
OVERVIEW  In Chapter 2, we defined the slope of a curve at a point as the limit of secant
slopes. This limit, called a derivative, measures the rate at which a function changes, and it
is one of the most important ideas in calculus. Derivatives are used to calculate velocity
and acceleration, to estimate the rate of spread of a disease, to set levels of production so
as to maximize efficiency, to find the best dimensions of a cylindrical can, to find the age
of a prehistoric artifact, and for many other applications. In this chapter, we develop tech-
niques to calculate derivatives easily and learn how to use derivatives to approximate com-
plicated functions.

147

DIFFERENTIATION

C h a p t e r

3 

The Derivative as a Function

At the end of Chapter 2, we defined the slope of a curve at the point where
to be

We called this limit, when it existed, the derivative of ƒ at We now investigate the
derivative as a function derived from ƒ by considering the limit at each point of the do-
main of ƒ.

x0 .

lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

x = x0

y = ƒsxd

3.1

HISTORICAL ESSAY

The Derivative

DEFINITION Derivative Function
The derivative of the function ƒ(x) with respect to the variable x is the function

whose value at x is

provided the limit exists.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
,

ƒ¿
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We use the notation ƒ(x) rather than simply ƒ in the definition to emphasize the inde-
pendent variable x, which we are differentiating with respect to. The domain of is the set
of points in the domain of ƒ for which the limit exists, and the domain may be the same or
smaller than the domain of ƒ. If exists at a particular x, we say that ƒ is differentiable
(has a derivative) at x. If exists at every point in the domain of ƒ, we call ƒ differen-
tiable.

If we write then and h approaches 0 if and only if z approaches
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.1).

h = z - xz = x + h ,

ƒ¿

ƒ¿

ƒ¿
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Alternative Formula for the Derivative

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x .

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function we use the notation

as another way to denote the derivative Examples 2 and 3 of Section 2.7 illustrate
the differentiation process for the functions and Example 2 shows
that

For instance,

In Example 3, we see that

Here are two more examples.

EXAMPLE 1 Applying the Definition

Differentiate 

Solution Here we have ƒsxd =

x
x - 1

ƒsxd =

x
x - 1

 .

d
dx
a1x b = -

1
x2 .

d
dx

 a3
2

 x - 4b =

3
2

.

d
dx

 smx + bd = m .

y = 1>x .y = mx + b
ƒ¿sxd .

d
dx

 ƒsxd

y = ƒsxd ,

x z

h � z � x

P(x, f (x))

Q(z, f (z))

f (z) � f (x)

y � f (x)

Secant slope is
f (z) � f (x)

z � x

Derivative of f at x is

f '(x) � lim
h→0

� lim
z→x

f (x � h) � f (x)
h

f (z) � f (x)
z � x

FIGURE 3.1 The way we write the
difference quotient for the derivative of a
function ƒ depends on how we label the
points involved.
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and

EXAMPLE 2 Derivative of the Square Root Function

(a) Find the derivative of for 

(b) Find the tangent line to the curve at 

Solution

(a) We use the equivalent form to calculate 

(b) The slope of the curve at is

The tangent is the line through the point (4, 2) with slope (Figure 3.2):

We consider the derivative of when in Example 6.x = 0y = 1x

 y =
1
4

 x + 1.

 y = 2 +
1
4

 sx - 4d

1>4
ƒ¿s4d =

1

224
=

1
4

.

x = 4

 = lim
z:x

 
11z + 1x

=
1

21x
 .

 = lim
z:x

 
1z - 1x

A1z - 1x B A1z + 1x B

 = lim
z:x

 
1z - 1x

z - x

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

ƒ¿ :

x = 4.y = 1x

x 7 0.y = 1x

 = lim
h:0

 
-1

sx + h - 1dsx - 1d
=

-1
sx - 1d2 .

 = lim
h:0

 
1
h

# -h
sx + h - 1dsx - 1d

a
b

-

c
d

=

ad - cb
bd

 = lim
h:0

 
1
h

#
sx + hdsx - 1d - xsx + h - 1d

sx + h - 1dsx - 1d

 = lim
h:0

 

x + h
x + h - 1

-

x
x - 1

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsx + hd =

sx + hd
sx + hd - 1

 , so
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You will often need to know the
derivative of for 

d
dx

 1x =

1
21x

.

x 7 0:1x

x

y

0 4

(4, 2)

1

y � �x

y �    x � 11
4

FIGURE 3.2 The curve and its
tangent at (4, 2). The tangent’s slope is
found by evaluating the derivative at 
(Example 2).

x = 4

y = 1x

4100 AWL/Thomas_ch03p147-243  8/19/04  11:16 AM  Page 149

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



Notations

There are many ways to denote the derivative of a function where the independ-
ent variable is x and the dependent variable is y. Some common alternative notations for
the derivative are

The symbols and D indicate the operation of differentiation and are called
differentiation operators. We read as “the derivative of y with respect to x,” and

and ( )ƒ(x) as “the derivative of ƒ with respect to x.” The “prime” notations 
and come from notations that Newton used for derivatives. The notations are simi-
lar to those used by Leibniz. The symbol should not be regarded as a ratio (until we
introduce the idea of “differentials” in Section 3.8).

Be careful not to confuse the notation D(ƒ) as meaning the domain of the function ƒ
instead of the derivative function The distinction should be clear from the context.

To indicate the value of a derivative at a specified number we use the notation

For instance, in Example 2b we could write

To evaluate an expression, we sometimes use the right bracket ] in place of the vertical bar 

Graphing the Derivative

We can often make a reasonable plot of the derivative of by estimating the slopes
on the graph of ƒ. That is, we plot the points in the xy-plane and connect them
with a smooth curve, which represents 

EXAMPLE 3 Graphing a Derivative

Graph the derivative of the function in Figure 3.3a.

Solution We sketch the tangents to the graph of ƒ at frequent intervals and use their
slopes to estimate the values of at these points. We plot the corresponding 
pairs and connect them with a smooth curve as sketched in Figure 3.3b.

What can we learn from the graph of At a glance we can see

1. where the rate of change of ƒ is positive, negative, or zero;

2. the rough size of the growth rate at any x and its size in relation to the size of ƒ(x);

3. where the rate of change itself is increasing or decreasing.

Here’s another example.

EXAMPLE 4 Concentration of Blood Sugar

On April 23, 1988, the human-powered airplane Daedalus flew a record-breaking 119 km
from Crete to the island of Santorini in the Aegean Sea, southeast of mainland Greece. Dur-

y = ƒ¿sxd?

sx, ƒ¿sxddƒ¿sxd

y = ƒsxd

y = ƒ¿sxd .
sx, ƒ¿sxdd

y = ƒsxd

ƒ .

ƒ¿s4d =

d
dx

 1x `
x = 4

=
1

21x
`
x = 4

=
1

224
=

1
4

.

ƒ¿sad =

dy
dx
`
x = a

=

df
dx
`
x = a

=

d
dx

 ƒsxd `
x = a

.

x = a ,
ƒ¿ .

dy>dx
d>dxƒ¿

y¿d>dxdƒ>dx
dy>dx

d>dx

ƒ¿sxd = y¿ =

dy
dx

=

dƒ
dx

=

d
dx

 ƒsxd = Dsƒdsxd = Dx ƒsxd .

y = ƒsxd ,
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ing the 6-hour endurance tests before the flight, researchers monitored the prospective pilots’
blood-sugar concentrations. The concentration graph for one of the athlete-pilots is shown in
Figure 3.4a, where the concentration in milligrams deciliter is plotted against time in hours.

The graph consists of line segments connecting data points. The constant slope of
each segment gives an estimate of the derivative of the concentration between measure-
ments. We calculated the slope of each segment from the coordinate grid and plotted the
derivative as a step function in Figure 3.4b. To make the plot for the first hour, for in-
stance, we observed that the concentration increased from about 79 mg dL to 93 mg dL.
The net increase was Dividing this by gave
the rate of change as

Notice that we can make no estimate of the concentration’s rate of change at times
where the graph we have drawn for the concentration has a corner and no

slope. The derivative step function is not defined at these times.
t = 1, 2, Á , 5 ,

¢y

¢t
=

14
1

= 14 mg>dL per hour .

¢t = 1 hour¢y = 93 - 79 = 14 mg>dL.
>>

>
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y � f (x)

Slope � � 2 y-units/x-unit8
4

� 8 y-units

� 4 x-units

Slope

A'

y � f '(x)

B'
C'

D'

E'

Vertical coordinate –1

FIGURE 3.3 We made the graph of in (b) by plotting slopes from the
graph of in (a). The vertical coordinate of is the slope at B and so on. The
graph of is a visual record of how the slope of ƒ changes with x.ƒ¿

B¿y = ƒsxd
y = ƒ¿sxd
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Differentiable on an Interval; One-Sided Derivatives

A function is differentiable on an open interval (finite or infinite) if it has a de-
rivative at each point of the interval. It is differentiable on a closed interval [a, b] if it is
differentiable on the interior (a, b) and if the limits

Right-hand derivative at a

Left-hand derivative at b

exist at the endpoints (Figure 3.5).
Right-hand and left-hand derivatives may be defined at any point of a function’s do-

main. The usual relation between one-sided and two-sided limits holds for these derivatives.
Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if it
has left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 5 Is Not Differentiable at the Origin

Show that the function is differentiable on and but has no deriva-
tive at 

Solution To the right of the origin,

To the left,

ƒ x ƒ = -x
d
dx

 s ƒ x ƒ d =

d
dx

 s -xd =

d
dx

 s -1 # xd = -1

ƒ x ƒ = x
d
dx

 smx + bd = m ,
d
dx

 s ƒ x ƒ d =

d
dx

 sxd =

d
dx

 s1 # xd = 1.

x = 0.
s0, q ds - q , 0dy = ƒ x ƒ

y = ƒ x ƒ

lim
h:0-

 
ƒsb + hd - ƒsbd

h

lim
h:0+

 
ƒsa + hd - ƒsad

h

y = ƒsxd
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FIGURE 3.4 (a) Graph of the sugar concentration in the blood of a Daedalus pilot
during a 6-hour preflight endurance test. (b) The derivative of the pilot’s blood-sugar
concentration shows how rapidly the concentration rose and fell during various portions
of the test.

a ba � h
h � 0

b � h
h � 0

lim
h→0�

f (a � h) � f (a)
h

Slope �

y � f (x)

lim
h→0�

f (b � h) � f (b)
h

Slope �

x

FIGURE 3.5 Derivatives at endpoints are
one-sided limits.
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(Figure 3.6). There can be no derivative at the origin because the one-sided derivatives dif-
fer there:

EXAMPLE 6 Is Not Differentiable at 

In Example 2 we found that for 

We apply the definition to examine if the derivative exists at 

Since the (right-hand) limit is not finite, there is no derivative at Since the slopes
of the secant lines joining the origin to the points on a graph of ap-
proach the graph has a vertical tangent at the origin.

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point if the slopes of the secant lines through
and a nearby point Q on the graph approach a limit as Q approaches P. When-

ever the secants fail to take up a limiting position or become vertical as Q approaches P,
the derivative does not exist. Thus differentiability is a “smoothness” condition on the
graph of ƒ. A function whose graph is otherwise smooth will fail to have a derivative at a
point for several reasons, such as at points where the graph has

1. a corner, where the one-sided 2. a cusp, where the slope of PQ
derivatives differ. approaches from one side and 

from the other.

P

Q�

Q�

P

Q� Q�

- qq

Psx0, ƒsx0dd
x0

q ,
y = 1xAh, 1h B x = 0.

lim
h:0+

 
20 + h - 20

h
= lim

h:0+

 
11h

= q .

x = 0:

d
dx

 1x =
1

21x
 .

x 7 0,

x = 0y = 1x

 = lim
h:0-

- 1 = -1.

 = lim
h:0-

 
-h
h

 Left-hand derivative of ƒ x ƒ at zero = lim
h:0-

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0-

 
ƒ h ƒ

h

 = lim
h:0+

1 = 1

 = lim
h:0+

 
h
h

 Right-hand derivative of ƒ x ƒ at zero = lim
h:0+

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0+

 
ƒ h ƒ

h

3.1 The Derivative as a Function 153

x

y

0
y' not defined at x � 0:
right-hand derivative
� left-hand derivative

y' � –1 y' � 1

y �x

FIGURE 3.6 The function is
not differentiable at the origin where
the graph has a “corner.”

y = ƒ x ƒ

ƒ h ƒ = h when h 7 0.

ƒ h ƒ = -h when h 6 0.
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3. a vertical tangent, where the slope of PQ approaches from both sides or
approaches from both sides (here, ).

4. a discontinuity.

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

P

Q�

Q�

P

Q�

Q�

P

Q�

Q�

- q- q

q
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THEOREM 1 Differentiability Implies Continuity
If ƒ has a derivative at then ƒ is continuous at x = c .x = c ,

Proof Given that exists, we must show that or equivalently,
that If then

 = ƒscd +

ƒsc + hd - ƒscd
h

# h .

 ƒsc + hd = ƒscd + sƒsc + hd - ƒscdd

h Z 0,limh:0 ƒsc + hd = ƒscd .
limx:c ƒsxd = ƒscd ,ƒ¿scd
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Now take limits as By Theorem 1 of Section 2.2,

Similar arguments with one-sided limits show that if ƒ has a derivative from one side
(right or left) at then ƒ is continuous from that side at 

Theorem 1 on page 154 says that if a function has a discontinuity at a point (for in-
stance, a jump discontinuity), then it cannot be differentiable there. The greatest integer
function fails to be differentiable at every integer (Example 4,
Section 2.6).

CAUTION The converse of Theorem 1 is false. A function need not have a derivative at a
point where it is continuous, as we saw in Example 5.

The Intermediate Value Property of Derivatives

Not every function can be some function’s derivative, as we see from the following theorem.

x = ny = :x; = int x

x = c .x = c

 = ƒscd .

 = ƒscd + 0

 = ƒscd + ƒ¿scd # 0

 lim
h:0

 ƒsc + hd = lim
h:0

 ƒscd + lim
h:0

 
ƒsc + hd - ƒscd

h
# lim

h:0
h

h : 0.
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x

y

0

1
y � U(x)

FIGURE 3.7 The unit step
function does not have the
Intermediate Value Property and
cannot be the derivative of a
function on the real line.

THEOREM 2
If a and b are any two points in an interval on which ƒ is differentiable, then 
takes on every value between and ƒ¿sbd .ƒ¿sad

ƒ¿

Theorem 2 (which we will not prove) says that a function cannot be a derivative on an in-
terval unless it has the Intermediate Value Property there. For example, the unit step func-
tion in Figure 3.7 cannot be the derivative of any real-valued function on the real line. In
Chapter 5 we will see that every continuous function is a derivative of some function.

In Section 4.4, we invoke Theorem 2 to analyze what happens at a point on the graph
of a twice-differentiable function where it changes its “bending” behavior.
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3.1 The Derivative as a Function 155

EXERCISES 3.1

Finding Derivative Functions and Values
Using the definition, calculate the derivatives of the functions in Exer-
cises 1–6. Then find the values of the derivatives as specified.

1.

2.

3. g std =

1
t2 ; g¿s -1d, g¿s2d, g¿ A23 B

Fsxd = sx - 1d2
+ 1; F¿s -1d, F¿s0d, F¿s2d

ƒsxd = 4 - x2; ƒ¿s -3d, ƒ¿s0d, ƒ¿s1d

4.

5.

6.

In Exercises 7–12, find the indicated derivatives.

