
2

36. / (2t+1,2t—1) dt
—2
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In Exercises 37 — 40, solve the given initial value problems.
37. Find 7(t), given that /(t) = (t,sint) and F(0) = (2,2).

38. Find F(t), given that 7' (t) = (1/(t + 1), tan t) and
(0) = (1,2).

39. Find 7(t), given that 7/ (t) = (£, t,1),
7'(0) = (1,2,3) and F(0) = (4, 5,6).

40. Find 7(t), given that 7”/(t) = (cost,sint, e),
7/(0) = (0,0,0) and 7(0) = (0,0, 0).

In Exercises 41 — 44 , find the arc length of r(t) on the indi-

cated interval.

41.

42.

43.

44.

45.

r(t) = (2cost, 2sint, 3t) on [0, 27].
r(t) = (5cost,3sint,4sint) on [0, 27].
F(t) = (f,¢,£) on[0,1].

7(t) = (e "cost,e "sint) on [0, 1].

—

Prove Theorem 11.2.5; that is, show if 7(t) has constant
length and is differentiable, then F(t) - F'(t) = 0. (Hint:
use the Product Rule to compute 4 (F(t) - 7(t)).)



11.3 The Calculus of Motion

A common use of vector—valued functions is to describe the motion of an object
in the plane or in space. A position function 7(t) gives the position of an object
at time t. This section explores how derivatives and integrals are used to study
the motion described by such a function.

Definition 11.3.1 Velocity, Speed and Acceleration
Let 7(t) be a position function in R? or R3.

1. Velocity, denoted V¥(t), is the instantaneous rate of position
change; that is, v(t) = r'(t).

2. Speed is the magnitude of velocity, || v(t) ||.

3. Acceleration, denoted d(t), is the instantaneous rate of velocity
change; thatis, d(t) = v'(t) = 7" (t).

Example 11.3.1 Finding velocity and acceleration
An object is moving with position function F(t) = (> — t,t? +t), =3 < t < 3,
where distances are measured in feet and time is measured in seconds.

1. Find V(t) and d(t).

2. Sketch r(t); plot v(—1), d(—1), ¥(1) and d(1), each with their initial point
at their corresponding point on the graph of 7(t).

3. When is the object’s speed minimized?

SOLUTION

1. Taking derivatives, we find
V(t)=7r'(t) = (2t — 1,2t +1) and a(t)=r"(t) = (2,2).
Note that acceleration is constant.

2. V(—1) = (-3,-1), d(-1) = (2,2); V(1) = (1,3), d(1) = (2,2).
These are plotted with r{t) in Figure 11.3.1(a).
We can think of acceleration as “pulling” the velocity vector in a certain
direction. Att = —1, the velocity vector points down and to the left; at
t = 1, the velocity vector has been pulled in the (2, 2) direction and is

Notes:

11.3 The Calculus of Motion

10 +

Figure 11.3.1: Graphing the position, ve-
locity and acceleration of an object in Ex-
ample 11.3.1.
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3 4
2 N
% e
— e —
-2 -1 1 2
14

Figure 11.3.2: Plotting velocity and accel-
eration vectors for Object 1 in Example
11.3.2.
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now pointing up and to the right. In Figure 11.3.1(b) we plot more veloc-
ity/acceleration vectors, making more clear the effect acceleration has on
velocity.

Since d(t) is constant in this example, as t grows large V(t) becomes almost
parallel to G(t). For instance, when t = 10, ¥(10) = (19,21), which is
nearly parallel to (2, 2).

3. The object’s speed is given by

|| V(t) || = v/ (2t = 1)2 + (2t + 1)2 = /82 + 2.

To find the minimal speed, we could apply calculus techniques (such as
set the derivative equal to 0 and solve for t, etc.) but we can find it by
inspection. Inside the square root we have a quadratic which is minimized
when t = 0. Thus the speed is minimized at t = 0, with a speed of /2
ft/s.

The graph in Figure 11.3.1(b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between —3
and 3. Dots that are far apart imply the object traveled a far distance in
1 second, indicating high speed; dots that are close together imply the
object did not travel far in 1 second, indicating a low speed. The dots are
closest together near t = 0, implying the speed is minimized near that
value.

Example 11.3.2  Analyzing Motion

Two objects follow an identical path at different rates on [—1, 1]. The position
function for Object 1 is 71(t) = (t,t?); the position function for Object 2 is
f>(t) = (£3,t°), where distances are measured in feet and time is measured
in seconds. Compare the velocity, speed and acceleration of the two objects on
the path.

SOLUTION We begin by computing the velocity and acceleration func-
tion for each object:

vi(t) = (1,2t) V(t) = (3t2,6t°)
di(t) = (0,2) a,(t) = (6t,30t*)

We immediately see that Object 1 has constant acceleration, whereas Object 2
does not.

Att = —1, we have V;(—1) = (1,—2) and V,(—1) = (3, —6); the velocity
of Object 2 is three times that of Object 1 and so it follows that the speed of
Object 2 is three times that of Object 1 (31/5 ft/s compared to /5 ft/s.)

Notes:



At t = 0, the velocity of Object 1 is V(1) = (1,0) and the velocity of Object
2is 0! This tells us that Object 2 comes to a complete stop att = 0.

In Figure 11.3.2, we see the velocity and acceleration vectors for Object 1
plotted fort = —1,—1/2,0,1/2 and t = 1. Note again how the constant accel-
eration vector seems to “pull” the velocity vector from pointing down, right to
up, right. We could plot the analogous picture for Object 2, but the velocity and
acceleration vectors are rather large (d,(—1) = (—6,30)!)

Instead, we simply plot the locations of Object 1 and 2 on intervals of 1/5%
of a second, shown in Figure 11.3.3(a) and (b). Note how the x-values of Object
lincrease at a steady rate. This is because the x-component of d(t) is 0; there is
no acceleration in the x-component. The dots are not evenly spaced; the object
is moving faster neart = —1 and t = 1 than neart = 0.

In part (b) of the Figure, we see the points plotted for Object 2. Note the
large change in position fromt = —1tot = —0.8; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop at t = 0. While it looks like there are 3 points near the origin,
there are in reality 5 points there.

Since the objects begin and end at the same location, they have the same
displacement. Since they begin and end at the same time, with the same dis-
placement, they have the same average rate of change (i.e, they have the same
average velocity). Since they follow the same path, they have the same distance
traveled. Even though these three measurements are the same, the objects ob-
viously travel the path in very different ways.

Example 11.3.3 Analyzing the motion of a whirling ball on a string

A young boy whirls a ball, attached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes 2 revolutions per
second. The string has length 2ft.

1. Find the position function r{t) that describes this situation.
2. Find the acceleration of the ball and give a physical interpretation of it.

3. A tree stands 10ft in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

SOLUTION

1. The ball whirls in a circle. Since the string is 2ft long, the radius of the
circle is 2. The position function r(t) = (2 cost, 2 sin t) describes a circle
with radius 2, centered at the origin, but makes a full revolution every
27 seconds, not two revolutions per second. We modify the period of the

Notes:

11.3 The Calculus of Motion

ri(t)

ra(t)

(b)

Figure 11.3.3: Comparing the positions of
Objects 1 and 2 in Example 11.3.2.
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Figure 11.3.4: Modeling the flight of a ball
in Example 11.3.3.
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trigonometric functions to be 1/2 by multiplying t by 4. The final position
function is thus
r(t) = (2 cos(4mt), 2 sin(4nt)) .