7. 8.
dr
ds
 if r =

s3

2
+ 1

dy

dx
 if y = 2x3

r ssd = 22s + 1 ; r¿s0d, r¿s1d, r¿s1>2d

psud = 23u ; p¿s1d, p¿s3d, p¿s2>3d

k szd =

1 - z
2z

 ; k¿s -1d, k¿s1d, k¿ A22 B
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9.

10.

11.

12.

Slopes and Tangent Lines
In Exercises 13–16, differentiate the functions and find the slope of
the tangent line at the given value of the independent variable.

13.

14.

15.

16.

In Exercises 17–18, differentiate the functions. Then find an equation
of the tangent line at the indicated point on the graph of the function.

17.

18.

In Exercises 19–22, find the values of the derivatives.

19.

20.

21.

22.

Using the Alternative Formula for Derivatives
Use the formula

to find the derivative of the functions in Exercises 23–26.

23.

24.

25.

26. g sxd = 1 + 1x

g sxd =

x
x - 1

ƒsxd =

1
sx - 1d2

ƒsxd =

1
x + 2

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

dw
dz
`
z = 4

 if w = z + 1z

dr
du
`
u= 0

 if r =

224 - u

dy

dx
`
x =23

 if y = 1 -

1
x

ds
dt
`
t = -1

 if s = 1 - 3t2

w = g szd = 1 + 24 - z, sz, wd = s3, 2d

y = ƒsxd =

82x - 2
 , sx, yd = s6, 4d

y = sx + 1d3, x = -2

s = t3
- t2, t = -1

k sxd =

1
2 + x

 , x = 2

ƒsxd = x +

9
x  , x = -3

dz
dw

 if z =

123w - 2

dp

dq
 if p =

12q + 1

dy
dt
 if y = t -

1
t

ds
dt
 if s =

t
2t + 1

Graphs
Match the functions graphed in Exercises 27–30 with the derivatives
graphed in the accompanying figures (a)–(d).
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y'

0
x

(d)

y'

0
x

(c)

y'

0
x

(a)

y'

0
x

(b)

27. 28.

29. 30.

31. a. The graph in the accompanying figure is made of line seg-
ments joined end to end. At which points of the interval

is not defined? Give reasons for your answer.ƒ¿[-4, 6]

y

0
x

y � f3(x)

y

0
x

y � f4(x)

x

y

0

y � f1(x)

x

y

0

y � f2(x)

x

y

0 1 6

(0, 2) (6, 2)

(–4, 0)

y � f (x)

(4, –2)(1, –2)
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b. Graph the derivative of ƒ.
The graph should show a step function.

32. Recovering a function from its derivative

a. Use the following information to graph the function ƒ over
the closed interval 

i) The graph of ƒ is made of closed line segments joined
end to end.

ii) The graph starts at the point 
iii) The derivative of ƒ is the step function in the figure

shown here.

b. Repeat part (a) assuming that the graph starts at 
instead of 

33. Growth in the economy The graph in the accompanying figure
shows the average annual percentage change in the U.S.
gross national product (GNP) for the years 1983–1988. Graph

(where defined). (Source: Statistical Abstracts of the United
States, 110th Edition, U.S. Department of Commerce, p. 427.)

34. Fruit flies (Continuation of Example 3, Section 2.1.) Popula-
tions starting out in closed environments grow slowly at first,
when there are relatively few members, then more rapidly as the
number of reproducing individuals increases and resources are
still abundant, then slowly again as the population reaches the
carrying capacity of the environment.

a. Use the graphical technique of Example 3 to graph the
derivative of the fruit fly population introduced in Section 2.1.
The graph of the population is reproduced here.

1983 1984 1985 1986 1987 1988
0
1

2

3

4

5

6

7%

dy>dt

y = ƒstd

s -2, 3d .
s -2, 0d

x
0 1–2 3 5

1

y'

y' � f '(x)

–2

s -2, 3d .

[-2, 5] .

b. During what days does the population seem to be increasing
fastest? Slowest?

One-Sided Derivatives
Compare the right-hand and left-hand derivatives to show that the
functions in Exercises 35–38 are not differentiable at the point P.

35. 36.

37. 38.

Differentiability and Continuity on an Interval
Each figure in Exercises 39–44 shows the graph of a function over a
closed interval D. At what domain points does the function appear to be

a. differentiable?

b. continuous but not differentiable?

c. neither continuous nor differentiable?

p

t
100

50

100

150

200

250

300

350

20 30 40 50

Time (days)
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x

y

y � f (x)y � x2

y � x

P(0, 0)
x

y

y � f (x)

y � 2x

y � 2

1

2

0 1 2

P(1, 2)

y

y � f (x)

y � 2x � 1

x

P(1, 1)

0

1

1

y � �x

y

y � 1
x

y � f (x)

x

P(1, 1)

y � x
1

1
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Give reasons for your answers.

39. 40.

41. 42.

43. 44.

Theory and Examples
In Exercises 45–48,

a. Find the derivative of the given function 

b. Graph and side by side using separate sets of
coordinate axes, and answer the following questions.

c. For what values of x, if any, is positive? Zero? Negative?

d. Over what intervals of x-values, if any, does the function
increase as x increases? Decrease as x increases? How

is this related to what you found in part (c)? (We will say more
about this relationship in Chapter 4.)

45. 46.

47. 48.

49. Does the curve ever have a negative slope? If so, where?
Give reasons for your answer.

50. Does the curve have any horizontal tangents? If so,
where? Give reasons for your answer.

y = 21x

y = x3

y = x4>4y = x3>3
y = -1>xy = -x2

y = ƒsxd

ƒ¿

y = ƒ¿sxdy = ƒsxd
y = ƒsxd .ƒ¿sxd

y � f (x)
D:  –3 � x � 3

x

y

–3 –2 –1 0

2

4

1 2 3x

y
y � f (x)
D:  –1 � x � 2

–1 0 1 2

1

x

y

y � f (x)
D:  –2 � x � 3

–2 –1 1 2 30

1

2

3

x

y

y � f (x)
D:  –3 � x � 3

–1 0
–1

1

–2

1 2 3–2–3

y � f (x)
D:  –2 � x � 3

x

y

–1 0 1 2 3–2

1

–1

–2

2

y � f (x)
D:  –3 � x � 2

x

y

–3 –2 –1 1 20

1

–1

–2

2

51. Tangent to a parabola Does the parabola 
have a tangent whose slope is If so, find an equation for the
line and the point of tangency. If not, why not?

52. Tangent to Does any tangent to the curve 
cross the x-axis at If so, find an equation for the line
and the point of tangency. If not, why not?

53. Greatest integer in x Does any function differentiable on
have the greatest integer in x (see Figure

2.55), as its derivative? Give reasons for your answer.

54. Derivative of Graph the derivative of Then
graph What can you conclude?

55. Derivative of Does knowing that a function ƒ(x) is differen-
tiable at tell you anything about the differentiability of the
function at Give reasons for your answer.

56. Derivative of multiples Does knowing that a function g (t) is
differentiable at tell you anything about the differentiability
of the function 3g at Give reasons for your answer.

57. Limit of a quotient Suppose that functions g(t) and h(t) are 
defined for all values of t and Can

exist? If it does exist, must it equal zero?
Give reasons for your answers.

58. a. Let ƒ(x) be a function satisfying for 
Show that ƒ is differentiable at and find 

b. Show that

is differentiable at and find 

59. Graph in a window that has Then, on
the same screen, graph

for Then try Explain what
is going on.

60. Graph in a window that has 
Then, on the same screen, graph

for Then try Explain what is
going on.

61. Weierstrass’s nowhere differentiable continuous function
The sum of the first eight terms of the Weierstrass function

is

Graph this sum. Zoom in several times. How wiggly and bumpy
is this graph? Specify a viewing window in which the displayed
portion of the graph is smooth.

  + s2>3d3 cos s93pxd +
Á

+ s2>3d7 cos s97pxd .

 g sxd = cos spxd + s2>3d1 cos s9pxd + s2>3d2 cos s92pxd

g
q

n = 0 s2>3dn cos s9npxdƒ(x) =

h = -2, -1, -0.2 .h = 2, 1, 0.2 .

y =

sx + hd3
- x3

h

-2 … x … 2, 0 … y … 3.y = 3x2

h = -1, -0.5, -0.1 .h = 1, 0.5, 0.1 .

y =

1x + h - 1x
h

0 … x … 2.y = 1> A21x B
ƒ¿s0d .x = 0

ƒsxd = L x2 sin 
1
x , x Z 0

0, x = 0

ƒ¿s0d .x = 0
-1 … x … 1.ƒ ƒsxd ƒ … x2

limt:0 sg stdd>shstdd
g s0d = hs0d = 0.

t = 7?
t = 7

x = x0 ?-ƒ
x = x0

�ƒ

y = s ƒ x ƒ - 0d>sx - 0d = ƒ x ƒ >x .
ƒsxd = ƒ x ƒ .y � ƒ x ƒ

y = int x ,s - q , q d

x = -1?
y = 1xy � 1x

-1?
y = 2x2

- 13x + 5
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159

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the functions in Exer-
cises 62–67.

a. Plot to see that function’s global behavior.

b. Define the difference quotient q at a general point x, with general
step size h.

c. Take the limit as What formula does this give?

d. Substitute the value and plot the function 
together with its tangent line at that point.

e. Substitute various values for x larger and smaller than into the
formula obtained in part (c). Do the numbers make sense with
your picture?

x0

y = ƒsxdx = x0

h : 0.

y = ƒsxd

f. Graph the formula obtained in part (c). What does it mean when
its values are negative? Zero? Positive? Does this make sense
with your plot from part (a)? Give reasons for your answer.

62.

63.

64. 65.

66. 67. ƒsxd = x2 cos x, x0 = p>4ƒsxd = sin 2x, x0 = p>2
ƒsxd =

x - 1
3x2

+ 1
, x0 = -1ƒsxd =

4x

x2
+ 1

, x0 = 2

ƒsxd = x1>3
+ x2>3, x0 = 1

ƒsxd = x3
+ x2

- x, x0 = 1
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3.2 Differentiation Rules 159

Differentiation Rules

This section introduces a few rules that allow us to differentiate a great variety of func-
tions. By proving these rules here, we can differentiate functions without having to apply
the definition of the derivative each time.

Powers, Multiples, Sums, and Differences

The first rule of differentiation is that the derivative of every constant function is zero.

3.2

RULE 1 Derivative of a Constant Function
If ƒ has the constant value then

dƒ
dx

=

d
dx

 scd = 0.

ƒsxd = c ,

EXAMPLE 1

If ƒ has the constant value then

Similarly,

Proof of Rule 1 We apply the definition of derivative to the function whose
outputs have the constant value c (Figure 3.8). At every value of x, we find that

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
c - c

h
= lim

h:0
0 = 0.

ƒsxd = c ,

d
dx

 a- p
2
b = 0 and d

dx
 a23b = 0.

df
dx

=

d
dx

 s8d = 0.

ƒsxd = 8,

x

y

0 x

c

h

y � c
(x � h, c)(x, c)

x � h

FIGURE 3.8 The rule is
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.

sd>dxdscd = 0
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The second rule tells how to differentiate if n is a positive integer.xn

160 Chapter 3: Differentiation

RULE 2 Power Rule for Positive Integers
If n is a positive integer, then

d
dx

 xn
= nxn - 1 .

To apply the Power Rule, we subtract 1 from the original exponent (n) and multiply
the result by n.

EXAMPLE 2 Interpreting Rule 2

ƒ x

1 2x

First Proof of Rule 2 The formula

can be verified by multiplying out the right-hand side. Then from the alternative form for
the definition of the derivative,

Second Proof of Rule 2 If then Since n is a positive
integer, we can expand by the Binomial Theorem to get

The third rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.

 = nxn - 1

 = lim
h:0

 cnxn - 1
+

nsn - 1d
2

 xn - 2h +
Á

+ nxhn - 2
+ hn - 1 d

 = lim
h:0

 
nxn - 1h +

nsn - 1d
2

 xn - 2h2
+

Á
+ nxhn - 1

+ hn

h

 = lim
h:0

 

cxn
+ nxn - 1h +

nsn - 1d
2

 xn - 2h2
+

Á
+ nxhn - 1

+ hn d - xn

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
sx + hdn

- xn

h

sx + hdn
ƒsx + hd = sx + hdn .ƒsxd = xn ,

 = nxn - 1

 = lim
z:x

szn - 1
+ zn - 2x +

Á
+ zxn - 2

+ xn - 1d

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x = lim
z:x

 
zn

- xn

z - x

zn
- xn

= sz - xdszn - 1
+ zn - 2 x +

Á
+ zxn - 2

+ xn - 1d

Á4x33x2ƒ¿

Áx4x3x2

HISTORICAL BIOGRAPHY

Richard Courant
(1888–1972)
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In particular, if n is a positive integer, then

EXAMPLE 3

(a) The derivative formula

says that if we rescale the graph of by multiplying each y-coordinate by 3,
then we multiply the slope at each point by 3 (Figure 3.9).

(b) A useful special case

The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. Rule 3 with gives

Proof of Rule 3

Limit property

u is differentiable.

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

 = c 
du
dx

 = c lim
h:0

 
usx + hd - usxd

h

 
d
dx

 cu = lim
h:0

 
cusx + hd - cusxd

h

d
dx

 s -ud =

d
dx

 s -1 # ud = -1 # d
dx

 sud = -

du
dx

.

c = -1

y = x2

d
dx

 s3x2d = 3 # 2x = 6x

d
dx

 scxnd = cnxn - 1 .

3.2 Differentiation Rules 161

RULE 3 Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

d
dx

 scud = c 
du
dx

.

RULE 4 Derivative Sum Rule
If u and y are differentiable functions of x, then their sum is differentiable
at every point where u and y are both differentiable. At such points,

d
dx

 su + yd =

du
dx

+

dy
dx

.

u + y

x

y

0 1

1
(1, 1)

2

2

3 (1, 3)
 

Slope

Slope
Slope � 2x

� 2(1) � 2

y � x2

y � 3x2

Slope � 3(2x)
� 6x
� 6(1) � 6

FIGURE 3.9 The graphs of and
Tripling the y-coordinates triples

the slope (Example 3).
y = 3x2 .

y = x2

Derivative definition
with ƒsxd = cusxd

Denoting Functions by u and Y
The functions we are working with
when we need a differentiation formula
are likely to be denoted by letters like ƒ
and g. When we apply the formula, we
do not want to find it using these same
letters in some other way. To guard
against this problem, we denote the
functions in differentiation rules by
letters like u and y that are not likely to
be already in use.
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EXAMPLE 4 Derivative of a Sum

Proof of Rule 4 We apply the definition of derivative to 

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives.

The Sum Rule also extends to sums of more than two functions, as long as there are
only finitely many functions in the sum. If are differentiable at x, then so is

and

EXAMPLE 5 Derivative of a Polynomial

Notice that we can differentiate any polynomial term by term, the way we differenti-
ated the polynomial in Example 5. All polynomials are differentiable everywhere.

Proof of the Sum Rule for Sums of More Than Two Functions We prove the statement

by mathematical induction (see Appendix 1). The statement is true for as was just
proved. This is Step 1 of the induction proof.

n = 2,

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

 = 3x2
+

8
3

 x - 5

 = 3x2
+

4
3

# 2x - 5 + 0

 
dy
dx

=

d
dx

 x3
+

d
dx

 a4
3

 x2b -

d
dx

 s5xd +

d
dx

 s1d

 y = x3
+

4
3

 x2
- 5x + 1

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx
.

u1 + u2 +
Á

+ un ,
u1 , u2 , Á , un

d
dx

 su - yd =

d
dx

 [u + s -1dy] =

du
dx

+ s -1d 
dy
dx

=

du
dx

-

dy
dx

 = lim
h:0

 
usx + hd - usxd

h
+ lim

h:0
 
ysx + hd - ysxd

h
=

du
dx

+

dy
dx

.

 = lim
h:0

 cusx + hd - usxd
h

+

ysx + hd - ysxd
h

d
 
d
dx

 [usxd + ysxd] = lim
h:0

 
[usx + hd + ysx + hd] - [usxd + ysxd]

h

ƒsxd = usxd + ysxd :

 = 4x3
+ 12

 
dy
dx

=

d
dx

 sx4d +

d
dx

 s12xd

 y = x4
+ 12x

162 Chapter 3: Differentiation
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Step 2 is to show that if the statement is true for any positive integer where
then it is also true for So suppose that

(1)

Then

Eq. (1)

With these steps verified, the mathematical induction principle now guarantees the
Sum Rule for every integer 

EXAMPLE 6 Finding Horizontal Tangents

Does the curve have any horizontal tangents? If so, where?

Solution The horizontal tangents, if any, occur where the slope is zero. We have,

Now solve the equation 

The curve has horizontal tangents at and The corre-
sponding points on the curve are (0, 2), (1, 1) and See Figure 3.10.

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

The derivative of a product of two functions is the sum of two products, as we now explain.

d
dx

 sx # xd =

d
dx

 sx2d = 2x, while d
dx

 sxd # d
dx

 sxd = 1 # 1 = 1.

s -1, 1d .
-1.x = 0, 1 ,y = x4

- 2x2
+ 2

 x = 0, 1, -1.

 4xsx2
- 1d = 0

 4x3
- 4x = 0

dy
dx

= 0 for x :

dy
dx

=

d
dx

 sx4
- 2x2

+ 2d = 4x3
- 4x .

dy>dx

y = x4
- 2x2

+ 2

n Ú 2.

 =

du1

dx
+

du2

dx
+

Á
+

duk

dx
+

duk + 1

dx
.

 =

d
dx

 su1 + u2 +
Á

+ ukd +

duk + 1

dx

d
dx

 (u1 + u2 +
Á

+ uk + uk + 1)

d
dx

 su1 + u2 +
Á

+ ukd =

du1

dx
+

du2

dx
+

Á
+

duk

dx
. 

n = k + 1.k Ú n0 = 2,
n = k ,

3.2 Differentiation Rules 163

(++++)++++*

Call the function
defined by this sum u.

()*

Call this
function y.

Rule 4 for 
d
dx

 su + yd

x

y

0 1–1

(1, 1)(–1, 1)
1

(0, 2)

y � x4 � 2x2 � 2

FIGURE 3.10 The curve
and its horizontal

tangents (Example 6).
y = x4

- 2x2
+ 2

RULE 5 Derivative Product Rule
If u and y are differentiable at x, then so is their product uy, and

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.
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The derivative of the product uy is u times the derivative of y plus y times the deriva-
tive of u. In prime notation, In function notation,

EXAMPLE 7 Using the Product Rule

Find the derivative of

Solution We apply the Product Rule with and 

Proof of Rule 5

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of u and y, we subtract and add in the numerator:

As h approaches zero, approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of at x and at x. In short,

In the following example, we have only numerical values with which to work.

EXAMPLE 8 Derivative from Numerical Values

Let be the product of the functions u and y. Find if

Solution From the Product Rule, in the form

y¿ = suyd¿ = uy¿ + yu¿ ,

us2d = 3, u¿s2d = -4, ys2d = 1, and y¿s2d = 2.

y¿s2dy = uy

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

du>dxdy>dx
usx + hd

 = lim
h:0

usx + hd # lim
h:0

 
ysx + hd - ysxd

h
+ ysxd # lim

h:0
 
usx + hd - usxd

h
.

 = lim
h:0

 cusx + hd 
ysx + hd - ysxd

h
+ ysxd 

usx + hd - usxd
h

d
 
d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usx + hdysxd + usx + hdysxd - usxdysxd

h

usx + hdysxd

d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usxdysxd

h

 = 1 -
2
x3 .

 = 2 -
1
x3 - 1 -

1
x3

 
d
dx

 c1x  ax2
+

1
x b d =

1
x  a2x -

1
x2 b + ax2

+
1
x b a- 1

x2 b
y = x2

+ s1>xd :u = 1>x
y =

1
x  ax2

+
1
x  b .

d
dx

 [ƒsxdg sxd] = ƒsxdg¿sxd + g sxdƒ¿sxd .

suyd¿ = uy¿ + yu¿ .

164 Chapter 3: Differentiation

Example 3, Section 2.7.

d
dx

 a1x b = -

1

x2
 by

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

, and

Picturing the Product Rule
If u(x) and y(x) are positive and
increase when x increases, and if h 7 0,

0

y(x � h)

y(x)

�y

u(x)y(x)

u(x) �y �u �y

y(x) �u

u(x � h)u(x)
�u

then the total shaded area in the picture
is

Dividing both sides of this equation by
h gives

As 

leaving

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

¢u # ¢y

h
: 0 # dy

dx
= 0,

h : 0+ ,

-  ¢u 
¢y

h
.

=  usx + hd 
¢y

h
+ ysx + hd 

¢u
h

usx + hdysx + hd - usxdysxd
h

¢u -  ¢u¢y .
=  usx + hd ¢y + ysx + hd
usx + hdysx + hd - usxdysxd
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we have

EXAMPLE 9 Differentiating a Product in Two Ways

Find the derivative of 

Solution

(a) From the Product Rule with and we find

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

This is in agreement with our first calculation.

Just as the derivative of the product of two differentiable functions is not the product of
their derivatives, the derivative of the quotient of two functions is not the quotient of their
derivatives. What happens instead is the Quotient Rule.

 
dy
dx

= 5x4
+ 3x2

+ 6x .

 y = sx2
+ 1dsx3

+ 3d = x5
+ x3

+ 3x2
+ 3

 = 5x4
+ 3x2

+ 6x .

 = 3x4
+ 3x2

+ 2x4
+ 6x

 
d
dx

 C Ax2
+ 1 B Ax3

+ 3 B D = sx2
+ 1ds3x2d + sx3

+ 3ds2xd

y = x3
+ 3,u = x2

+ 1

y = sx2
+ 1dsx3

+ 3d .

 = s3ds2d + s1ds -4d = 6 - 4 = 2.

 y¿s2d = us2dy¿s2d + ys2du¿s2d

3.2 Differentiation Rules 165

RULE 6 Derivative Quotient Rule
If u and y are differentiable at x and if then the quotient is differ-
entiable at x, and

d
dx

 auy b =

y 
du
dx

- u 
dy
dx

y2 .

u>yysxd Z 0,

In function notation,

EXAMPLE 10 Using the Quotient Rule

Find the derivative of

y =

t2
- 1

t2
+ 1

.

d
dx

 c ƒsxd
g sxd

d =

g sxdƒ¿sxd - ƒsxdg¿sxd
g2sxd

.
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Solution
We apply the Quotient Rule with and 

Proof of Rule 6

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and y, we subtract and add y(x)u(x) in the numerator. We then get

Taking the limit in the numerator and denominator now gives the Quotient Rule.

Negative Integer Powers of x

The Power Rule for negative integers is the same as the rule for positive integers.

 = lim
h:0

 
ysxd 

usx + hd - usxd
h

- usxd 
ysx + hd - ysxd

h
ysx + hdysxd

 .

 
d
dx

 auy b = lim
h:0

 
ysxdusx + hd - ysxdusxd + ysxdusxd - usxdysx + hd

hysx + hdysxd

 = lim
h:0

 
ysxdusx + hd - usxdysx + hd

hysx + hdysxd

 
d
dx

 auy b = lim
h:0

 

usx + hd
ysx + hd

-

usxd
ysxd

h

 =

4t
st2

+ 1d2 .

 =

2t3
+ 2t - 2t3

+ 2t
st2

+ 1d2

d
dt

 auy b =

ysdu>dtd - usdy>dtd

y2
 
dy
dt

=

st2
+ 1d # 2t - st2

- 1d # 2t

st2
+ 1d2

y = t2
+ 1:u = t2

- 1

166 Chapter 3: Differentiation

RULE 7 Power Rule for Negative Integers
If n is a negative integer and then

d
dx

 sxnd = nxn - 1 .

x Z 0,

EXAMPLE 11

(a) Agrees with Example 3, Section 2.7

(b)
d
dx

 a 4
x3 b = 4 

d
dx

 sx-3d = 4s -3dx-4
= -

12
x4

d
dx

 a1x b =

d
dx

 sx-1d = s -1dx-2
= -

1
x2
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Proof of Rule 7 The proof uses the Quotient Rule. If n is a negative integer, then
where m is a positive integer. Hence, and

Quotient Rule with and 

Since 

Since 

EXAMPLE 12 Tangent to a Curve

Find an equation for the tangent to the curve

at the point (1, 3) (Figure 3.11).

Solution The slope of the curve is

The slope at is

The line through (1, 3) with slope is

Point-slope equation

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 13 Choosing Which Rule to Use

Rather than using the Quotient Rule to find the derivative of

expand the numerator and divide by 

y =

sx - 1dsx2
- 2xd

x4 =

x3
- 3x2

+ 2x
x4 = x-1

- 3x-2
+ 2x-3 .

x4 :

y =

sx - 1dsx2
- 2xd

x4 ,

 y = -x + 4.

 y = -x + 1 + 3

 y - 3 = s -1dsx - 1d

m = -1

dy
dx
`
x = 1

= c1 -
2
x2 d

x = 1
= 1 - 2 = -1.

x = 1

dy
dx

=

d
dx

 sxd + 2 
d
dx

 a1x b = 1 + 2 a- 1
x2 b = 1 -

2
x2 .

y = x +
2
x

-m = n = nxn - 1 .

 = -mx-m - 1

m 7 0, 
d
dx

 sxmd = mxm - 1 =

0 - mxm - 1

x2m

y = xmu = 1 =

xm # d
dx

 A1 B - 1 # d
dx

 Axm B
sxmd2

 
d
dx

 sxnd =

d
dx

 a 1
xm b

xn
= x-m

= 1>xm ,n = -m ,
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x

y

0

1

1 2

2

3

3

4

(1, 3)

y � –x � 4

y � x � 2
x

FIGURE 3.11 The tangent to the curve
at (1, 3) in Example 12.

The curve has a third-quadrant portion
not shown here. We see how to graph
functions like this one in Chapter 4.

y = x + s2>xd
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Then use the Sum and Power Rules:

Second- and Higher-Order Derivatives

If is a differentiable function, then its derivative is also a function. If is
also differentiable, then we can differentiate to get a new function of x denoted by 
So The function is called the second derivative of ƒ because it is the deriv-
ative of the first derivative. Notationally,

The symbol means the operation of differentiation is performed twice.
If then and we have

Thus 

If is differentiable, its derivative, is the third derivative
of y with respect to x. The names continue as you imagine, with

denoting the nth derivative of y with respect to x for any positive integer n.
We can interpret the second derivative as the rate of change of the slope of the tangent

to the graph of at each point. You will see in the next chapter that the second de-
rivative reveals whether the graph bends upward or downward from the tangent line as we
move off the point of tangency. In the next section, we interpret both the second and third
derivatives in terms of motion along a straight line.

EXAMPLE 14 Finding Higher Derivatives

The first four derivatives of are

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

The function has derivatives of all orders, the fifth and later derivatives all being zero.

y s4d
= 0.

y‡ = 6

y– = 6x - 6

y¿ = 3x2
- 6x

y = x3
- 3x2

+ 2

y = ƒsxd

y snd
=

d
dx

 y sn - 1d
=

dny

dxn = Dny

y‡ = dy–>dx = d3y>dx3y–

D2 Ax6 B = 30x4 .

y– =

dy¿

dx
=

d
dx

 A6x5 B = 30x4 .

y¿ = 6x5y = x6 ,
D2

ƒ–sxd =

d2y

dx2 =

d
dx

 ady
dx
b =

dy¿

dx
= y– = D2sƒdsxd = Dx

2 ƒsxd .

ƒ–ƒ– = sƒ¿d¿ .
ƒ– .ƒ¿

ƒ¿ƒ¿sxdy = ƒsxd

 = -
1
x2 +

6
x3 -

6
x4 .

 
dy
dx

= -x-2
- 3s -2dx-3

+ 2s -3dx-4
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How to Read the Symbols for
Derivatives

“y prime”
“y double prime”

“d squared y dx squared”

“y triple prime”
“y super n”

“d to the n of y by dx to the n”

“D to the n”Dn

dny

dxn

y snd
y‡

d2y

dx2

y–

y¿
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3.2 Differentiation Rules 169

EXERCISES 3.2

Derivative Calculations
In Exercises 1–12, find the first and second derivatives.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, find (a) by applying the Product Rule and
(b) by multiplying the factors to produce a sum of simpler terms to
differentiate.

13. 14.

15. 16.

Find the derivatives of the functions in Exercises 17–28.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

Find the derivatives of all orders of the functions in Exercises 29 and
30.

29. 30.

Find the first and second derivatives of the functions in Exercises
31–38.

31. 32.

33. 34.

35. 36. w = sz + 1dsz - 1dsz2
+ 1dw = a1 + 3z

3z
b s3 - zd

u =

sx2
+ xdsx2

- x + 1d
x4r =

su - 1dsu2
+ u + 1d
u3

s =

t2
+ 5t - 1

t2y =

x3
+ 7
x

y =

x5

120
y =

x4

2
-

3
2

 x2
- x

y =

sx + 1dsx + 2d
sx - 1dsx - 2d

y =

1
sx2

- 1dsx2
+ x + 1d

r = 2 a 12u + 2uby =

1 + x - 41x
x

u =

5x + 1
21x

ƒssd =

1s - 11s + 1

w = s2x - 7d-1sx + 5dy = s1 - tds1 + t2d-1

ƒstd =

t2
- 1

t2
+ t - 2

g sxd =

x2
- 4

x + 0.5

z =

2x + 1
x2

- 1
y =

2x + 5
3x - 2

y = ax +

1
x b ax -

1
x + 1by = sx2

+ 1d ax + 5 +

1
x b

y = sx - 1dsx2
+ x + 1dy = s3 - x2dsx3

- x + 1d

y¿

r =

12
u

-

4
u3 +

1
u4r =

1
3s2 -

5
2s

y = 4 - 2x - x-3y = 6x2
- 10x - 5x-2

s = -2t -1
+

4
t2w = 3z-2

-

1
z

y =

x3

3
+

x2

2
+

x
4

y =

4x3

3
- x

w = 3z7
- 7z3

+ 21z2s = 5t3
- 3t5

y = x2
+ x + 8y = -x2

+ 3

37. 38.

Using Numerical Values
39. Suppose u and y are functions of x that are differentiable at 

and that

Find the values of the following derivatives at 

a. b. c. d.

40. Suppose u and y are differentiable functions of x and that

Find the values of the following derivatives at 

a. b. c. d.

Slopes and Tangents
41. a. Normal to a curve Find an equation for the line perpendicular

to the tangent to the curve at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

c. Tangents having specified slope Find equations for the
tangents to the curve at the points where the slope of the
curve is 8.

42. a. Horizontal tangents Find equations for the horizontal tan-
gents to the curve Also find equations for
the lines that are perpendicular to these tangents at the points
of tangency.

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope? Find
an equation for the line that is perpendicular to the curve’s
tangent at this point.