(Plot this for 0 < t < 1/2 to verify that one revolution is made in 1/2 a
second.)

. To find d(t), we take the derivative of r(t) twice.

v(t) = 7'(t) = (—8msin(4nt), 8w cos(4rt))
a(t) =7"(t) = (—327° cos(4xt), —327° sin(4nt))
= —327% (cos(4nt), sin(4rt)) .

Note how d(t) is parallel to {(t), but has a different magnitude and points
in the opposite direction. Why is this?

Recall the classic physics equation, “Force = mass x acceleration.” A force
acting on a mass induces acceleration (i.e., the mass moves); acceleration
acting on a mass induces a force (gravity gives our mass a weight). Thus
force and acceleration are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
attached to the boy’s hand by a string. The string applies a force to the ball,
affecting it’s motion: the string accelerates the ball. This is not accelera-
tion in the sense of “it travels faster;” rather, this acceleration is changing
the velocity of the ball. In what direction is this force/acceleration being
applied? In the direction of the string, towards the boy’s hand.

The magnitude of the acceleration is related to the speed at which the ball
is traveling. A ball whirling quickly is rapidly changing direction/velocity.
When velocity is changing rapidly, the acceleration must be “large.”

. When the boy releases the string, the string no longer applies a force to

the ball, meaning acceleration is 0 and the ball can now move in a straight
line in the direction of v(t).

Let t = ty be the time when the boy lets go of the string. The ball will be
at r{tp), traveling in the direction of V(tp). We want to find t, so that this
line contains the point (0, 10) (since the tree is 10ft directly in front of the
boy).

There are many ways to find this time value. We choose one that is rela-
tively simple computationally. As shown in Figure 11.3.4, the vector from
the release point to the tree is (0, 10) — r{to). This line segment is tangent
to the circle, which means it is also perpendicular to r{ty) itself, so their
dot product is 0.

Notes:



#(to) - ((0,10) —F(tg)) =0
(2 cos(4rty), 2 sin(47ty)) - (—2 cos(4nty), 10 — 2sin(4nty)) =0
—4 cos®(4rty) + 20sin(47ty) — 4sin®(47ty) =0
20sin(4nt)) —4 =0
sin(4rmty) = 1/5
47ty = sin"1(1/5)
A7ty ~ 0.2 4+ 27n,

where n is an integer. Solving for to we have:

to ~ 0.016 + n/2

This is a wonderful formula. Every 1/2 second after t = 0.016s the boy
can release the string (since the ball makes 2 revolutions per second, he
has two chances each second to release the ball).

Example 11.3.4 Analyzing motion in space

An object moves in a spiral with position function r{t) = (cost,sint, t), where
distances are measured in meters and time is in minutes. Describe the object’s
speed and acceleration at time t.

SOLUTION With 7(t) = (cost,sint, t), we have:

—

V(t) = (—sint,cost,1) and
(t) = (—cost,—sint,0) .

Q)

The speed of the object is || ¥(t) || = v/(—sint)? + cos? t + 1 = v/2m/min;
it moves at a constant speed. Note that the object does not accelerate in the
z-direction, but rather moves up at a constant rate of 1m/min.

The objects in Examples 11.3.3 and 11.3.4 traveled at a constant speed. That
is, || ¥(t) || = c for some constant c. Recall Theorem 11.2.5, which states that
if a vector—valued function 7(t) has constant length, then r{(t) is perpendicular
to its derivative: r{(t) - r'(t) = 0. In these examples, the velocity function has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleration: ¥(t) - d(t) = 0. A quick check verifies this.

There is an intuitive understanding of this. If acceleration is parallel to veloc-
ity, then it is only affecting the object’s speed; it does not change the direction
of travel. (For example, consider a dropped stone. Acceleration and velocity are

Notes:

11.3 The Calculus of Motion

655



Chapter 11 Vector Valued Functions

Note: This text uses g = 32ft/s*> when us-
ing Imperial units, and g = 9.8m/s*> when
using Sl units.
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parallel — straight down — and the direction of velocity never changes, though
speed does increase.) If acceleration is not perpendicular to velocity, then there
is some acceleration in the direction of travel, influencing the speed. If speed
is constant, then acceleration must be orthogonal to velocity, as it then only
affects direction, and not speed.

Key Idea 11.3.1 Objects With Constant Speed

If an object moves with constant speed, then its velocity and acceleration
vectors are orthogonal. That is, V(t) - d(t) = 0.

Projectile Motion

An important application of vector—valued position functions is projectile
motion: the motion of objects under only the influence of gravity. We will mea-
sure time in seconds, and distances will either be in meters or feet. We will show
that we can completely describe the path of such an object knowing its initial
position and initial velocity (i.e., where it is and where it is going.)

Suppose an object has initial position 7(0) = (xo,¥o) and initial velocity
V(0) = (v, V). It is customary to rewrite ¥(0) in terms of its speed vo and
direction &, where & is a unit vector. Recall all unit vectors in R? can be written
as (cos 0, sin #), where 6 is an angle measure counter—clockwise from the x-axis.
(We refer to 6 as the angle of elevation.) Thus V(0) = v, {cos 6, sin 0) .

Since the acceleration of the object is known, namely d(t) = (0, —g), where
g is the gravitational constant, we can find r(t) knowing our two initial condi-
tions. We first find v(t):

i(e) = / (t) dt

v(t) = /<0, —g) dt
v(t) = (0, —gt) + C.

Knowing ¥(0) = v, (cos 8, sin 6), we have C = v, (cos 6, sin §) and so

v(t) = (vocos b, —gt + vosin ) .

Notes:



We integrate once more to find 7(t):

r(t) = /V(t) dt

F(t) :/<vo cos, —gt + vosin0) dt

F(t) = <(vo cos 6)t, —%gtz + (vosin ) t> +C.

Knowing r(0) = (xo, o), we conclude C= (0, Yo) and

Ft) = <(voc059)t—|—x0 7—%gt2 + (vosin )t + yo >

Key Idea 11.3.2

Projectile Motion

The position function of a projectile propelled from an initial position of
o = (o, Yo), With initial speed vy, with angle of elevation # and neglect-
ing all accelerations but gravity is

rt) = <(vo cosf)t+Xxo , —%gt2 + (vosin@)t+yo > .

Letting Vo = v (cos 8, sin 6), F(t) can be written as

- 1 S
F(t) = <07 —2th> + Vot + ro.

We demonstrate how to use this position function in the next two examples.

Example 11.3.5

Projectile Motion
Sydney shoots her Red Ryder® bb gun across level ground from an elevation of
4ft, where the barrel of the gun makes a 5° angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the advertised rate

of 350ft/s and ignoring air resistance.

SOLUTION A direct application of Key Idea 11.3.2 gives
7(t) = ((350 cos 5°)t, —16t* + (3505in 5°)t + 4)
~ (346.67t, —16t° + 30.50t + 4) ,
Notes:

11.3 The Calculus of Motion
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where we set her initial position to be (0, 4). We need to find when the bb lands,
then we can find where. We accomplish this by setting the y-component equal
to 0 and solving for t:

—16t2 +30.50t + 4 =0

,_ 3050+ 1/30.502 — 4(—16)(4)
B -32

t ~ 2.03s.

(We discarded a negative solution that resulted from our quadratic equation.)

We have found that the bb lands 2.03s after firing; with t = 2.03, we find
the x-component of our position function is 346.67(2.03) = 703.74ft. The bb
lands about 704 feet away.

Example 11.3.6 Projectile Motion

Alex holds his sister’s bb gun at a height of 3ft and wants to shoot a target that
is 6ft above the ground, 25ft away. At what angle should he hold the gun to hit
his target? (We still assume the muzzle velocity is 350ft/s.)

SOLUTION The position function for the path of Alex’s bb is
7(t) = ((350 cos 0)t, —16t> + (3505sin )t + 3) .

We need to find 6 so that r{t) = (25, 6) for some value of t. That is, we want to
find § and t such that

(350cos @)t =25 and — 16t* + (350sinf)t +3 = 6.

This is not trivial (though not “hard”). We start by solving each equation for cos #
and sin 6, respectively.

and sinf =

cosf = — —
350t 350t

Using the Pythagorean Identity cos? 6 + sin’ § = 1, we have
25 \?  /3+162\°
) Tl ) =1
350t 350t
Multiply both sides by (350t)%:

25% + (3 + 16t%)% = 350%t?
256t* — 122,404t + 634 = 0.

Notes:



This is a quadratic in t2. That is, we can apply the quadratic formula to find t?,
then solve for t itself.

2 122,404 + /122,4042 — 4(256)(634)
a 512

t? = 0.0052, 478.135
t = 4+0.072, +21.866

Clearly the negative t values do not fit our context, so we have t = 0.072 and
t = 21.866. Using cos § = 25/(350t), we can solve for 6:

25 25
f=cos | ——— and cos ! ——M——
350-0.072 350-21.866

9 =7.03° and 89.8°.

Alex has two choices of angle. He can hold the rifle at an angle of about 7° with
the horizontal and hit his target 0.07s after firing, or he can hold his rifle almost
straight up, with an angle of 89.8°, where he’ll hit his target about 22s later. The
first option is clearly the option he should choose.

Distance Traveled

Consider a driver who sets her cruise—control to 60mph, and travels at this
speed for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starting position is the driver?

The first is easy to answer: she traveled 60 miles. The second is impossible to
answer with the given information. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly—winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by || ¥(t) ||.

Theorem 11.3.1 Distance Traveled

Let v(t) be a velocity function for a moving object. The distance traveled
by the object on [a, b] is:

b
distance traveled = / || v(t) || dt.
a

Note that this is just a restatement of Theorem 11.2.7: arc length is the same as
distance traveled, just viewed in a different context.

Notes:

11.3 The Calculus of Motion
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Figure 11.3.5: The path of the particle,
from two perspectives, in Example 11.3.7.
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Example 11.3.7 Distance Traveled, Displacement, and Average Speed
A particle moves in space with position function 7(t) = (t, t?, sin(7t)) on [-2, 2],
where t is measured in seconds and distances are in meters. Find:

1. The distance traveled by the particle on [—2, 2].
2. The displacement of the particle on [—2, 2].

3. The particle’s average speed.

SOLUTION

1. We use Theorem 11.3.1 to establish the integral:

2

distance traveled = / || v(t) || dt

-2

2
= / V/1+ (2t)2 + 72 cos?(rt) dt.
-2

This cannot be solved in terms of elementary functions so we turn to nu-
merical integration, finding the distance to be 12.88m.

. The displacement is the vector

r(2) —r(—2) = (2,4,0) — (—2,4,0) = (4,0,0) .

That is, the particle ends with an x-value increased by 4 and with y- and
z-values the same (see Figure 11.3.5).

. We found above that the particle traveled 12.88m over 4 seconds. We can

compute average speed by dividing: 12.88/4 = 3.22m/s.

We should also consider Definition 5.4.1 of Section 5.4, which says that
the average value of a function fon [a, b] is bfla fabf(x) dx. In our context,
the average value of the speed is

1 2. 1
average speed = 7/ || V(t) || dt =~ =12.88 = 3.22m/s.
2-(=2) /= 4

Note how the physical context of a particle traveling gives meaning to a
more abstract concept learned earlier.

In Definition 5.4.1 of Chapter 5 we defined the average value of a function
f(x) on [a, b] to be

1 b
P / f(x) dx.

Notes:
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Note how in Example 11.3.7 we computed the average speed as

distance traveled 1 2
. =— || V(t) || dt;
travel time 2—(-2)J_,

that is, we just found the average value of || ¥(t) || on [—2, 2].
Likewise, given position function r(t), the average velocity on [a, b] is

displacement _ 1 /b F/(t) dt = r(b) — F(a);
travel time b—a |/, b—a

that is, it is the average value of r”(t), or V(t), on [a, b].

Key Idea 11.3.3 Average Speed, Average Velocity

Let (t) be a differentiable position function on [a, b].

The average speed is:

distance traveled [ || ¥(t) || dt 1 /b || W(t) || dt
— = V :
travel time b—a b—al,

The average velocity is:

displacement fab F'(t) dt 1 b,
- = = F'(t) dt.
travel time b—a b—a /,

The next two sections investigate more properties of the graphs of vector—
valued functions and we’ll apply these new ideas to what we just learned about
motion.

Notes:
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Exercises 11.3

Terms and Concepts
1. How is velocity different from speed?

2. What is the difference between displacement and distance
traveled?

3. What is the difference between average velocity and aver-
age speed?

4. Distance traveled is the same as , just
viewed in a different context.

5. Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

6. Explain why it is not possible to have an average velocity
with a large magnitude but a small average speed.

Problems

In Exercises 7 — 10, a position function r{t) is given. Find v(t)
and d(t).

7. F(t) = (2t + 1,5t — 2,7)
8. F(t)= (3t —2t+ 1, +t+14)
9. r(t) = (cost,sint)

10. r(t) = (t/10, —cost,sint)
In Exercises 11 — 14, a position function r{t) is given. Sketch
7(t) on the indicated interval. Find v(t) and d(t), then add
V(to) and d(to) to your sketch, with their initial points at 7(to),
for the given value of t;.

11. r(t) = (t,sintyon [0,7/2]; to = 7/4

12. /(t) = (¥,sint*) on [0,7/2]; to = \/7/4

13. 7(t) = (£ +t,—t' +2t)on [-2,2];to =1

- 2
14. 7(t) = <$,t2> on[—1,1];t0 =0

In Exercises 15 — 24, a position function 7(t) of an object is
given. Find the speed of the object in terms of t, and find
where the speed is minimized/maximized on the indicated
interval.

15. F(t) = (£, t)on [-1,1]

16. #(t)

(£,£ — ) on[-1,1]

17. r(t) = (5cost,5sint) on [0, 27]

18. r(t) = (2cost,5sint) on [0, 27]

19. r(t) = (sect,tant) on [0, 7/4]

20. r(t) = (t+ cost,1 —sint) on [0, 27]
21. r(t) = (12t,5cost,5sint) on [0, 47]

22. F(t) = (£ —t,t* + t,t) on [0,1]

23. 7(t) = <t, tz,\/ﬁ> on[-1,1]

- 1 .
24. Projectile Motion: r{(t) = <(v0 cos0)t, —Egt2 + (vosin 9)t>

e si
on {07 Vo sin 0]
g

In Exercises 25 — 28, position functions 7, (t) and 7 (s) for two
objects are given that follow the same path on the respective
intervals.

(a) Show that the positions are the same at the indicated
to and so values; i.e., show 71 (to) = r>(so).