43. Find the tangents to Newton’s serpentine (graphed here) at the ori-
gin and the point (1, 2).

x

y

0

1

1 2

2
(1, 2)

3 4

y � 4x
x2 � 1

y = x3
- 3x - 2.

y = x3
- 4x + 1

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 1.

us1d = 2, u¿s1d = 0, ys1d = 5, y¿s1d = -1.

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 0.

us0d = 5, u¿s0d = -3, ys0d = -1, y¿s0d = 2.

x = 0

p =

q2
+ 3

sq - 1d3
+ sq + 1d3p = aq2

+ 3

12q
b aq4

- 1

q3 b
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44. Find the tangent to the Witch of Agnesi (graphed here) at the point
(2, 1).

45. Quadratic tangent to identity function The curve 
passes through the point (1, 2) and is tangent to the

line at the origin. Find a, b, and c.

46. Quadratics having a common tangent The curves 
and have a common tangent line at

the point (1, 0). Find a, b, and c.

47. a. Find an equation for the line that is tangent to the curve
at the point 

b. Graph the curve and tangent line together. The tangent
intersects the curve at another point. Use Zoom and Trace to
estimate the point’s coordinates.

c. Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

48. a. Find an equation for the line that is tangent to the curve
at the origin.

b. Graph the curve and tangent together. The tangent intersects
the curve at another point. Use Zoom and Trace to estimate
the point’s coordinates.

c. Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

Theory and Examples
49. The general polynomial of degree n has the form

where Find 

50. The body’s reaction to medicine The reaction of the body to a
dose of medicine can sometimes be represented by an equation of
the form

where C is a positive constant and M is the amount of medicine
absorbed in the blood. If the reaction is a change in blood pres-
sure, R is measured in millimeters of mercury. If the reaction is a
change in temperature, R is measured in degrees, and so on.

Find . This derivative, as a function of M, is called the
sensitivity of the body to the medicine. In Section 4.5, we will see

dR>dM

R = M2 aC
2

-

M
3
b ,

P¿sxd .an Z 0.

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a2 x2
+ a1 x + a0

y = x3
- 6x2

+ 5x

s -1, 0d .y = x3
- x

y = cx - x2x2
+ ax + b

y =

y = x
ax2

+ bx + c
y =

x

y

0

1

1 2

2
(2, 1)

3

y � 8
x2 � 4

how to find the amount of medicine to which the body is most
sensitive.

51. Suppose that the function y in the Product Rule has a constant
value c. What does the Product Rule then say? What does this say
about the Constant Multiple Rule?

52. The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function
y(x) is differentiable and different from zero,

Show that the Reciprocal Rule is a special case of the
Quotient Rule.

b. Show that the Reciprocal Rule and the Product Rule together
imply the Quotient Rule.

53. Generalizing the Product Rule The Product Rule gives the
formula

for the derivative of the product uy of two differentiable functions
of x.

a. What is the analogous formula for the derivative of the
product uyw of three differentiable functions of x?

b. What is the formula for the derivative of the product 
of four differentiable functions of x?

c. What is the formula for the derivative of a product
of a finite number n of differentiable functions

of x?

54. Rational Powers

a. Find by writing as and using the Product

Rule. Express your answer as a rational number times a
rational power of x. Work parts (b) and (c) by a similar
method.

b. Find 

c. Find 

d. What patterns do you see in your answers to parts (a), (b), and
(c)? Rational powers are one of the topics in Section 3.6.

55. Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature T, the pressure P is related to the volume V by a
formula of the form

in which a, b, n, and R are constants. Find . (See accompa-
nying figure.)

dP>dV

P =

nRT
V - nb

-

an2

V 2 ,

d
dx

 sx7>2d .

d
dx

 sx5>2d .

x # x1>2x3>2d
dx

 Ax3>2 B

u1 u2 u3 Á un

u1 u2 u3 u4

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

d
dx

 a1y b = -

1
y2 

dy
dx

.
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T

T

T

T
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56. The best quantity to order One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, ra-
dios, brooms, or whatever the item might be); k is the cost of plac-
ing an order (the same, no matter how often you order); c is the
cost of one item (a constant); m is the number of items sold each
week (a constant); and h is the weekly holding cost per item (a
constant that takes into account things such as space, utilities, in-
surance, and security). Find and d2A>dq2 .dA>dq

Asqd =

km
q + cm +

hq

2
,

171
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3.3 The Derivative as a Rate of Change 171

The Derivative as a Rate of Change

In Section 2.1, we initiated the study of average and instantaneous rates of change. In this
section, we continue our investigations of applications in which derivatives are used to
model the rates at which things change in the world around us. We revisit the study of mo-
tion along a line and examine other applications.

It is natural to think of change as change with respect to time, but other variables can
be treated in the same way. For example, a physician may want to know how change in
dosage affects the body’s response to a drug. An economist may want to study how the cost
of producing steel varies with the number of tons produced.

Instantaneous Rates of Change

If we interpret the difference quotient as the average rate of change
in ƒ over the interval from x to we can interpret its limit as as the rate at
which ƒ is changing at the point x.

h : 0x + h ,
sƒsx + hd - ƒsxdd>h

3.3

DEFINITION Instantaneous Rate of Change
The instantaneous rate of change of ƒ with respect to x at is the derivative

provided the limit exists.

ƒ¿sx0d = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
,

x0

Thus, instantaneous rates are limits of average rates.
It is conventional to use the word instantaneous even when x does not represent time.

The word is, however, frequently omitted. When we say rate of change, we mean
instantaneous rate of change.
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EXAMPLE 1 How a Circle’s Area Changes with Its Diameter

The area A of a circle is related to its diameter by the equation

How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution The rate of change of the area with respect to the diameter is

When the area is changing at rate 

Motion Along a Line: Displacement, Velocity, Speed,
Acceleration, and Jerk

Suppose that an object is moving along a coordinate line (say an s-axis) so that we know
its position s on that line as a function of time t:

The displacement of the object over the time interval from t to (Figure 3.12) is

and the average velocity of the object over that time interval is

To find the body’s velocity at the exact instant t, we take the limit of the average ve-
locity over the interval from t to as shrinks to zero. This limit is the derivative of
ƒ with respect to t.

¢tt + ¢t

yay =

displacement
travel time

=

¢s
¢t

=

ƒst + ¢td - ƒstd
¢t

.

¢s = ƒst + ¢td - ƒstd ,

t + ¢t

s = ƒstd .

sp>2d10 = 5p m2>m.D = 10 m,

dA
dD

=
p
4

# 2D =
pD
2

.

A =
p
4

 D2 .

172 Chapter 3: Differentiation

DEFINITION Velocity
Velocity (instantaneous velocity) is the derivative of position with respect to
time. If a body’s position at time t is then the body’s velocity at time t is

ystd =

ds
dt

= lim
¢t:0

 
ƒst + ¢td - ƒstd

¢t
.

s = ƒstd ,

EXAMPLE 2 Finding the Velocity of a Race Car

Figure 3.13 shows the time-to-distance graph of a 1996 Riley & Scott Mk III-Olds WSC
race car. The slope of the secant PQ is the average velocity for the 3-sec interval from

to in this case, it is about 100 ft sec or 68 mph.
The slope of the tangent at P is the speedometer reading at about 57 ft sec

or 39 mph. The acceleration for the period shown is a nearly constant during28.5 ft>sec2
>t = 2 sec,

>t = 5 sec;t = 2

s
∆s

Position at time t … and at time t � ∆ t

s � f (t) s � ∆s � f (t � ∆t)

FIGURE 3.12 The positions of a body
moving along a coordinate line at time t
and shortly later at time t + ¢t .
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each second, which is about 0.89g, where g is the acceleration due to gravity. The race
car’s top speed is an estimated 190 mph. (Source: Road and Track, March 1997.)

Besides telling how fast an object is moving, its velocity tells the direction of motion.
When the object is moving forward (s increasing), the velocity is positive; when the body
is moving backward (s decreasing), the velocity is negative (Figure 3.14).

3.3 The Derivative as a Rate of Change 173

P

Q

700

600

800

500

D
is

ta
nc

e 
(f

t)

Elapsed time (sec)

1 2 3 4 5 6 7 8

Secant slope is
average velocity
for interval from
t � 2 to t � 5. Tangent slope

is speedometer
reading at t � 2
(instantaneous
velocity).

400

300

200

100

0 t

s

FIGURE 3.13 The time-to-distance graph for
Example 2. The slope of the tangent line at P is the
instantaneous velocity at t = 2 sec.

t

s

t

s

0
s increasing:
positive slope so
moving forward

0
s decreasing:
negative slope so
moving backward

s � f (t) s � f (t)

ds
dt

� 0 ds
dt

� 0

FIGURE 3.14 For motion along a straight line, is
positive when s increases and negative when s decreases.

y = ds/dts = ƒstd

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30
on the way over but it will not show on the way back, even though our distance from
home is decreasing. The speedometer always shows speed, which is the absolute value of
velocity. Speed measures the rate of progress regardless of direction.

-30
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EXAMPLE 3 Horizontal Motion

Figure 3.15 shows the velocity of a particle moving on a coordinate line. The
particle moves forward for the first 3 sec, moves backward for the next 2 sec, stands still
for a second, and moves forward again. The particle achieves its greatest speed at time

while moving backward.t = 4,

y = ƒ¿std

174 Chapter 3: Differentiation

DEFINITION Speed
Speed is the absolute value of velocity.

Speed = ƒ ystd ƒ = ` ds
dt
`

0 1 2 3 4 5 6

 

7

MOVES FORWARD

(y � 0)

MOVES BACKWARD

(y � 0)

FORWARD
AGAIN

(y � 0)

Speeds
up

Speeds
up

Speeds
up

Slows
down

Slows
down

Steady

(y � const)

y � f '(t)

Stands
still
(y � 0)

t (sec)

Greatest
speed

y

FIGURE 3.15 The velocity graph for Example 3.

The rate at which a body’s velocity changes is the body’s acceleration. The accelera-
tion measures how quickly the body picks up or loses speed.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky,
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

HISTORICAL BIOGRAPHY

Bernard Bolzano
(1781–1848)
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Near the surface of the Earth all bodies fall with the same constant acceleration.
Galileo’s experiments with free fall (Example 1, Section 2.1) lead to the equation

where s is distance and g is the acceleration due to Earth’s gravity. This equation holds in a
vacuum, where there is no air resistance, and closely models the fall of dense, heavy ob-
jects, such as rocks or steel tools, for the first few seconds of their fall, before air resist-
ance starts to slow them down.

The value of g in the equation depends on the units used to measure
t and s. With t in seconds (the usual unit), the value of g determined by measurement at
sea level is approximately (feet per second squared) in English units, and

(meters per second squared) in metric units. (These gravitational con-
stants depend on the distance from Earth’s center of mass, and are slightly lower on top of
Mt. Everest, for example.)

The jerk of the constant acceleration of gravity is zero:

An object does not exhibit jerkiness during free fall.

EXAMPLE 4 Modeling Free Fall

Figure 3.16 shows the free fall of a heavy ball bearing released from rest at time 

(a) How many meters does the ball fall in the first 2 sec?

(b) What is its velocity, speed, and acceleration then?

Solution

(a) The metric free-fall equation is During the first 2 sec, the ball falls

(b) At any time t, velocity is the derivative of position:

ystd = s¿std =

d
dt

 s4.9t2d = 9.8t .

ss2d = 4.9s2d2
= 19.6 m.

s = 4.9t2 .

t = 0 sec.

j =

d
dt

 sgd = 0.

sg = 32 ft>sec2d

g = 9.8 m>sec2
32 ft>sec2

s = s1>2dgt2

s =
1
2

 gt2 ,
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DEFINITIONS Acceleration, Jerk
Acceleration is the derivative of velocity with respect to time. If a body’s posi-
tion at time t is then the body’s acceleration at time t is

Jerk is the derivative of acceleration with respect to time:

jstd =

da
dt

=

d3s
dt3 .

astd =

dy
dt

=

d2s
dt2 .

s = ƒstd ,

0

5

10

15

20

25

30

35

40

45t � 3

s (meters)t (seconds)

t � 0

t � 1

t � 2

FIGURE 3.16 A ball bearing
falling from rest (Example 4).
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At the velocity is

in the downward (increasing s) direction. The speed at is

The acceleration at any time t is

At the acceleration is  

EXAMPLE 5 Modeling Vertical Motion

A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft sec
(about 109 mph) (Figure 3.17a). It reaches a height of after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?

Solution

(a) In the coordinate system we have chosen, s measures height from the ground up, so
the velocity is positive on the way up and negative on the way down. The instant the
rock is at its highest point is the one instant during the flight when the velocity is 0. To
find the maximum height, all we need to do is to find when and evaluate s at
this time.

At any time t, the velocity is

The velocity is zero when

The rock’s height at is

See Figure 3.17b.

(b) To find the rock’s velocity at 256 ft on the way up and again on the way down, we first
find the two values of t for which

To solve this equation, we write

 t = 2 sec, t = 8 sec.

 st - 2dst - 8d = 0

 16st2
- 10t + 16d = 0

 16t2
- 160t + 256 = 0

sstd = 160t - 16t2
= 256.

smax = ss5d = 160s5d - 16s5d2
= 800 - 400 = 400 ft .

t = 5 sec

160 - 32t = 0 or t = 5 sec.

y =

ds
dt

=

d
dt

 s160t - 16t2d = 160 - 32t ft>sec.

y = 0

s = 160t - 16t2 ft
>

9.8 m>sec2 .t = 2,

astd = y¿std = s–std = 9.8 m>sec2 .

Speed = ƒ ys2d ƒ = 19.6 m>sec.

t = 2

ys2d = 19.6 m>sec

t = 2,
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s
H

ei
gh

t (
ft

)

(a)

smax

s � 0

256 t � ?

y � 0

t
0

400

5 10

(b)

160

–160

s, y

s � 160t � 16t2

y � � 160 � 32tds
dt

FIGURE 3.17 (a) The rock in Example 5.
(b) The graphs of s and y as functions of
time; s is largest when The
graph of s is not the path of the rock: It is a
plot of height versus time. The slope of the
plot is the rock’s velocity, graphed here as
a straight line.

y = ds/dt = 0.

4100 AWL/Thomas_ch03p147-243  8/19/04  11:16 AM  Page 176

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the
explosion. The rock’s velocities at these times are

At both instants, the rock’s speed is 96 ft sec. Since the rock is moving up-
ward (s is increasing) at it is moving downward (s is decreasing) at 
because 

(c) At any time during its flight following the explosion, the rock’s acceleration is a
constant

The acceleration is always downward. As the rock rises, it slows down; as it falls, it
speeds up.

(d) The rock hits the ground at the positive time t for which The equation
factors to give so it has solutions and

At the blast occurred and the rock was thrown upward. It returned to
the ground 10 sec later.

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with
respect to level of production, so it is .

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week.
It costs more to produce units per week, and the cost difference, divided by h, is the
average cost of producing each additional ton:

The limit of this ratio as is the marginal cost of producing more steel per week
when the current weekly production is x tons (Figure 3.18).

Sometimes the marginal cost of production is loosely defined to be the extra cost of
producing one unit:

which is approximated by the value of at x. This approximation is acceptable if the
slope of the graph of c does not change quickly near x. Then the difference quotient will be
close to its limit , which is the rise in the tangent line if (Figure 3.19). The
approximation works best for large values of x.