(b) Find the velocity, speed and acceleration of the two
objects at tp and s, respectively.

25. Ai(t) = (t,’)on[0,1];to =1
=(s’,s"Yon[0,1];s0 =1

o

—~
»

2

26. ri(t) = (3cost,3sint) on [0, 27]; to = 7/2
r2(s) = (3 cos(4s),3sin(4s)) on [0, 7/2]; 50 = 7/8

27. ri(t) = (3t,2t)on [0,2];to = 2
ra(s) = (6s —6,4s —4) on [1,2];50 = 2

28. 71(t) = (t,v/t)on[0,1];t0 =1
72(s) = (sint,V/sint) on [0, 7/2]; 50 = /2

In Exercises 29 — 32, find the position function of an object
given its acceleration and initial velocity and position.

29. d(t) = (2,3); V(0) =(1,2), ©0)=(5-2)

30. d(t) = (2,3); V(1) =(1,2), r(1)=(5-2)

31. d(t) = (cost,—sint); V(0) =(0,1), r(0) = (0,0)

32. d(t) = (0,—32); v(0) = (10,50), r(0) = (0,0)
In Exercises 33 — 36, find the displacement, distance traveled,
average velocity and average speed of the described object
on the given interval.

33. An object with position function r{t) = (2 cost, 2 sint, 3t),

where distances are measured in feet and time is in sec-
onds, on [0, 27].



34.

35.

36.

An object with position function r(t) = (5cost, —5sint),
where distances are measured in feet and time is in sec-
onds, on [0, 7].

An object with velocity function V(t) = (cos t, sin t), where
distances are measured in feet and time is in seconds, on
[0, 27].

An object with velocity function v(t) = (1,2, —1), where
distances are measured in feet and time is in seconds, on
[0,10].

Exercises 37 — 42 ask you to solve a variety of problems based
on the principles of projectile motion.

37.

38.

A boy whirls a ball, attached to a 3ft string, above his head
in a counter—clockwise circle. The ball makes 2 revolutions
per second.

At what t-values should the boy release the string so that
the ball heads directly for a tree standing 10ft in front of
him?

David faces Goliath with only a stone in a 3ft sling, which
he whirls above his head at 4 revolutions per second. They
stand 20ft apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is traveling
when released?

(c) Assume David releases the stone from a height of 6ft
and Goliath’s forehead is 9ft above the ground. What
angle of elevation must David apply to the stone to hit
Goliath’s head?

39.

40.

41.

42.

A hunter aims at a deer which is 40 yards away. Her cross-
bow is at a height of 5ft, and she aims for a spot on the
deer 4ft above the ground. The crossbow fires her arrows
at 300ft/s.

(a) At what angle of elevation should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of 20mph, by approximately how much
should she lead the deer in order to hit it in the de-
sired location?

Abaseball player hits a ball at 100mph, with an initial height
of 3ft and an angle of elevation of 20°, at Boston’s Fenway
Park. The ball flies towards the famed “Green Monster,” a
wall 37ft high located 310ft from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevation is 21°, the ball
clears the Green Monster.

A Cessna flies at 1000ft at 150mph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignoring
wind resistance, how far horizontally will the supplies travel
before they land?

A football quarterback throws a pass from a height of 6ft,
intending to hit his receiver 20yds away at a height of 5ft.

(a) If the ball is thrown at a rate of 50mph, what angle of
elevation is needed to hit his intended target?

(b) If the ball is thrown at with an angle of elevation of
8°, what initial ball speed is needed to hit his target?
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10

Figure 11.4.1: Plotting unit tangent vec-
tors in Example 11.4.1.
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11.4 Unit Tangent and Normal Vectors
Unit Tangent Vector

Given a smooth vector—valued function 7(t), we defined in Definition 11.2.4
thatany vector parallel tor'(to) is tangent to the graph of r(t) at t = t,. Itis often
useful to consider just the direction of r’(t) and not its magnitude. Therefore
we are interested in the unit vector in the direction of r/(t). This leads to a
definition.

Definition 11.4.1 Unit Tangent Vector

Let r(t) be a smooth function on an open interval /. The unit tangent
vector T(t) is

Example 11.4.1 Computing the unit tangent vector
Let r(t) = (3 cost,3sint, 4t). Find T(t) and compute T(0) and T(1).

SOLUTION We apply Definition 11.4.1 to find 71(t).
= 1
T(t) = ———r'(t)
[[r () |
1

= (—3sint,3cost, 4)
\/( — 3sint)2 + (3cost)2 +42

3 .3 4
= ( —=sint,—cost,— ).
5 5 5

We can now easily compute 7(0) and T(1):

- 3 4 - 3.3 4
T7(0)=(0,=,=); T(1)=(—=sinl,—cosl, - ) ~ (—0.505,0.324,0.8) .
5°5 5 5 5

These are plotted in Figure 11.4.1 with their initial points at r(0) and 7(1), re-
spectively. (They look rather “short” since they are only length 1.)

The unit tangent vector T(t) always has a magnitude of 1, though it is some-
times easy to doubt that is true. We can help solidify this thought in our minds
by computing || T(1) ||:

| T(1) || = v/(—0.505)2 4 0.3242 + 0.82 = 1.000001.

Notes:



We have rounded in our computation of f(l), so we don’t get 1 exactly. We
leave it to the reader to use the exact representation of T(1) to verify it has
length 1.

In many ways, the previous example was “too nice.” It turned out that r’(t)
was always of length 5. In the next example the length of 7/(t) is variable, leav-
ing us with a formula that is not as clean.

Example 11.4.2 Computing the unit tangent vector
Let F(t) = (2 — t,t? + t). Find T(t) and compute T(0) and T(1).

SOLUTION We find 7/(t) = (2t — 1,2t 4+ 1), and

17(0) |l = V2t =17+ 2t +1)? = V88 +2.

Therefore

T(t) = #(Zt—l,Zt—i— 1>:<

8t2 +2

2t—1 2t+1>
Ve +2'8re+2/

When t = 0, we have T(0) = (—1/v/2,1/v/2); when t = 1, we have T(1) =
(1/4/10,3/V/10) . We leave it to the reader to verify each of these is a unit vec-
tor. They are plotted in Figure 11.4.2

Unit Normal Vector

Just as knowing the direction tangent to a path is important, knowing a direc-
tion orthogonal to a path is important. When dealing with real-valued functions,
we defined the normal line at a point to the be the line through the point that
was perpendicular to the tangent line at that point. We can do a similar thing
with vector—valued functions. Given r(t) in R?, we have 2 directions perpendic-
ular to the tangent vector, as shown in Figure 11.4.3. It is good to wonder “Is
one of these two directions preferable over the other?”

Given r(t) in R3, there are infinitely many vectors orthogonal to the tangent
vector at a given point. Again, we might wonder “Is one of these infinite choices
preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R? and R? is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 11.2.5, which states
that if (t) has constant length, then r{(t) is orthogonal to r'(t) for all t. We know
7(t), the unit tangent vector, has constant length. Therefore T{(t) is orthogonal
to T'(t).

We'll see that T'(t) is more than just a convenient choice of vector that is
orthogonal to r’(t); rather, it is the “right” choice. Since all we care about is the
direction, we define this newly found vector to be a unit vector.

Notes:

11.4 Unit Tangent and Normal Vectors

Figure 11.4.2: Plotting unit tangent vec-
tors in Example 11.4.2.

X

Figure 11.4.3: Given a direction in the
plane, there are always two directions or-
thogonal to it.

Note: T(t) is a unit vector, by definition.
This does not imply that T'(t) is also a unit
vector.
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Definition 11.4.2 Unit Normal Vector

Let 7(t) be a vector-valued function where the unit tangent vector, 7(t),
is smooth on an open interval /. The unit normal vector N(t) is

N(t) = ———T'(b).

Example 11.4.3 Computing the unit normal vector
Let 7(t) = (3cost,3sint,4t) as in Example 11.4.1. Sketch both T(7/2) and
N(m/2) with initial points at 7(7/2).

SOLUTION In Example 11.4.1, we found T(t) = <(—3/5) sint, (3/5) cost, 4/5>.
10
Therefore
-3 -3
= 3 3 = 3
T'(t)=( —=cost,—=sint,0) and || T'(t)]| = =.
5 5 5
Thus
S T/(t
X y N(t) = ():<—cost,—sint,0>.
~10 3/5
We compute T(7/2) = (—3/5,0,4/5) and N(7/2) = (0,—1,0). These are

sketched in Figure 11.4.4.
Figure 11.4.4: Plotting unit tangent and

normal vectors in Example 11.4.4. The previous example was once again “too nice.” In general, the expression

for T(t) contains fractions of square-roots, hence the expression of T'(t) is very
messy. We demonstrate this in the next example.
Example 11.4.4 Computing the unit normal vector
Let 7(t) = (? — t,t? + t) as in Example 11.4.2. Find N(t) and sketch 7(t) with
the unit tangent and normal vectorsatt = —1,0 and 1.
SOLUTION In Example 11.4.2, we found
- 2t—1 2t+1
fte) = ( L.
V82 2 /82 42

Finding f’(t) requires two applications of the Quotient Rule:

Notes:
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T(t) = < 8t +2(2) — (2t ;;)ﬁ(grz +2)"1/2(16t)) |

8t2 42
[ 4Q2t+1)  4(1-2t)
(812 +2)%% (812 +2)*/2

This is not a unit vector; to find N(t), we need to divide T'(t) by it’s magni-
tude.

VBEE 1 2(2) — (2t + 1) (1(88 +2)~/%(161)) >

=0 [16(2t4+1)2 16(1 — 2t)?
Il = \/ (812 +2)3  (8t242)3

_|16(82 +2)
) (8t2 4 2)3
4

S8tz 42’

Finally,

L 4t+1)  4(1-2t)
N(e) = 4/(8t2 4 2) < (82 +2)°7" (822 +2)°° >

< 2t+1 2t—1 >
Vet +2 Vet +2/

Using this formula for /V(t), we compute the unit tangent and normal vectors
fort = —1,0and 1 and sketch them in Figure 11.4.5.

The final result for N(t) in Example 11.4.4 is suspiciously similar to T(t).
There is a clear reason for this. If & = (uy, u,) is a unit vector in R?, then the
only unit vectors orthogonal to i are (—uy,u;) and (u,, —us). Given T(t), we
can quickly determine N(t) if we know which term to multiply by (—1).

Consider again Figure 11.4.5, where we have plotted some unit tangent and
normal vectors. Note how I\7(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direction that 7(t) “turns” allows us to quickly find N(t).

Notes:

11.4 Unit Tangent and Normal Vectors

(R

2 2 4 6

Figure 11.4.5: Plotting unit tangent and
normal vectors in Example 11.4.4.
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Note: Keep in mind that both ar and
an are functions of t; that is, the scalar
changes depending on t. It is convention
to drop the “(t)” notation from ar(t) and
simply write ar.
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Theorem 11.4.1 Unit Normal Vectors in R?

Let F(t) be a vector-valued function in R? where T'(t) is smooth on an
open interval /. Let to be in /and T(tp) = (t1, t;) Then N(to) is either

N(to) = <—t27t1> or N(to) = <t2, —t1>,

whichever is the vector that points to the concave side of the graph of 7.

Application to Acceleration

Let r(t) be a position function. It is a fact (stated later in Theorem 11.4.2)
that acceleration, @(t), lies in the plane defined by T and N. That is, there are
scalar functions ar(t) and ay(t) such that

a(t) = ar(t)T(t) + an(t)N(t).

We generally drop the “of t” part of the notation and just write ar and ay.

The scalar ar measures “how much” acceleration is in the direction of travel,
that is, it measures the component of acceleration that affects the speed. The
scalar ay measures “how much” acceleration is perpendicular to the direction
of travel, that is, it measures the component of acceleration that affects the
direction of travel.

We can find ar using the orthogonal projection of d(t) onto T(t) (review Def-
inition 10.3.3 in Section 10.3 if needed). Recalling that since T(t) is a unit vector,
T(t) - T(t) = 1, so we have

I a(
Projz d(t) = 070

Thus the amount of @(t) in the direction of T(t) is ar = d(t) - T(t). The same
logic gives ay = a(t) - N(t).
While this is a fine way of computing ar, there are simpler ways of finding ay

(as finding N itself can be complicated). The following theorem gives alternate
formulas for at and ay.

Notes:




Theorem 11.4.2 Acceleration in the Plane Defined by Tand N

Let r(t) be a position function with acceleration @(t) and unit tangent and
normal vectors T(t) and N(t). Then @(t) lies in the plane defined by T(t) and
N(t); that is, there exists scalars ar and ay such that

a(t) = arT(t) + ayN(t).

Moreover,

ay = () - A(e) = /N1 o) |7 — a2 = LB XION Gy 170 )

[v(e) |

d/ -
Note the second formula for ar: p (|| v(t) H) This measures the rate of
change of speed, which again is the amount of acceleration in the direction of
travel.

Example 11.4.5 Computing ar and ay
Let 7(t) = (3 cost,3sint,4t) as in Examples 11.4.1 and 11.4.3. Find ar and ay.

SOLUTION The previous examples give @(t) = (—3cost,—3sint,0)
and

- 3 3 4 _
T(t) = <—5 sint, ¢ cos t 5> and N(t) = (—cost,—sint,0).

We can find a7 and ay directly with dot products:

!

~ 9 . 9 .
ar =d(t) - T(t) = gcostsmt— gcostsmt+0 =0.

an = a(t) - N(t) = 3cos® t + 3sin®t + 0 = 3.

Thus d(t) = 0T(t) + 3N(t) = 3N(t), which is clearly the case.

What is the practical interpretation of these numbers? ar = 0 means the
object is moving at a constant speed, and hence all acceleration comes in the
form of direction change.

Example 11.4.6 Computing ar and ay
Let F(t) = (> — t,t* + t) as in Examples 11.4.2 and 11.4.4. Find ay and ay.

Notes:

11.4 Unit Tangent and Normal Vectors
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2 2 4 6

Figure 11.4.6: Graphing r{(t) in Example
11.4.6.

200

100 +

100 200 300

Figure 11.4.7: Plotting the position of a
thrown ball, with 1s increments shown.
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SoLuTioN The previous examples give G(t) = (2,2) and

T‘(t) < 2t —1 2t+1 > d N(t) < 2t +1 2t —1 >
= , an = , — .
V82 +2 /812 +2 V82 +2° /8t2+2

While we can compute ay using l\7(t), we instead demonstrate using another
formula from Theorem 11.4.2.