¢x = 1dc>dx

dc>dx

¢c
¢x

=

csx + 1d - csxd
1

,

dc
dx

= lim
h:0

 
csx + hd - csxd

h
= marginal cost of production.

h : 0

csx + hd - csxd
h

=

average cost of each of the additional
h tons of steel produced.

x + h

dc>dx

t = 0,t = 10.
t = 016ts10 - td = 0,160t - 16t2

= 0
s = 0.

a =

dy
dt

=

d
dt

 s160 - 32td = -32 ft>sec2 .

ys8d 6 0.
t = 8t = 2 sec;

ys2d 7 0,>
 ys8d = 160 - 32s8d = 160 - 256 = -96 ft>sec.

 ys2d = 160 - 32s2d = 160 - 64 = 96 ft>sec.
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x
0

(tons/week)
x

y (dollars)

y � c (x)
Slope �

marginal cost

x � h

FIGURE 3.18 Weekly steel production:
c(x) is the cost of producing x tons per
week. The cost of producing an additional
h tons is csx + hd - csxd .

x

y

0 x







dc
dx

x � 1

�x � 1

�c

y � c(x)

FIGURE 3.19 The marginal cost 
is approximately the extra cost of
producing more unit.¢x = 1

¢c
dc>dx
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Economists often represent a total cost function by a cubic polynomial

where represents fixed costs such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs such as the costs of raw materials,
taxes, and labor. Fixed costs are independent of the number of units produced, whereas
variable costs depend on the quantity produced. A cubic polynomial is usually compli-
cated enough to capture the cost behavior on a relevant quantity interval.

EXAMPLE 6 Marginal Cost and Marginal Revenue

Suppose that it costs

dollars to produce x radiators when 8 to 30 radiators are produced and that

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators
a day. About how much extra will it cost to produce one more radiator a day, and what is
your estimated increase in revenue for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about

The additional cost will be about $195. The marginal revenue is

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your rev-
enue to increase by about

if you increase sales to 11 radiators a day.

EXAMPLE 7 Marginal Tax Rate

To get some feel for the language of marginal rates, consider marginal tax rates. If your
marginal income tax rate is 28% and your income increases by $1000, you can expect to
pay an extra $280 in taxes. This does not mean that you pay 28% of your entire income in
taxes. It just means that at your current income level I, the rate of increase of taxes T with
respect to income is You will pay $0.28 out of every extra dollar you earn
in taxes. Of course, if you earn a lot more, you may land in a higher tax bracket and your
marginal rate will increase.

dT>dI = 0.28.

r¿s10d = 3s100d - 6s10d + 12 = $252

r¿sxd =

d
dx

 Ax3
- 3x2

+ 12x B = 3x2
- 6x + 12.

 c¿s10d = 3s100d - 12s10d + 15 = 195.

 c¿sxd =

d
dx

 Ax3
- 6x2

+ 15x B = 3x2
- 12x + 15

c¿s10d :

rsxd = x3
- 3x2

+ 12x

csxd = x3
- 6x2

+ 15x

d

csxd = ax3
+ bx2

+ gx + d
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Sensitivity to Change

When a small change in x produces a large change in the value of a function ƒ(x), we say
that the function is relatively sensitive to changes in x. The derivative is a measure of
this sensitivity.

EXAMPLE 8 Genetic Data and Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the
gene for smooth skin in peas (dominant) and is the frequency of the gene for wrin-
kled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

The graph of y versus p in Figure 3.20a suggests that the value of y is more sensitive to a
change in p when p is small than when p is large. Indeed, this fact is borne out by the de-
rivative graph in Figure 3.20b, which shows that is close to 2 when p is near 0 and
close to 0 when p is near 1.

dy>dp

y = 2ps1 - pd + p2
= 2p - p2 .

s1 - pd

ƒ¿sxd
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p

y

0 1

1

(a)

dy /dp

p
0 1

2

(b)

 y � 2p � p2

� 2 � 2p
dy
dp

FIGURE 3.20 (a) The graph of 
describing the proportion of smooth-skinned peas.
(b) The graph of (Example 8).dy>dp

y = 2p - p2 ,

The implication for genetics is that introducing a few more dominant genes into a
highly recessive population (where the frequency of wrinkled skin peas is small) will have
a more dramatic effect on later generations than will a similar increase in a highly domi-
nant population.
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EXERCISES 3.3

Motion Along a Coordinate Line
Exercises 1–6 give the positions of a body moving on a coor-
dinate line, with s in meters and t in seconds.

a. Find the body’s displacement and average velocity for the given
time interval.

s = ƒstd

b. Find the body’s speed and acceleration at the endpoints of the
interval.

c. When, if ever, during the interval does the body change direction?

1.

2. s = 6t - t2, 0 … t … 6

s = t2
- 3t + 2, 0 … t … 2
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3.

4.

5.

6.

7. Particle motion At time t, the position of a body moving along
the s-axis is 

a. Find the body’s acceleration each time the velocity is zero.

b. Find the body’s speed each time the acceleration is zero.

c. Find the total distance traveled by the body from to

8. Particle motion At time the velocity of a body moving
along the s-axis is 

a. Find the body’s acceleration each time the velocity is zero.

b. When is the body moving forward? Backward?

c. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications
9. Free fall on Mars and Jupiter The equations for free fall at the

surfaces of Mars and Jupiter (s in meters, t in seconds) are
on Mars and on Jupiter. How long does it

take a rock falling from rest to reach a velocity of 27.8 m sec
(about 100 km h) on each planet?

10. Lunar projectile motion A rock thrown vertically upward
from the surface of the moon at a velocity of 24 m sec (about 86
km h) reaches a height of meters in t sec.

a. Find the rock’s velocity and acceleration at time t. (The accel-
eration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?

c. How high does the rock go?

d. How long does it take the rock to reach half its maximum
height?

e. How long is the rock aloft?

11. Finding g on a small airless planet Explorers on a small air-
less planet used a spring gun to launch a ball bearing vertically
upward from the surface at a launch velocity of 15 m sec. Be-
cause the acceleration of gravity at the planet’s surface was

the explorers expected the ball bearing to reach a
height of meters t sec later. The ball bearing
reached its maximum height 20 sec after being launched. What
was the value of 

12. Speeding bullet A 45-caliber bullet fired straight up from the
surface of the moon would reach a height of 
feet after t sec. On Earth, in the absence of air, its height would be

ft after t sec. How long will the bullet be aloft in
each case? How high will the bullet go?

13. Free fall from the Tower of Pisa Had Galileo dropped a can-
nonball from the Tower of Pisa, 179 ft above the ground, the ball’s

s = 832t - 16t2

s = 832t - 2.6t2

gs ?

s = 15t - s1>2dgs t2
gs m>sec2 ,

>

s = 24t - 0.8t2>
>

>
>

s = 11.44t2s = 1.86t2

y = t2
- 4t + 3.
t Ú 0,

t = 2.
t = 0

s = t3
- 6t2

+ 9t m.

s =

25
t + 5

, -4 … t … 0

s =

25
t2 -

5
t , 1 … t … 5

s = st4>4d - t3
+ t2, 0 … t … 3

s = - t3
+ 3t2

- 3t, 0 … t … 3 height above ground t sec into the fall would have been

a. What would have been the ball’s velocity, speed, and
acceleration at time t?

b. About how long would it have taken the ball to hit the
ground?

c. What would have been the ball’s velocity at the moment of
impact?

14. Galileo’s free-fall formula Galileo developed a formula for a
body’s velocity during free fall by rolling balls from rest down in-
creasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was ver-
tical and the ball fell freely; see part (a) of the accompanying
figure. He found that, for any given angle of the plank, the ball’s
velocity t sec into motion was a constant multiple of t. That is, the
velocity was given by a formula of the form The value of
the constant k depended on the inclination of the plank.

In modern notation—part (b) of the figure—with distance in
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle the ball’s velocity t sec into
the roll was

a. What is the equation for the ball’s velocity during free fall?

b. Building on your work in part (a), what constant acceleration
does a freely falling body experience near the surface of Earth?

Conclusions About Motion from Graphs
15. The accompanying figure shows the velocity 

(m sec) of a body moving along a coordinate line.

a. When does the body reverse direction?

b. When (approximately) is the body moving at a constant speed?

c. Graph the body’s speed for 

d. Graph the acceleration, where defined.

0 … t … 10.

0

–3

2 4

3

6 8 10

y(m/sec)

y � f (t)

t (sec)

>
y = ds>dt = ƒstd

(a)

?

(b)

θ

Free-fall
position

y = 9.8ssin udt m>sec .

u ,

y = kt .

s = 179 - 16t2 .
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16. A particle P moves on the number line shown in part (a) of the ac-
companying figure. Part (b) shows the position of P as a function
of time t.

a. When is P moving to the left? Moving to the right? Standing
still?

b. Graph the particle’s velocity and speed (where defined).

17. Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward.
After burnout, the rocket coasts upward for a while and then be-
gins to fall. A small explosive charge pops out a parachute shortly
after the rocket starts down. The parachute slows the rocket to
keep it from breaking when it lands.

The figure here shows velocity data from the flight of the
model rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

b. For how many seconds did the engine burn?

c. When did the rocket reach its highest point? What was its
velocity then?

d. When did the parachute pop out? How fast was the rocket
falling then?

e. How long did the rocket fall before the parachute opened?

0 2 4 6 8 10 12

100

50

0

–50

–100

150

200

Time after launch (sec)

V
el

oc
ity

 (
ft

/s
ec

)

0

–2

–4

1 2

2

3 4 5 6

(b)

0

(a)

P
s (cm)

s (cm)

s � f (t)

t (sec)

(6, �4)

f. When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then
(to the nearest integer)?

18. The accompanying figure shows the velocity of a parti-
cle moving on a coordinate line.

a. When does the particle move forward? Move backward?
Speed up? Slow down?

b. When is the particle’s acceleration positive? Negative? Zero?

c. When does the particle move at its greatest speed?

d. When does the particle stand still for more than an instant?

19. Two falling balls The multiflash photograph in the accompany-
ing figure shows two balls falling from rest. The vertical rulers
are marked in centimeters. Use the equation (the free-
fall equation for s in centimeters and t in seconds) to answer the
following questions.

s = 490t2

t (sec)

y

0 1 2 3 4 5 6 7 8 9

y � f(t)

y = ƒstd
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a. How long did it take the balls to fall the first 160 cm? What
was their average velocity for the period?

b. How fast were the balls falling when they reached the 160-cm
mark? What was their acceleration then?

c. About how fast was the light flashing (flashes per second)?

20. A traveling truck The accompanying graph shows the position
s of a truck traveling on a highway. The truck starts at and
returns 15 h later at 

a. Use the technique described in Section 3.1, Example 3, to
graph the truck’s velocity Then
repeat the process, with the velocity curve, to graph the
truck’s acceleration .

b. Suppose that Graph and and
compare your graphs with those in part (a).

21. The graphs in Figure 3.21 show the position s, velocity
and acceleration of a body moving along

a coordinate line as functions of time t. Which graph is which?
Give reasons for your answers.

a = d2s>dt2y = ds>dt ,

0

100

200

300

400

500

5 10 15
Elapsed time, t (hr)

Po
si

tio
n,

 s
 (

km
)

d2s>dt2ds>dts = 15t2
- t3 .

dy>dt

y = ds>dt for 0 … t … 15.

t = 15.
t = 0

Economics
23. Marginal cost Suppose that the dollar cost of producing x

washing machines is 

a. Find the average cost per machine of producing the first 100
washing machines.

b. Find the marginal cost when 100 washing machines are
produced.

c. Show that the marginal cost when 100 washing machines are
produced is approximately the cost of producing one more
washing machine after the first 100 have been made, by
calculating the latter cost directly.

24. Marginal revenue Suppose that the revenue from selling x
washing machines is

dollars.

a. Find the marginal revenue when 100 machines are produced.

b. Use the function to estimate the increase in revenue that
will result from increasing production from 100 machines a
week to 101 machines a week.

c. Find the limit of as How would you interpret
this number?

Additional Applications
25. Bacterium population When a bactericide was added to a nu-

trient broth in which bacteria were growing, the bacterium popu-
lation continued to grow for a while, but then stopped growing
and began to decline. The size of the population at time t (hours)
was Find the growth rates at

a.

b.

c. t = 10 hours .

t = 5 hours .

t = 0 hours .

b = 106
+ 104t - 103t2 .

x : q .r¿sxd

r¿sxd

rsxd = 20,000 a1 -

1
x b

csxd = 2000 + 100x - 0.1x2 .
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t

y

0

A B

C

FIGURE 3.21 The graphs for Exercise 21.

22. The graphs in Figure 3.22 show the position s, the velocity
and the acceleration of a body moving

along the coordinate line as functions of time t. Which graph is
which? Give reasons for your answers.

a = d2s>dt2y = ds>dt ,

t

y

0

A

B

C

FIGURE 3.22 The graphs for Exercise 22.
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26. Draining a tank The number of gallons of water in a tank t min-
utes after the tank has started to drain is 
How fast is the water running out at the end of 10 min? What is the
average rate at which the water flows out during the first 10 min?

27. Draining a tank It takes 12 hours to drain a storage tank by
opening the valve at the bottom. The depth y of fluid in the tank t
hours after the valve is opened is given by the formula

a. Find the rate (m h) at which the tank is draining at time t.

b. When is the fluid level in the tank falling fastest? Slowest?
What are the values of at these times?

c. Graph y and together and discuss the behavior of y in
relation to the signs and values of .

28. Inflating a balloon The volume of a spherical
balloon changes with the radius.

a. At what rate does the volume change with respect to
the radius when 

b. By approximately how much does the volume increase when
the radius changes from 2 to 2.2 ft?

29. Airplane takeoff Suppose that the distance an aircraft travels along
a runway before takeoff is given by where D is
measured in meters from the starting point and t is measured in sec-
onds from the time the brakes are released. The aircraft will become
airborne when its speed reaches 200 km h. How long will it take to
become airborne, and what distance will it travel in that time?

30. Volcanic lava fountains Although the November 1959 Kilauea
Iki eruption on the island of Hawaii began with a line of fountains
along the wall of the crater, activity was later confined to a single
vent in the crater’s floor, which at one point shot lava 1900 ft
straight into the air (a world record). What was the lava’s exit ve-
locity in feet per second? In miles per hour? (Hint: If is the exit
velocity of a particle of lava, its height t sec later will be

Begin by finding the time at which
Neglect air resistance.)ds>dt = 0.

s = y0 t - 16t2 ft .

y0

>

D = s10>9dt2 ,

r = 2 ft?
sft3>ftd

V = s4>3dpr3

dy>dt
dy>dt

dy>dt

>dy>dt

y = 6 a1 -

t
12
b2

 m.

Qstd = 200s30 - td2 .
Exercises 31–34 give the position function of a body moving
along the s-axis as a function of time t. Graph ƒ together with the ve-
locity function and the acceleration function

Comment on the body’s behavior in relation
to the signs and values of y and a. Include in your commentary such
topics as the following:

a. When is the body momentarily at rest?

b. When does it move to the left (down) or to the right (up)?

c. When does it change direction?

d. When does it speed up and slow down?

e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

31. (a heavy object fired straight
up from Earth’s surface at 200 ft sec)

32.

33.

34.