= 4t — 2 4t + 2 8t

ar =d(t) - T(t)

CVEtZ 12 Vet tr2 ettt 2
2
8t 4
an = +/||dt) |2 — a2 = 8—< > = .
v=yllaw [ —ar \/ 87 +2 87 1 2

16

4
Whent = 2, a7 = —4 ~ 2.74 and ay = —4 =~ 0.69. We interpret this to

mean that at t = 2, the particle is accelerating mostly by increasing speed, not
by changing direction. As the path near t = 2 is relatively straight, this should
make intuitive sense. Figure 11.4.6 gives a graph of the path for reference.

Contrast this with t = 0, where ar = 0 and ay = 4/v/2 ~ 2.82. Here the
particle’s speed is not changing and all acceleration is in the form of direction
change.

Example 11.4.7  Analyzing projectile motion

A ballis thrown from a height of 240ft with an initial speed of 64ft/s and an angle

of elevation of 30°. Find the position function r{(t) of the ball and analyze ar and

an.
SOLUTION Using Key Idea 11.3.2 of Section 11.3 we form the position

function of the ball:

7(t) = ((64 cos30°)t, —16t* + (64sin30°)t + 240),

which we plot in Figure 11.4.7.
From this we find v(t) = (64 cos 30°, —32t + 64 sin 30°) and d(t) = (0, —32).
Computing T(t) is not difficult, and with some simplification we find

T’(t):< V3 1t >

VE —2t+4 V2 -2t + 4

With d(t) as simple as it is, finding ar is also simple:

= 32t — 32

ar =d(t) - T(t) = N s

Notes:
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We choose to not find N(t) and find ay through the formulaay = /|| @(t) ||> — 2 :

32t—32 \’ 32V/3 t o oy
ay=14/322— [ =——_ ) = 22
V2 —2t+4 VEZ—2t+4 0 -16 277
1 0 32
Figure 11.4.8 gives a table of values of a; and ay. When t = 0, we see the 2 16 277
ball’s speed is decreasing; when t = 1 the speed of the ball is unchanged. This 3 242 209
corresponds to the fact that at t = 1 the ball reaches its highest point. ‘5‘ ;;‘71 11267

After t = 1 we see that ay is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the acceleration is in the form of

. . . . . Figure 11.4.8: A table of values of ar and
speeding up the ball, and not in changing its direction.

an in Example 11.4.7.

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of motion. The work in Example 11.4.7 gave quantitative analysis
of what we intuitively knew.

The next section provides two more important steps towards this analysis.
We currently describe position only in terms of time. In everyday life, though,
we often describe position in terms of distance (“The gas station is about 2 miles
ahead, on the left.”). The arc length parameter allows us to reference position
in terms of distance traveled.

We also intuitively know that some paths are straighter than others — and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quantitative
measurement of how curvy a curve is.

Notes:
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Exercises 11.4

Terms and Concepts
1. If T(t) is a unit tangent vector, what is || T(t) ||?
2. If N(t) is a unit normal vector, what is N(t) - 7/ (t)?

3. The acceleration vector d(t) lies in the plane defined by
what two vectors?

4. ar measures how much the acceleration is affecting the
of an object.

Problems

In Exercises 5 — 8 , given 7(t), find 7(t) and evaluate it at the
indicated value of t.

5. 7(t) =2, —t), t=1
6. r(t)

(t,cost), t=m/4

7. 7(t) = (cos’t,sin’t), t=m/4

8. r(t) = (cost,sint), t=m

In Exercises 9 — 12, find the equation of the line tangent to
the curve at the indicated t-value using the unit tangent vec-
tor. Note: these are the same problems as in Exercises 5 —
8.

9. At) = (25, —t), t=1

10. r(t) = (t,cost), t=m7/4
11. 7(t) = (cos’t,sin’t), t=m/4
12. F(t) = {cost,sint), t=m

In Exercises 13 — 16 , find N(t) using Definition 11.4.2. Con-
firm the result using Theorem 11.4.1.

13. F(t) = (3 cost,3sint)
14. 7(t) = (t,¢*)
15. F(t) = (cost,2sint)

16. 7(t) = (e',e™")

In Exercises 17 — 20 , a position function r{t) is given along
with its unit tangent vector T(t) evaluated at t = a, for some
value of a.

(a) Confirm that T(a) is as stated.
(b) Using a graph of 7(t) and Theorem 11.4.1, find N(a).

17. 7(t) = (3cost,5sint); T(r/4) — <f\/%,\/%>.

18. H(t) = <tﬁ> 7(1) = <%—\%>

19. r(t) = (1 4 2sint) (cos t,sint);

- . = 1 1
20. A(t) = <cos3 t, sin’ ty, T(w/4) = <_ﬁ7 ﬁ>
In Exercises 21 — 24 , find N(t).
21. r(t) = (4t,2sint, 2 cost)
22. 7(t) = (5cost,3sint, 4sint)
23. (t) = {(acost,asint,bt); a>0
24. 1(t) = (cos(at),sin(at), t)
In Exercises 25 — 30, find ar and a given r(t). Sketch 7(t) on
the indicated interval, and comment on the relative sizes of
ar and ay at the indicated t values.
25. 7(t) = (t,t*) on [1,1]; consider t = Oand t = 1.

26. r(t) = (t,1/t) on (0,4]; considert = land t = 2.

27. #(t) = (2cost,2sint) on [0,27]; consider t = 0 and
t=mr/2.

28. 7(t) = {cos(t*),sin(t*)) on (0,2x]; consider t = /7/2

andt = /7.

29. r(t) = (acost,asint,bt) on [0, 2], where a,b > 0; con-
sidert =0and t = 7/2.

30. r(t) = (5cost,4sint,3sint) on [0,27]; considert = 0
andt=m7/2.
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11.5 The Arc Length Parameter and Curvature

In normal conversation we describe position in terms of both time and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you

are, you might answer “I am 20 minutes from your house,” or you might say “I 67 /=2
am 10 miles from your house.” Both answers provide your friend with a general
idea of where you are. i

Currently, our vector—valued functions have defined points with a parameter
t, which we often take to represent time. Consider Figure 11.5.1(a), where r{(t) = A
<t2 —t,t* + t> is graphed and the points correspondingtot = 0, 1 and 2 are /?(E/
shown. Note how the arc length betweent = 0 and t = 1 is smaller than the =0
arc length between t = 1 and t = 2; if the parameter t is time and Fis position, 7‘2 ‘\—/2 21 s x
we can say that the particle traveled faster on [1, 2] than on [0, 1].

Now consider Figure 11.5.1(b), where the same graph is parametrized by a (@
different variable s. Points corresponding to s = 0 through s = 6 are plotted. ,
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph froms = 0 &7 s—6
tos = 3is 3, the arc length from s = 2to s = 6 is 4, etc. If one wants to find the /s: 5
point 2.5 units from an initial location (i.e., s = 0), one would compute 7(2.5). 41 /5: 4
This parameter s is very useful, and is called the arc length parameter. /s —3

How do we find the arc length parameter? 2oy

Start with any parametrization of . We can compute the arc length of the /s _, )/
graph of 7 on the interval [0, t] with ‘ \[s=o0 ‘ s

t P
arc length :/ || 7' (u) || du. (b)
0

Figure 11.5.1: Introducing the arc length

We can turn this into a function: as t varies, we find the arc length s from O to t.
parameter.

This function is
t
S(t) = / 17/(u) || du. (11.1)
0
This establishes a relationship between s and t. Knowing this relationship
explicitly, we can rewrite r{t) as a function of s: r(s). We demonstrate this in an

example.

Example 11.5.1 Finding the arc length parameter
Let 7(t) = (3t — 1,4t + 2). Parametrize r with the arc length parameter s.

SOLUTION Using Equation (11.1), we write

s(t) = / 17/ (u) || .

Notes:
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Figure 11.5.2: Graphing ¥ in Example
11.5.1 with parameters t and s.
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We can integrate this, explicitly finding a relationship between s and t:
t
)= [ 117w du
0
t
= / V32 +42du
0
t

:/Sdu
0

= 5t

Since s = 5t, we can write t = s/5 and replace t in r(t) with s/5:

H(s) = (3(s/5) — 1,4(s/5) + 2) — <§s 1, gs + 2> .
Clearly, as shown in Figure 11.5.2, the graph of r'is a line, where t = 0 corre-
sponds to the point (—1,2). What point on the line is 2 units away from this
initial point? We find it with 7(2) = (1/5,18/5).
Is the point (1/5,18/5) really 2 units away from (—1,2)? We use the Dis-
tance Formula to check:

o) () e

Yes, (2) is indeed 2 units away, in the direction of travel, from the initial point.

Things worked out very nicely in Example 11.5.1; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integrating a square—root. There are a number
of things that we can learn about the arc length parameter from Equation (11.1),
though, that are incredibly useful.

First, take the derivative of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 5.4.1) states that

ds / =/

=S =Tl (11.2)
Letting t represent time and r{t) represent position, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuition.

The Chain Rule states that

o _di ds
dt  ds dt
Fit)=7"(s)- | 7' (t) ||

Notes:
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Solving for 7’(s), we have

=/ _ F/(t) _ 7T
F'(s) = 7|| 200 T(t), (11.3)

where f(t) is the unit tangent vector. Equation 11.3 is often misinterpreted, as
one is tempted to think it states 7/(t) = T(t), but there is a big difference be-
tween r’(s) and 7’ (t). The key to take from it is that r'/ (s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem 11.5.1 Arc Length Parameter

Let 7(s) be a vector—valued function. The parameter s is the arc length
parameter if, and only if, || 7’(s) || = 1.

Curvature

Consider points A and B on the curve graphed in Figure 11.5.3(a). One can
readily argue that the curve curves more sharply at A than at B. It is useful to use
anumber to describe how sharply the curve bends; that number is the curvature
of the curve.

We derive this number in the following way. Consider Figure 11.5.3(b), where
unit tangent vectors are graphed around points A and B. Notice how the direc-
tion of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

Definition 11.5.1 Curvature

Let r{s) be a vector—valued function where s is the arc length parameter.
The curvature « of the graph of F(s) is

If F(s) is parametrized by the arc length parameter, then

T(s) = ) and N(s) =

[177(s) | 177(s) I

Notes:

(b)

Figure 11.5.3: Establishing the concept of

curvature.
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Having defined || T/(s) || = &, we can rewrite the second equation as
T'(s) = kN(s). (11.4)

We already knew that T”(s) is in the same direction as N(s); that is, we can think
of T(s) as being “pulled” in the direction of N(s). How “hard” is it being pulled?
By a factor of k. When the curvature is large, 7'(5) is being “pulled hard” and the
direction of f(s) changes rapidly. When « is small, T(s) is not being pulled hard
and hence its direction is not changing rapidly.

We use Definition 11.5.1 to find the curvature of the line in Example 11.5.1.

Example 11.5.2 Finding the curvature of a line
Use Definition 11.5.1 to find the curvature of r(t) = (3t — 1, 4t + 2).

SOLUTION In Example 11.5.1, we found that the arc length parameter
was defined by s = 5t, so r(s) = (3s/5 — 1,4s/5 + 2) parametrized r with the
arc length parameter. To find x, we need to find T'(s).

T(s) =7'(s) (recall this is a unit vector)

= (3/5,4/5) .
Therefore
7'(s) = (0,0)
and
k=|T(s) ]| =0

It probably comes as no surprise that the curvature of a line is 0. (How “curvy”
is a line? It is not curvy at all.)

While the definition of curvature is a beautiful mathematical concept, it is
nearly impossible to use most of the time; writing 7 in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of cal-
culating this value that are much easier. There is a tradeoff: the definition is
“easy” to understand though hard to compute, whereas these other formulas
are easy to compute though it may be hard to understand why they work.

Notes:
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Theorem 11.5.2 Formulas for Curvature

Let C be a smooth curve in the plane or in space.
1. If Cis defined by y = f(x), then
If" ()|
(1+ (7)?)

3/2°

2. If Cis defined as a vector-valued function in the plane, r(t) =
(x(t),y(t)), then

|X/y// _ X//yl|

(02 4+ 512"
3. If Cis defined in space by a vector—valued function r{(t), then

R = =

7@ i 7 () [1°

1T/ @) [ _ [[F'(8) < F"(8) || _ a(t) - N(t)
| | '

We practice using these formulas.

Example 11.5.3 Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by ¢(t) = (rcost, rsint).

SOLUTION Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)
We compute ~ using the second part of Theorem 11.5.2.
|(=rsint)(—rsint) — (—rcost)(rcost)]|

((—rsint)2 + (rcos t)z)g'/2

kK =

r?(sin? t + cos? t)

(r2(sin* t + cos? t))s/2

We have found that a circle with radius r has curvature k = 1/r.

Example 11.5.3 gives a great result. Before this example, if we were told

Notes:
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Figure 11.5.4: lllustrating the osculating
circles for the curve seen in Figure 11.5.3.

y
\ 10 %

Figure 11.5.5: Examining the curvature of
2
y=x".
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“The curve has a curvature of 5 at point A,” we would have no idea what this
really meant. Is 5 “big” — does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let k be the curvature of the
curve at P. A circle that:

e passes through P,

¢ lies on the concave side of C,

¢ has a common tangent line as C at P and

e has radius r = 1/k (hence has curvature )

is the osculating circle, or circle of curvature, to C at P, and r is the radius of cur-
vature. Figure 11.5.4 shows the graph of the curve seen earlier in Figure 11.5.3
and its osculating circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “osculating” comes from a Latin word related to kissing; an osculating cir-
cle “kisses” the graph at a particular point. Many beautiful ideas in mathematics
have come from studying the osculating circles to a curve.)

Example 11.5.4 Finding curvature
Find the curvature of the parabola defined by y = x? at the vertexand at x = 1.

SOLUTION We use the first formula found in Theorem 11.5.2.
2|
kX) = —————
(1+ (2x)2)*?
B 2
(1+ax)*?
At the vertex (x = 0), the curvature is kK = 2. At x = 1, the curvature

is k = 2/(5)3? ~ 0.179. So at x = 0, the curvature of y = x? is that of
a circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
~2 1/0.179 = 5.59. This is illustrated in Figure 11.5.5. At x = 3, the curvature is
0.009; the graph is nearly straight as the curvature is very close to 0.

Example 11.5.5 Finding curvature
Find where the curvature of F(t) = (t,t?, 2t>) is maximized.

Notes:
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SOLUTION We use the third formulain Theorem 11.5.2 as 7(t) is defined
in space. We leave it to the reader to verify that

F'(t) = (1,2t,6t%), F"(t)=1(0,2,12t), and F'(t)xF"(t) = (12¢%,—-12t,2).