35. Thoroughbred racing A racehorse is running a 10-furlong
race. (A furlong is 220 yards, although we will use furlongs and
seconds as our units in this exercise.) As the horse passes each
furlong marker (F ), a steward records the time elapsed (t) since
the beginning of the race, as shown in the table:

F 0 1 2 3 4 5 6 7 8 9 10

t 0 20 33 46 59 73 86 100 112 124 135

a. How long does it take the horse to finish the race?

b. What is the average speed of the horse over the first 5 furlongs?

c. What is the approximate speed of the horse as it passes the 
3-furlong marker?

d. During which portion of the race is the horse running the
fastest?

e. During which portion of the race is the horse accelerating the
fastest?

s = 4 - 7t + 6t2
- t3, 0 … t … 4

s = t3
- 6t2

+ 7t, 0 … t … 4

s = t2
- 3t + 2, 0 … t … 5

>
s = 200t - 16t2, 0 … t … 12.5

astd = d2s>dt2
= ƒ–std .
ystd = ds>dt = ƒ¿std

s = ƒstd

183

T

T

4100 AWL/Thomas_ch03p147-243  8/19/04  11:16 AM  Page 183

3.3 The Derivative as a Rate of Change

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



3.4 Derivatives of Trigonometric Functions 183

Derivatives of Trigonometric Functions

Many of the phenomena we want information about are approximately periodic (electro-
magnetic fields, heart rhythms, tides, weather). The derivatives of sines and cosines play a
key role in describing periodic changes. This section shows how to differentiate the six ba-
sic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of for x measured in radians, we combine the lim-
its in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine:

sin sx + hd = sin x cos h + cos x sin h .

ƒsxd = sin x ,

3.4
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If then

Derivative definition

Sine angle sum identity

 = cos x .
 = sin x # 0 + cos x # 1

 = sin x # lim
h:0

 
cos h - 1

h
+ cos x # lim

h:0
 
sin h

h

 = lim
h:0

 asin x # cos h - 1
h

b + lim
h:0

 acos x # sin h
h
b

 = lim
h:0

 
sin x scos h - 1d + cos x sin h

h

 = lim
h:0

 
ssin x cos h + cos x sin hd - sin x

h

 = lim
h:0

 
sin sx + hd - sin x

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsxd = sin x ,
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Example 5(a) and
Theorem 7, Section 2.4

The derivative of the sine function is the cosine function:

d
dx

 ssin xd = cos x .

EXAMPLE 1 Derivatives Involving the Sine

(a)

Difference Rule

(b)

Product Rule

(c)

Quotient Rule

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine,

cos sx + hd = cos x cos h - sin x sin h ,

 =

x cos x - sin x
x2 .

 
dy
dx

=

x # d
dx

 Asin x B - sin x # 1

x2

y =

sin x
x :

 = x2 cos x + 2x sin x .

 
dy
dx

= x2 
d
dx

 Asin x B + 2x sin x

y = x2 sin x :
 = 2x - cos x .

 
dy
dx

= 2x -

d
dx

 Asin x B
y = x2

- sin x :
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we have

Derivative definition

 = -sin x .

 = cos x # 0 - sin x # 1

 = cos x # lim
h:0

 
cos h - 1

h
- sin x # lim

h:0
 
sin h

h

 = lim
h:0

 cos x # cos h - 1
h

- lim
h:0

 sin x # sin h
h

 = lim
h:0

 
cos xscos h - 1d - sin x sin h

h

 = lim
h:0

 
scos x cos h - sin x sin hd - cos x

h

 
d
dx

 scos xd = lim
h:0

 
cos sx + hd - cos x

h

3.4 Derivatives of Trigonometric Functions 185

Cosine angle sum
identity

Example 5(a) and
Theorem 7, Section 2.4

The derivative of the cosine function is the negative of the sine function:

d
dx

 scos xd = -sin x

1

x

y

0–	 	
–1

1

x

y'

0–	 	
–1

y � cos x

y' � –sin x

FIGURE 3.23 The curve as
the graph of the slopes of the tangents to
the curve y = cos x .

y¿ = -sin x

Figure 3.23 shows a way to visualize this result.

EXAMPLE 2 Derivatives Involving the Cosine

(a)

Sum Rule

(b)

Product Rule

(c)

Quotient Rule

 =
1

1 - sin x
.

sin2 x + cos2 x = 1 =

1 - sin x
s1 - sin xd2

 =

s1 - sin xds -sin xd - cos xs0 - cos xd
s1 - sin xd2

 
dy
dx

=

A1 - sin x B  d
dx

 Acos x B - cos x 
d
dx

 A1 - sin x B
s1 - sin xd2

y =

cos x
1 - sin x

:

 = cos2 x - sin2 x .

 = sin xs -sin xd + cos xscos xd

 
dy
dx

= sin x 
d
dx

 Acos x B + cos x 
d
dx

 Asin x B
y = sin x cos x :

 = 5 - sin x.

 
dy
dx

=

d
dx

 s5xd +

d
dx

 Acos x B
y = 5x + cos x :
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Simple Harmonic Motion

The motion of a body bobbing freely up and down on the end of a spring or bungee cord is
an example of simple harmonic motion. The next example describes a case in which there
are no opposing forces such as friction or buoyancy to slow the motion down.

EXAMPLE 3 Motion on a Spring

A body hanging from a spring (Figure 3.24) is stretched 5 units beyond its rest position
and released at time to bob up and down. Its position at any later time t is

What are its velocity and acceleration at time t ?

Solution We have

Position:

Velocity:

Acceleration:

Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between and on the
s-axis. The amplitude of the motion is 5. The period of the motion is 

2. The velocity attains its greatest magnitude, 5, when as the graphs
show in Figure 3.25. Hence, the speed of the weight, is greatest when

that is, when (the rest position). The speed of the weight is zero when
Thisoccurswhen at the endpoints of the interval of motion.

3. The acceleration value is always the exact opposite of the position value. When the
weight is above the rest position, gravity is pulling it back down; when the weight is
below the rest position, the spring is pulling it back up.

4. The acceleration, is zero only at the rest position, where and
the force of gravity and the force from the spring offset each other. When the weight is
anywhere else, the two forces are unequal and acceleration is nonzero. The accelera-
tion is greatest in magnitude at the points farthest from the rest position, where

EXAMPLE 4 Jerk

The jerk of the simple harmonic motion in Example 3 is

It has its greatest magnitude when not at the extremes of the displacement but
at the rest position, where the acceleration changes direction and sign.

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

tan x =

sin x
cos x , cot x =

cos x
sin x

 , sec x =
1

cos x , and csc x =
1

sin x

sin t = ;1,

j =

da
dt

=

d
dt

 s -5 cos td = 5 sin t .

cos t = ;1.

cos t = 0a = -5 cos t ,

s = 5 cos t = ;5,sin t = 0.
s = 0cos t = 0,

ƒ y ƒ = 5 ƒ  sin t ƒ ,
cos t = 0,y = -5 sin t

2p .
s = 5s = -5

a =

dy
dt

=

d
dt

 s -5 sin td = -5 cos t .

y =

ds
dt

=

d
dt

 s5 cos td = -5 sin t

s = 5 cos t

s = 5 cos t .

t = 0

186 Chapter 3: Differentiation

s

0

–5

5

Rest
position

Position at
t � 0

FIGURE 3.24 A body hanging from
a vertical spring and then displaced
oscillates above and below its rest position.
Its motion is described by trigonometric
functions (Example 3).

t
0

s, y

y � –5 sin t s � 5 cos t

� �
2

3� 2�
2

5�
2

FIGURE 3.25 The graphs of the position
and velocity of the body in Example 3.
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are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions.

3.4 Derivatives of Trigonometric Functions 187

Derivatives of the Other Trigonometric Functions

 
d
dx

 scsc xd = -csc x cot x

 
d
dx

 scot xd = -csc2 x

 
d
dx

 ssec xd = sec x tan x

 
d
dx

 stan xd = sec2 x

To show a typical calculation, we derive the derivative of the tangent function. The
other derivations are left to Exercise 50.

EXAMPLE 5

Find d(tan x) dx.

Solution

Quotient Rule

EXAMPLE 6

Find 

Solution

Product Rule

 = sec3 x + sec x tan2 x

 = sec xssec2 xd + tan xssec x tan xd

 = sec x 
d
dx

 A tan x B + tan x 
d
dx

 Asec x B
 y– =

d
dx

 ssec x tan xd

 y¿ = sec x tan x

 y = sec x

y– if y = sec x .

 =
1

cos2 x
= sec2 x

 =

cos2 x + sin2 x
cos2 x

 =

cos x cos x - sin x s -sin xd
cos2 x

 
d
dx

 A tan x B =

d
dx

 a sin x
cos x b =

cos x 
d
dx

 Asin x B - sin x 
d
dx

 Acos x B
cos2 x

>
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The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.1).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7 Finding a Trigonometric Limit

lim
x:0

 
22 + sec x

cos sp - tan xd
=

22 + sec 0
cos sp - tan 0d

=

22 + 1
cos sp - 0d

=

23
-1

= -23

188 Chapter 3: Differentiation
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188 Chapter 3: Differentiation

EXERCISES 3.4

Derivatives
In Exercises 1–12, find .

1. 2.

3. 4.

5.

6.

7. 8.

9. 10.

11.

12.

In Exercises 13–16, find .

13. 14.

15. 16.

In Exercises 17–20, find 

17. 18.

19. 20.

In Exercises 21–24, find .

21. 22.

23. 24.

25. Find if

a. b. y = sec x .y = csc x .

y–

p =

tan q

1 + tan q
p =

sin q + cos q
cos q

p = s1 + csc qd cos qp = 5 +

1
cot q

dp>dq

r = s1 + sec ud sin ur = sec u csc u

r = u sin u + cos ur = 4 - u2 sin u

dr>du .

s =

sin t
1 - cos t

s =

1 + csc t
1 - csc t

s = t2
- sec t + 1s = tan t - t

ds>dt

y = x2 cos x - 2x sin x - 2 cos x

y = x2 sin x + 2x cos x - 2 sin x

y =

cos x
x +

x
cos xy =

4
cos x +

1
tan x

y =

cos x
1 + sin x

y =

cot x
1 + cot x

y = ssin x + cos xd sec x

y = ssec x + tan xdssec x - tan xd

y = x2 cot x -

1
x2y = csc x - 41x + 7

y =

3
x + 5 sin xy = -10x + 3 cos x

dy>dx

26. Find if

a. b.

Tangent Lines
In Exercises 27–30, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.

27.

28.

29.

30.

Do the graphs of the functions in Exercises 31–34 have any horizontal
tangents in the interval If so, where? If not, why not?
Visualize your findings by graphing the functions with a grapher.

31.

32.

33.

34.

35. Find all points on the curve where
the tangent line is parallel to the line Sketch the curve
and tangent(s) together, labeling each with its equation.

36. Find all points on the curve where the
tangent line is parallel to the line Sketch the curve and
tangent(s) together, labeling each with its equation.

y = -x .
y = cot x, 0 6 x 6 p ,

y = 2x .
y = tan x, -p>2 6 x 6 p>2,

y = x + 2 cos x

y = x - cot x

y = 2x + sin x

y = x + sin x

0 … x … 2p?

 x = -p>3, 3p>2
 y = 1 + cos x, -3p>2 … x … 2p

 x = -p>3, p>4
 y = sec x, -p>2 6 x 6 p>2
 x = -p>3, 0, p>3
 y = tan x, -p>2 6 x 6 p>2
 x = -p, 0, 3p>2
 y = sin x, -3p>2 … x … 2p

y = 9 cos x .y = -2 sin x .

y s4d
= d4 y>dx4

T
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In Exercises 37 and 38, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

37. 38.

Trigonometric Limits
Find the limits in Exercises 39–44.

39.

40.

41.

42.

43.

44.

Simple Harmonic Motion
The equations in Exercises 45 and 46 give the position of a
body moving on a coordinate line (s in meters, t in seconds). Find the
body’s velocity, speed, acceleration, and jerk at time 

45. 46.

Theory and Examples
47. Is there a value of c that will make

continuous at Give reasons for your answer.x = 0?

ƒsxd = L sin2 3x

x2 , x Z 0

c, x = 0

s = sin t + cos ts = 2 - 2 sin t

t = p>4 sec .

s = ƒstd

lim
u:0

 cos a pu
sin u

b

lim
t:0

 tan a1 -

sin t
t b

lim
x:0

 sin a p + tan x
tan x - 2 sec x

b

lim
x:0

 sec ccos x + p tan a p

4 sec x
b - 1 d

lim
x: -p>621 + cos sp csc xd

lim
x:2

 sin a1x -

1
2
b

x

y

0 1 2

4

3

Q







�
4

P     , 4

�
4

y � 1 � �2 csc x � cot x

x

y

0

1

1 2

2

Q

y � 4 � cot x � 2csc x







�
2

P     , 2

�
2

48. Is there a value of b that will make

continuous at Differentiable at Give reasons for
your answers.

49. Find 

50. Derive the formula for the derivative with respect to x of

a. sec x. b. csc x. c. cot x.

51. Graph for On the same screen, graph

for and 0.1. Then, in a new window, try
and What happens as As

What phenomenon is being illustrated here?

52. Graph for On the same screen, graph

for and 0.1. Then, in a new window, try
and What happens as As

What phenomenon is being illustrated here?

53. Centered difference quotients The centered difference quotient

is used to approximate in numerical work because (1) its
limit as equals when exists, and (2) it usually
gives a better approximation of for a given value of h than
Fermat’s difference quotient

See the accompanying figure.

ƒsx + hd - ƒsxd
h

.

ƒ¿sxd
ƒ¿sxdƒ¿sxdh : 0

ƒ¿sxd

ƒsx + hd - ƒsx - hd
2h

h : 0- ?
h : 0+ ?-0.3 .h = -1, -0.5 ,

h = 1, 0.5, 0.3 ,

y =

cos sx + hd - cos x

h

-p … x … 2p .y = -sin x

h : 0- ?
h : 0+ ?-0.3 .h = -1, -0.5 ,

h = 1, 0.5, 0.3 ,

y =

sin sx + hd - sin x

h

-p … x … 2p .y = cos x

d999>dx999 scos xd .

x = 0?x = 0?

g sxd = e x + b, x 6 0

cos x, x Ú 0

3.4 Derivatives of Trigonometric Functions 189

T

T

T

x

y

0 x

A

hh

C B

x � h x � h

y � f (x)

Slope � f '(x)

Slope �

Slope �

h
f (x � h) � f (x)

f (x � h) � f (x � h)
2h
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a. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval for and 0.3. Compare
the results with those obtained in Exercise 51 for the same
values of h.

b. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval and 0.3. Compare
the results with those obtained in Exercise 52 for the same
values of h.

54. A caution about centered difference quotients (Continuation
of Exercise 53.) The quotient

may have a limit as when ƒ has no derivative at x. As a case
in point, take and calculate

As you will see, the limit exists even though has no de-
rivative at Moral: Before using a centered difference quo-
tient, be sure the derivative exists.

55. Slopes on the graph of the tangent function Graph 
and its derivative together on Does the graph of the
tangent function appear to have a smallest slope? a largest slope?
Is the slope ever negative? Give reasons for your answers.

s -p>2, p>2d .
y = tan x

x = 0.
ƒsxd = ƒ x ƒ

lim
h:0

 
ƒ 0 + h ƒ - ƒ 0 - h ƒ

2h
.

ƒsxd = ƒ x ƒ

h : 0

ƒsx + hd - ƒsx - hd
2h

[-p, 2p] for h = 1, 0.5 ,

y =

cos sx + hd - cos sx - hd
2h

y = -sin xƒ¿sxd = -sin x ,ƒsxd = cos x

h = 1, 0.5 ,[-p, 2p]

y =

sin sx + hd - sin sx - hd
2h

y = cos xƒ¿sxd = cos x ,ƒsxd = sin x
56. Slopes on the graph of the cotangent function Graph

and its derivative together for Does the
graph of the cotangent function appear to have a smallest slope?
A largest slope? Is the slope ever positive? Give reasons for your
answers.