Thus
[|7'(8) < 7"(t) ||
K(t) = -
7 (&) 11
_l (122, -12t,2) ||
| (1,2t 6t%) |2

/144th 1 1442 1 4
- 3
(\/1 4t 1 36t )

While this is not a particularly “nice” formula, it does explicitly tell us what the
curvature is at a given t value. To maximize x(t), we should solve «/(t) = 0 for
t. This is doable, but very time consuming. Instead, consider the graph of x(t)
as given in Figure 11.5.6(a). We see that x is maximized at two t values; using a
numerical solver, we find these values are t ~ +0.189. In part (b) of the figure
we graph r{(t) and indicate the points where curvature is maximized.

Curvature and Motion

Let r(t) be a position function of an object, with velocity V(t) = r’(t) and
acceleration @(t) = 7”(t). In Section 11.4 we established that acceleration is in
the plane formed by T(t) and N(t), and that we can find scalars ar and ay such
that

a(t) = arT(t) + ayN(t).
Theorem 11.4.2 gives formulas for ar and ay:

d

_d [[v(8) x a(t) ||
dt '

V() |

We understood that the amount of acceleration in the direction of T relates only
to how the speed of the object is changing, and that the amount of acceleration
in the direction of N relates to how the direction of travel of the object is chang-
ing. (That is, if the object travels at constant speed, a; = 0; if the object travels
in a constant direction, ay = 0.)

In Equation (11.2) at the beginning of this section, we found s’(t) = || ¥(t) ||
We can combine this fact with the above formula for a to write

ar = (17011) = 2 (s'() =s"(t).

ar

(I17@)1) and ay =

Notes:

y

(a)

(b)

Ny

x

Figure 11.5.6: Understanding the curva-

ture of a curve in space.
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Operating Minimum
Speed (mph) Radius (ft)
35 310
40 430
45 540

Figure 11.5.7: Operating speed and mini-
mum radius in highway cloverleaf design.
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Since s’(t) is speed, s”'(t) is the rate at which speed is changing with respect to
time. We see once more that the component of acceleration in the direction of
travel relates only to speed, not to a change in direction.

Now compare the formula for ay above to the formula for curvature in The-

orem 11.5.2:
1o < a@)l PO <Pl [ xa) ||

[ v(e) ] |7 () [1° () P

an =

Thus

an = k|| V(t) ||? (11.5)

This last equation shows that the component of acceleration that changes
the object’s direction is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. You will naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up (i.e., increasing s’(t)), the door pushes harder
against you (ay has increased). If you keep your speed constant but tighten the
turn (i.e., increase k), once again the door will push harder against you.

Putting our new formulas for at and ay together, we have

a(t) = s"(OT(t) + x| (t) |[PN(D).

This is not a particularly practical way of finding ar and ay, but it reveals some
great concepts about how acceleration interacts with speed and the shape of a
curve.

Example 11.5.6  Curvature and road design

The minimum radius of the curve in a highway cloverleaf is determined by the
operating speed, as given in the table in Figure 11.5.7. For each curve and speed,
compute ay.

SOLUTION Using Equation (11.5), we can compute the acceleration
normal to the curve in each case. We start by converting each speed from “miles
per hour” to “feet per second” by multiplying by 5280/3600.

Notes:
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35mph, 310ft = 51.33ft/s, « = 1/310
ay = k|| V(t) ||
1 2
= —(51.33
310( )
= 8.50ft/s°.

40mph, 430ft = 58.67ft/s, r = 1/430
1 2
any = —— (58.67
N 430( )

= 8.00ft/s>.

45mph,540ft = 66ft/s, Kk = 1/540

1 2
520 (66)

= 8.07ft/s%.

an =

Note that each acceleration is similar; this is by design. Considering the classic
“Force = mass x acceleration” formula, this acceleration must be kept small in
order for the tires of a vehicle to keep a “grip” on the road. If one travels on a
turn of radius 310ft at a rate of 50mph, the acceleration is double, at 17.35ft/s?.
If the acceleration is too high, the frictional force created by the tires may not be
enough to keep the car from sliding. Civil engineers routinely compute a “safe”
design speed, then subtract 5-10mph to create the posted speed limit for addi-
tional safety.

We end this chapter with a reflection on what we’ve covered. We started
with vector—valued functions, which may have seemed at the time to be just
another way of writing parametric equations. However, we have seen that the
vector perspective has given us great insight into the behavior of functions and
the study of motion. Vector—valued position functions convey displacement,
distance traveled, speed, velocity, acceleration and curvature information, each
of which has great importance in science and engineering.

Notes:
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Terms and Concepts

1. It is common to describe position in terms of both
and/or

2. A measure of the “curviness” of a curve is

3. Give two shapes with constant curvature.

4. Describe in your own words what an “osculating circle” is.
5. Complete the identity: T'(s) = N(s).

6. Given a position function r{t), how are ar and ay affected
by the curvature?

Problems

In Exercises 7 — 10 , a position function r(t) is given, where
t = 0 corresponds to the initial position. Find the arc length
parameter s, and rewrite r(t) in terms of s; that is, find r{s).

7. r(t) = (2t,t,—2t)

8. r(t) = (7cost,7sint)

9. r(t) = (3cost,3sint,2t)

10. r(t) = (5cost, 13sint,12 cost)

In Exercises 11-22, a curve Cis described along with 2 points
on C.

(a) Using a sketch, determine at which of these points the
curvature is greater.

(b) Find the curvature x of C, and evaluate « at each of the
2 given points.

11. Cis defined by y = x* — x; points given at x = 0 and

x=1/2.

12. Cis defined by y =

X =2.

1
m; points given at x = 0 and

13. Cis defined by y = cosx; points given at x = 0 and
x=m7/2.

14. Cis defined by y = v/1 — x2 on (—1,1); points given at
x=0andx=1/2.

15. Cis defined by r(t) = (cost, sin(2t)); points givenat t = 0
andt = 7/4.

16. Cis defined by F(t) = (cos’t,sintcost); points given at
t=0andt=m7/3.

17. Cisdefined by F(t) = (t* — 1,£® — t); points givenatt = 0
andt=>5.

18. Cis defined by r(t) = (tant,sect); points given att = 0
andt = 7/6.

19. Cisdefined by r(t) = (4t + 2,3t — 1,2t 4 5); points given
att=0andt= 1.

20. Cisdefined by F(t) = (£ —t,£* — 4,¢* — 1); points given
att=0andt =1.

21. Cis defined by r(t) = (3cost,3sint, 2t); points given at
t=0andt=m/2.

22. Cis defined by 7(t) = (5cost,13sint,12cost); points
givenatt =0and t = 7/2.

In Exercises 23 — 26, find the value of x or t where curvature
is maximized.

23. y= %x
24. y =sinx

25. F(t) = (¥ +2t,3t — t*)
26. 7(t) = (t,4/t,3/t)

In Exercises 27 — 30, find the radius of curvature at the indi-
cated value.

27. y=tanx,atx =w/4

28. y=x"+x—3,atx=1/4
29. 7(t) = (cost,sin(3t)),att =0
30. r(t) = (5cos(3t),t),att =0

In Exercises 31 — 34, find the equation of the osculating circle
to the curve at the indicated t-value.

31 F(t) = (t,f),att=0
32. r(t) = (3cost,sint), att =0
33. 7(t) = (3cost,sint), att = 7/2

34. F(t) = (¥ —t,* +1),att =0