57. Exploring (sin kx) x Graph and
together over the interval Where

does each graph appear to cross the y-axis? Do the graphs really
intersect the axis? What would you expect the graphs of

and to do as Why?
What about the graph of for other values of k?
Give reasons for your answers.

58. Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in de-
grees instead of radians? To find out, take the following steps.

a. With your graphing calculator or computer grapher in degree
mode, graph

and estimate Compare your estimate with
Is there any reason to believe the limit should be 

b. With your grapher still in degree mode, estimate

c. Now go back to the derivation of the formula for the
derivative of sin x in the text and carry out the steps of the
derivation using degree-mode limits. What formula do you
obtain for the derivative?

d. Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. Try it.
What are the second and third degree-mode derivatives of
sin x and cos x?

lim
h:0

 
cos h - 1

h
.

p>180?
p>180.limh:0 ƒshd .

ƒshd =

sin h
h

y = ssin kxd>x
x : 0?y = ssin s -3xdd>xy = ssin 5xd>x

-2 … x … 2.y = ssin 4xd>x
y = ssin 2xd>x ,y = ssin xd>x ,/

0 6 x 6 p .y = cot x
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T

T

T
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190 Chapter 3: Differentiation

The Chain Rule and Parametric Equations

We know how to differentiate and but how do we
differentiate a composite like The differentiation formu-
las we have studied so far do not tell us how to calculate So how do we find the de-
rivative of The answer is, with the Chain Rule, which says that the derivative
of the composite of two differentiable functions is the product of their derivatives evalu-
ated at appropriate points. The Chain Rule is one of the most important and widely used
rules of differentiation. This section describes the rule and how to use it. We then apply the
rule to describe curves in the plane and their tangent lines in another way.

F = ƒ � g?
F¿sxd .

Fsxd = ƒsg sxdd = sin sx2
- 4d?

u = g sxd = x2
- 4,y = ƒsud = sin u

3.5
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Derivative of a Composite Function

We begin with examples.

EXAMPLE 1 Relating Derivatives

The function is the composite of the functions and 

How are the derivatives of these functions related?

Solution We have

Since we see that

Is it an accident that

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If changes half as fast as u and changes three
times as fast as x, then we expect y to change times as fast as x. This effect is much like
that of a multiple gear train (Figure 3.26).

EXAMPLE 2

The function

is the composite of and Calculating derivatives, we see that

Calculating the derivative from the expanded formula, we get

Once again,

The derivative of the composite function ƒ(g (x)) at x is the derivative of ƒ at g (x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.27).

dy
du

# du
dx

=

dy
dx

 .

 = 36x3
+ 12x .

 
dy
dx

=

d
dx

 A9x4
+ 6x2

+ 1 B

 = 36x3
+ 12x .

 = 2s3x2
+ 1d # 6x

 
dy
du

# du
dx

= 2u # 6x

u = 3x2
+ 1.y = u2

y = 9x4
+ 6x2

+ 1 = s3x2
+ 1d2

3>2 u = g sxdy = ƒsud

dy
dx

=

dy
du

# du
dx

?

dy
dx

=

dy
du

# du
dx

.

3
2

=
1
2

# 3,

dy
dx

=

3
2

, dy
du

=
1
2

, and du
dx

= 3.

u = 3x .y =
1
2

 uy =

3
2

 x =
1
2

 s3xd
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32

1

C: y turns B: u turns A: x turns

FIGURE 3.26 When gear A makes x
turns, gear B makes u turns and gear C
makes y turns. By comparing circumferences
or counting teeth, we see that 
(C turns one-half turn for each B turn)
and (B turns three times for A’s
one), so Thus, 
s1>2ds3d = sdy>dudsdu>dxd .

dy>dx = 3>2 =y = 3x>2.
u = 3x

y = u>2
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Intuitive “Proof” of the Chain Rule:
Let be the change in u corresponding to a change of in x, that is

Then the corresponding change in y is

It would be tempting to write

(1)

and take the limit as 

 =

dy
du

 
du
dx

.

 = lim
¢u:0

 
¢y

¢u
# lim

¢x:0
 
¢u
¢x

 = lim
¢x:0

 
¢y

¢u
# lim

¢x:0
 
¢u
¢x

 = lim
¢x:0

 
¢y

¢u
# ¢u

¢x

 
dy
dx

= lim
¢x:0

 
¢y

¢x

¢x : 0:

¢y

¢x
=

¢y

¢u
# ¢u

¢x

¢y = ƒsu + ¢ud - ƒsud .

¢u = g sx + ¢xd - g sxd

¢x¢u

192 Chapter 3: Differentiation

x

g f

Composite f ˚ g

Rate of change at
x is f '(g(x)) • g'(x).

Rate of change
at x is g'(x).

Rate of change
at g(x) is f '(g(x)).

u � g(x) y � f (u) � f (g(x))

FIGURE 3.27 Rates of change multiply: The derivative of at x is the
derivative of ƒ at g (x) times the derivative of g at x.

ƒ � g

THEOREM 3 The Chain Rule
If ƒ(u) is differentiable at the point and is differentiable at x, then
the composite function is differentiable at x, and

In Leibniz’s notation, if and then

where is evaluated at u = g sxd .dy>du

dy
dx

=

dy
du

# du
dx

,

u = g sxd ,y = ƒsud

sƒ � gd¿sxd = ƒ¿sg sxdd # g¿sxd .

sƒ � gdsxd = ƒsg sxdd
g (x)u = gsxd

(Note that as
since g is continuous.)

¢x : 0¢u : 0
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The only flaw in this reasoning is that in Equation (1) it might happen that (even
when ) and, of course, we can’t divide by 0. The proof requires a different ap-
proach to overcome this flaw, and we give a precise proof in Section 3.8.

EXAMPLE 3 Applying the Chain Rule

An object moves along the x-axis so that its position at any time is given by
Find the velocity of the object as a function of t.

Solution We know that the velocity is . In this instance, x is a composite function:
and We have

By the Chain Rule,

As we see from Example 3, a difficulty with the Leibniz notation is that it doesn’t state
specifically where the derivatives are supposed to be evaluated.

“Outside-Inside” Rule

It sometimes helps to think about the Chain Rule this way: If then

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g (x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 4 Differentiating from the Outside In

Differentiate with respect to x.

Solution

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative. Here is
an example.

d
dx

 sin (x2
+ x) = cos (x2

+ x) # (2x + 1)

sin sx2
+ xd

dy
dx

= ƒ¿sg sxdd # g¿sxd .

y = ƒsg sxdd ,

 = -2t sin st2
+ 1d .

 = -sin st2
+ 1d # 2t

 = -sin sud # 2t

 
dx
dt

=

dx
du

# du
dt

u = t2
+ 1 

du
dt

= 2t .

x = cossud 
dx
du

= -sin sud

u = t2
+ 1.x = cossud

dx>dt

xstd = cos st2
+ 1d .

t Ú 0

¢x Z 0
¢u = 0
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evaluated at u
dx
du

(+)+*

inside
(+)+*

inside
left alone

(+)+*

derivative of
the inside
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EXAMPLE 5 A Three-Link “Chain”

Find the derivative of 

Solution Notice here that the tangent is a function of whereas the sine is a
function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

The Chain Rule with Powers of a Function

If ƒ is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing into the Chain Rule formula

leads to the formula

Here’s an example of how it works: If n is a positive or negative integer and 
the Power Rules (Rules 2 and 7) tell us that If u is a differentiable function
of x, then we can use the Chain Rule to extend this to the Power Chain Rule:

EXAMPLE 6 Applying the Power Chain Rule

(a)

(b)

In part (b) we could also have found the derivative with the Quotient Rule.

 = -

3
s3x - 2d2

 = -1s3x - 2d-2s3d

 = -1s3x - 2d-2 
d
dx

 s3x - 2d

 
d
dx

 a 1
3x - 2

b =

d
dx

s3x - 2d-1

 = 7s5x3
- x4d6s15x2

- 4x3d
 = 7s5x3

- x4d6s5 # 3x2
- 4x3d

 
d
dx

 s5x3
- x4d7

= 7s5x3
- x4d6 

d
dx

 A5x3
- x4 B

d
du

 Aun B = nun - 1d
dx

 un
= nun - 1 

du
dx

.

ƒ¿sud = nun - 1 .
ƒsud = un ,

d
dx

 ƒsud = ƒ¿sud 
du
dx

.

dy
dx

=

dy
du

# du
dx

y = ƒsud

 = -2scos 2td sec2 s5 - sin 2td .

 = sec2 s5 - sin 2td # s -cos 2td # 2

 = sec2 s5 - sin 2td # a0 - cos 2t #
d
dt

 A2t B b
 = sec2 s5 - sin 2td # d

dt
 A5 - sin 2t B

 g¿std =

d
dt

 A tan A5 - sin 2t B B

5 - sin 2t ,

g std = tan s5 - sin 2td .
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HISTORICAL BIOGRAPHY

Johann Bernoulli
(1667–1748)

Derivative of tan u with
u = 5 - sin 2t

Derivative of 
with u = 2t

5 - sin u

Power Chain Rule with
u = 5x3

- x4, n = 7

Power Chain Rule with
u = 3x - 2, n = -1
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EXAMPLE 7 Finding Tangent Slopes

(a) Find the slope of the line tangent to the curve at the point where 

(b) Show that the slope of every line tangent to the curve is positive.

Solution

(a) Power Chain Rule with 

The tangent line has slope

(b)

Power Chain Rule with 

At any point (x, y) on the curve, and the slope of the tangent line is

the quotient of two positive numbers.

EXAMPLE 8 Radians Versus Degrees

It is important to remember that the formulas for the derivatives of both sin x and cos x
were obtained under the assumption that x is measured in radians, not degrees. The Chain
Rule gives us new insight into the difference between the two. Since radians,

radians where x° means the angle x measured in degrees.
By the Chain Rule,

See Figure 3.28. Similarly, the derivative of 
The factor annoying in the first derivative, would compound with repeated

differentiation. We see at a glance the compelling reason for the use of radian measure.

Parametric Equations

Instead of describing a curve by expressing the y-coordinate of a point P(x, y) on the curve
as a function of x, it is sometimes more convenient to describe the curve by expressing
both coordinates as functions of a third variable t. Figure 3.29 shows the path of a moving
particle described by a pair of equations, and For studying motion,y = g std .x = ƒstd

p>180,
cos sx°d is -sp>180d sin sx°d .

d
dx

 sin sx°d =

d
dx

 sin a px
180
b =

p
180

 cos a px
180
b =

p
180

 cos sx°d .

x° = px>180
180° = p

dy
dx

=

6
s1 - 2xd4 ,

x Z 1>2
 =

6
s1 - 2xd4

 = -3s1 - 2xd-4 # s -2d

u = s1 - 2xd, n = -3 = -3s1 - 2xd-4 # d
dx

 s1 - 2xd

 
dy
dx

=

d
dx

 s1 - 2xd-3

dy
dx
`
x =p>3

= 5 a23
2
b4

 a1
2
b =

45
32

.

 = 5 sin4 x cos x

u = sin x, n = 5 
dy
dx

= 5 sin4 x # d
dx

 sin x

y = 1>s1 - 2xd3

x = p>3.y = sin5 x

3.5 The Chain Rule and Parametric Equations 195

sinn x means ssin xdn, n Z -1.
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t usually denotes time. Equations like these are better than a Cartesian formula because
they tell us the particle’s position at any time t.sx, yd = sƒstd, g stdd

196 Chapter 3: Differentiation

x

y

1

180
y � sin x

y � sin(x°) � sin �x
180

FIGURE 3.28 oscillates only times as often as oscillates. Its maximum
slope is at (Example 8).x = 0p/180

sin xp/180Sin sx°d

( f (t), g(t))

Position of particle
at time t

FIGURE 3.29 The path traced by a
particle moving in the xy-plane is not
always the graph of a function of x or a
function of y.

DEFINITION Parametric Curve
If x and y are given as functions

over an interval of t-values, then the set of points defined by
these equations is a parametric curve. The equations are parametric equations
for the curve.

sx, yd = sƒstd, gstdd
x = ƒstd, y = g std

The variable t is a parameter for the curve, and its domain I is the parameter inter-
val. If I is a closed interval, the point (ƒ(a), g (a)) is the initial point of the
curve. The point (ƒ(b), g (b)) is the terminal point. When we give parametric equations
and a parameter interval for a curve, we say that we have parametrized the curve. The
equations and interval together constitute a parametrization of the curve.

EXAMPLE 9 Moving Counterclockwise on a Circle

Graph the parametric curves

(a)

(b)

Solution

(a) Since the parametric curve lies along the unit circle
As t increases from 0 to the point starts at

(1, 0) and traces the entire circle once counterclockwise (Figure 3.30).

(b) For we have
The parametrization describes a motion that begins at the point (a, 0) and traverses the
circle once counterclockwise, returning to (a, 0) at t = 2p .x2

+ y2
= a2

x2
+ y2

= a2 cos2 t + a2 sin2 t = a2 .x = a cos t, y = a sin t, 0 … t … 2p ,

sx, yd = scos t, sin td2p ,x2
+ y2

= 1.
x2

+ y2
= cos2 t + sin2 t = 1,

x = a cos t,  y = a sin t,  0 … t … 2p .

x = cos t,  y = sin t,  0 … t … 2p .

a … t … b ,

x
0

t

(1, 0)

y

x2 � y2 � 1

P(cos t, sin t)

t � 0t � �

 t � 3�
2

 t � �
2

FIGURE 3.30 The equations 
and describe motion on the circle

The arrow shows the
direction of increasing t (Example 9).
x2

+ y2
= 1.

y = sin t
x = cos t
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EXAMPLE 10 Moving Along a Parabola

The position P(x, y) of a particle moving in the xy-plane is given by the equations and pa-
rameter interval

Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating t between the equations and
With any luck, this will produce a recognizable algebraic relation between x and y.

We find that

Thus, the particle’s position coordinates satisfy the equation so the particle moves
along the parabola 

It would be a mistake, however, to conclude that the particle’s path is the entire
parabola it is only half the parabola. The particle’s x-coordinate is never negative.
The particle starts at (0, 0) when and rises into the first quadrant as t increases
(Figure 3.31). The parameter interval is and there is no terminal point.

EXAMPLE 11 Parametrizing a Line Segment

Find a parametrization for the line segment with endpoints and (3, 5).

Solution Using we create the parametric equations

These represent a line, as we can see by solving each equation for t and equating to obtain

This line goes through the point when We determine a and b so that the line
goes through (3, 5) when 

Therefore,

is a parametrization of the line segment with initial point and terminal point (3, 5).

Slopes of Parametrized Curves

A parametrized curve and is differentiable at t if ƒ and g are differen-
tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable
function of x, the derivatives , , and are related by the Chain Rule:

If we may divide both sides of this equation by to solve for .dy>dxdx>dtdx>dt Z 0,

dy
dt

=

dy
dx

# dx
dt

 .

dy>dxdx>dtdy>dt

y = g stdx = ƒstd

s -2, 1d

x = -2 + 5t, y = 1 + 4t, 0 … t … 1

y = 5 when t = 1 .5 = 1 + b Q b = 4

x = 3 when t = 1 .3 = -2 + a Q a = 5

t = 1.
t = 0.s -2, 1d

x + 2
a =

y - 1
b

.

x = -2 + at, y = 1 + bt .

s -2, 1d

s -2, 1d

[0, q d
t = 0

y = x2 ;

y = x2 .
y = x2 ,

y = t = A1t B2 = x2 .

y = t .
x = 1t

x = 1t, y = t, t Ú 0.

3.5 The Chain Rule and Parametric Equations 197

x

y

0

(1, 1)

  

Starts at
t � 0

t � 1

y � x2, x � 0

P(�t, t)

FIGURE 3.31 The equations 
and and the interval describe
the motion of a particle that traces the
right-hand half of the parabola 
(Example 10).

y = x2

t Ú 0y = t
x = 1t
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EXAMPLE 12 Differentiating with a Parameter

If and find the value of 

Solution Equation (2) gives as a function of t:

When Notice that we are also able to find the derivative as a
function of x.

EXAMPLE 13 Moving Along the Ellipse 

Describe the motion of a particle whose position P(x, y) at time t is given by

Find the line tangent to the curve at the point where (The con-
stants a and b are both positive.)

Solution We find a Cartesian equation for the particle’s coordinates by eliminating t be-
tween the equations

The identity yields

The particle’s coordinates (x, y) satisfy the equation so the parti-
cle moves along this ellipse. When the particle’s coordinates are

so the motion starts at (a, 0). As t increases, the particle rises and moves toward the left,
moving counterclockwise. It traverses the ellipse once, returning to its starting position
(a, 0) at 

The slope of the tangent line to the ellipse when is

 =

b>22

-a>22
= -

b
a .

 =

b cos t
-a sin t

`
t =p>4

 
dy
dx
`
t =p>4

=

dy>dt

dx>dt
`
t =p>4

t = p>4t = 2p .

x = a coss0d = a, y = b sin s0d = 0,

t = 0,
sx2>a2d + sy2>b2d = 1,

ax
a b

2

+ ay
b
b2

= 1, or x2

a2 +

y2

b2 = 1.

cos2 t + sin2 t = 1,

cos t =

x
a ,  sin t =

y
b

 .

t = p>4.Aa>22, b>22 B ,
x = a cos t, y = b sin t, 0 … t … 2p .

x2>a2
+ y2>b2

= 1

dy>dxt = 6, dy>dx = 6.

dy
dx

=

dy>dt

dx>dt
=

2t
2

= t =

x - 3
2

 .

dy>dx

dy>dx at t = 6.y = t2
- 1,x = 2t + 3

198 Chapter 3: Differentiation

Parametric Formula for 
If all three derivatives exist and 

(2)
dy
dx

=

dy>dt

dx>dt
 .

dx>dt Z 0,
dy/dx
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The tangent line is

or

If parametric equations define y as a twice-differentiable function of x, we can apply
Equation (2) to the function to calculate as a function of t:

Eq. (2) with in place of yy¿

d2y

dx2 =

d
dx

 s y¿d =

dy¿>dt

dx>dt
 .

d2y>dx2dy>dx = y¿

y = -

b
a x + 22b .

 y =

b22
-

b
a ax -

a22
b

 y -

b22
= -

b
a ax -

a22
b

3.5 The Chain Rule and Parametric Equations 199

Parametric Formula for 

If the equations define y as a twice-differentiable function of
x, then at any point where 

(3)
d2y

dx2 =

dy¿>dt

dx>dt
.

dx>dt Z 0,
x = ƒstd, y = gstd

d 2y/dx2

EXAMPLE 14 Finding for a Parametrized Curve

Find as a function of t if 

Solution

1. Express in terms of t.

2. Differentiate with respect to t.

Quotient Rule

3. Divide by .

Eq. (3)

EXAMPLE 15 Dropping Emergency Supplies

A Red Cross aircraft is dropping emergency food and medical supplies into a disaster area.
If the aircraft releases the supplies immediately above the edge of an open field 700 ft long
and if the cargo moves along the path

x = 120t and y = -16t2
+ 500, t Ú 0

d2y

dx2 =

dy¿>dt

dx>dt
=

s2 - 6t + 6t2d>s1 - 2td2

1 - 2t
=

2 - 6t + 6t2

s1 - 2td3

dx>dtdy¿>dt

dy¿

dt
=

d
dt

 a1 - 3t2

1 - 2t
b =

2 - 6t + 6t2

s1 - 2td2

y¿

y¿ =

dy
dx

=

dy>dt

dx>dt
=

1 - 3t2

1 - 2t

y¿ = dy>dx

x = t - t2,  y = t - t3 .d2y>dx2

d2y>dx2

Finding in Terms of t
1. Express in terms of t.
2. Find 
3. Divide by .dx>dtdy¿>dt

dy¿>dt .
y¿ = dy>dx

d2y>dx2
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does the cargo land in the field? The coordinates x and y are measured in feet, and the pa-
rameter t (time since release) in seconds. Find a Cartesian equation for the path of the
falling cargo (Figure 3.32) and the cargo’s rate of descent relative to its forward motion
when it hits the ground.

Solution The cargo hits the ground when which occurs at time t when

Set 

The x-coordinate at the time of the release is At the time the cargo hits the ground,
the x-coordinate is

Since the cargo does land in the field.
We find a Cartesian equation for the cargo’s coordinates by eliminating t between the

parametric equations:

Parametric equation for y

A parabola

The rate of descent relative to its forward motion when the cargo hits the ground is

Thus, it is falling about 1.5 feet for every foot of forward motion when it hits the ground.

 = -

225
3

L -1.49.

 =

-32t
120

`
t = 525>2

 
dy
dx
`
t = 525>2

=

dy>dt

dx>dt
`
t = 525>2

 = -
1

900
x2

+ 500.

 = -16 a x
120
b2

+ 500

 y = -16t2
+ 500

30025 L 670.8 6 700,

x = 120t = 120 a525
2
b = 30025 ft .

x = 0.

t Ú 0 t = A500
16

=

525
2

 sec.

y = 0 . -16t2
+ 500 = 0

y = 0,

200 Chapter 3: Differentiation

x

Position of aircraft at release

Path of dropped cargo

Open field

y

500

?0 700

FIGURE 3.32 The path of the dropped
cargo of supplies in Example 15.

Substitute for t from the
equation x = 120t .

USING TECHNOLOGY Simulation of Motion on a Vertical Line

The parametric equations

will illuminate pixels along the vertical line If ƒ(t) denotes the height of a moving
body at time t, graphing will simulate the actual motion. Try it for
the rock in Example 5, Section 3.3 with say, and in dot
mode with Why does the spacing of the dots vary? Why does the grapher seem
to stop after it reaches the top? (Try the plots for and separately.)

For a second experiment, plot the parametric equations

xstd = t, ystd = 160t - 16t2

5 … t … 100 … t … 5
t Step = 0.1.

ystd = 160t - 16t2 ,xstd = 2,
sxstd, ystdd = sc, ƒstdd

x = c .

xstd = c, ystd = ƒstd

x(t ) = 2
y(t ) = 160t –16t 2

and

x(t ) = t
y(t ) = 160t –16t 2

in dot mode
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3.5 The Chain Rule and Parametric Equations 201

together with the vertical line simulation of the motion, again in dot mode. Use what you
know about the behavior of the rock from the calculations of Example 5 to select a win-
dow size that will display all the interesting behavior.

Standard Parametrizations and Derivative Rules

CIRCLE ELLIPSE

FUNCTION DERIVATIVES

 y = ƒstd
y¿ =

dy
dx

=

dy>dt

dx>dt
, d2y

dx2 =

dy¿>dt

dx>dt

 x = t

y = ƒsxd :

 0 … t … 2p 0 … t … 2p

 y = b sin t y = a sin t

 x = a cos t x = a cos t

x2

a2 +

y2

b2 = 1:x2
+ y2

= a2 :
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3.5 The Chain Rule and Parametric Equations 201

EXERCISES 3.5

Derivative Calculations
In Exercises 1–8, given and find 

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–18, write the function in the form and
Then find as a function of x.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

Find the derivatives of the functions in Exercises 19–38.

19. 20.

21. s =

4
3p

 sin 3t +

4
5p

 cos 5t

q = 22r - r2p = 23 - t

y = 5 cos-4 xy = sin3 x

y = cot ap -

1
x by = sec stan xd

y = ax
5

+

1
5x
b5

y = ax2

8
+ x -

1
x b

4

y = ax
2

- 1b-10

y = a1 -

x
7
b-7

y = s4 - 3xd9y = s2x + 1d5

dy>dxu = gsxd .
y = ƒsud

y = -sec u, u = x2
+ 7xy = tan u, u = 10x - 5

y = sin u, u = x - cos xy = cos u, u = sin x

y = cos u, u = -x>3y = sin u, u = 3x + 1

y = 2u3, u = 8x - 1y = 6u - 9, u = s1>2dx4

ƒ¿sgsxddg¿sxd .
dy>dx =u = gsxd ,y = ƒsud

22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39–48, find .

39. 40.

41. 42. y = s1 + cot st>2dd-2y = s1 + cos 2td-4

y = sec2 pty = sin2 spt - 2d
dy>dt

q = cot asin t
t bq = sin a t2t + 1

b
r = sec2u tan a1

u
br = sin su2d cos s2ud

g std = a1 + cos t
sin t

b-1

ƒsud = a sin u

1 + cos u
b2

k sxd = x2 sec a1x bhsxd = x tan A21x B + 7

y = s2x - 5d-1sx2
- 5xd6y = s4x + 3d4sx + 1d-3

y = s5 - 2xd-3
+

1
8

 a2x + 1b4

y =

1
21

 s3x - 2d7
+ a4 -

1
2x2 b

-1

y =

1
x  sin-5 x -

x
3

 cos3 xy = x2 sin4 x + x cos-2 x

r = -ssec u + tan ud-1r = scsc u + cot ud-1

s = sin a3pt
2
b + cos a3pt

2
b
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43. 44.

45. 46.

47. 48.

Second Derivatives
Find in Exercises 49–52.

49. 50.

51. 52.

Finding Numerical Values of Derivatives
In Exercises 53–58, find the value of at the given value of x.

53.

54.

55.

56.

57.

58.

59. Suppose that functions ƒ and g and their derivatives with respect
to x have the following values at and 

x ƒ(x) g (x) ƒ �(x) g�(x)

2 8 2
3 3 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. b.

c. d.

e. f.

g. h.

60. Suppose that the functions ƒ and g and their derivatives with re-
spect to x have the following values at and 

x ƒ(x) g (x) ƒ �(x) g�(x)

0 1 1 5
1 3 -8>3-1>3-4

1>3

x = 1.x = 0

2f 2sxd + g2sxd, x = 21>g2sxd, x = 3

2ƒsxd, x = 2ƒsg sxdd, x = 2

ƒsxd>g sxd, x = 2ƒsxd # g sxd, x = 3

ƒsxd + g sxd, x = 32ƒsxd, x = 2

2p-4
-31>3

x = 3.x = 2

ƒsud = au - 1
u + 1

b2

, u = g sxd =

1
x2 - 1, x = -1

ƒsud =

2u

u2
+ 1

 , u = g sxd = 10x2
+ x + 1, x = 0

ƒsud = u +

1
cos2 u

 , u = g sxd = px, x = 1>4
ƒsud = cot 

pu
10

 , u = g sxd = 51x, x = 1

ƒsud = 1 -

1
u , u = g sxd =

1
1 - x

 , x = -1

ƒsud = u5
+ 1, u = g sxd = 1x, x = 1

sƒ � gd¿

y = 9 tan ax
3
by =

1
9

 cot s3x - 1d

y = A1 - 1x B-1y = a1 +

1
x b

3

y–

y = 4 sin A21 + 1t By = 21 + cos st2d

y =

1
6

 A1 + cos2 A7t B B3y = a1 + tan4 a t
12
b b3

y = cos a5 sin a t
3
b by = sin scos s2t - 5dd

Find the derivatives with respect to x of the following combina-
tions at the given value of x,

a. b.

c. d.

e. f.

g.

61. Find when if and 

62. Find when if and 

Choices in Composition
What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule says
you should. Try it with the functions in Exercises 63 and 64.

63. Find if by using the Chain Rule with y as a compos-
ite of

a.

b.

64. Find if by using the Chain Rule with y as a com-
posite of

a.

b.

Tangents and Slopes
65. a. Find the tangent to the curve 

b. Slopes on a tangent curve What is the smallest value the
slope of the curve can ever have on the interval

Give reasons for your answer.

66. Slopes on sine curves

a. Find equations for the tangents to the curves and
at the origin. Is there anything special about

how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the curves
and at the origin

Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the
curves and can ever have? Give
reasons for your answer.

d. The function completes one period on the interval
the function completes two periods, the

function completes half a period, and so on. Is
there any relation between the number of periods 
completes on and the slope of the curve at
the origin? Give reasons for your answer.

Finding Cartesian Equations from
Parametric Equations
Exercises 67–78 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by

y = sin mx[0, 2p]
y = sin mx

y = sin sx>2d
y = sin 2x[0, 2p] ,

y = sin x

y = -sin sx>mdy = sin mx

sm a constant Z 0d?
y = -sin sx>mdy = sin mx

y = -sin sx>2d
y = sin 2x

-2 6 x 6 2?

y = 2 tan spx>4d at x = 1.

y = 1u and u = x3 .

y = u3 and u = 1x

y = x3>2dy>dx

y = 1 + s1>ud and u = 1>sx - 1d .

y = su>5d + 7 and u = 5x - 35

y = xdy>dx

dx>dt = 1>3.y = x2
+ 7x - 5x = 1dy>dt

du>dt = 5.s = cos uu = 3p>2ds>dt

ƒsx + g sxdd, x = 0

sx11
+ ƒsxdd-2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
 , x = 1

ƒsxdg3sxd, x = 05ƒsxd - g sxd, x = 1

202 Chapter 3: Differentiation
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finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Determining Parametric Equations
79. Find parametric equations and a parameter interval for the motion

of a particle that starts at (a, 0) and traces the circle 

a. once clockwise. b. once counterclockwise.

c. twice clockwise. d. twice counterclockwise.

(There are many ways to do these, so your answers may not be the
same as the ones in the back of the book.)

80. Find parametric equations and a parameter interval for the motion
of a particle that starts at (a, 0) and traces the ellipse

a. once clockwise. b. once counterclockwise.

c. twice clockwise. d. twice counterclockwise.

(As in Exercise 79, there are many correct answers.)

In Exercises 81–86, find a parametrization for the curve.

81. the line segment with endpoints and (4, 1)

82. the line segment with endpoints and 

83. the lower half of the parabola 

84. the left half of the parabola 

85. the ray (half line) with initial point (2, 3) that passes through the
point 

86. the ray (half line) with initial point that passes through
the point (0, 0)

Tangents to Parametrized Curves
In Exercises 87–94, find an equation for the line tangent to the curve
at the point defined by the given value of t. Also, find the value of

at this point.

87.

88.

89. x = t, y = 1t, t = 1>4
x = cos t, y = 23 cos t, t = 2p>3
x = 2 cos t, y = 2 sin t, t = p>4

d2y>dx2

s -1, 2d
s -1, -1d

y = x2
+ 2x

x - 1 = y2

s3, -2ds -1, 3d
s -1, -3d

sx2>a2d + sy2>b2d = 1

x2
+ y2

= a2

x = -sec t, y = tan t, -p>2 6 t 6 p>2
x = sec2 t - 1, y = tan t, -p>2 6 t 6 p>2
x = 2t + 1, y = 1t, t Ú 0

x = t, y = 21 - t2, -1 … t … 0

x = 3 - 3t, y = 2t, 0 … t … 1

x = 2t - 5, y = 4t - 7, - q 6 t 6 q

x = -1t, y = t, t Ú 0

x = 3t, y = 9t2, - q 6 t 6 q

x = 4 sin t, y = 5 cos t, 0 … t … 2p

x = 4 cos t, y = 2 sin t, 0 … t … 2p

x = cos sp - td, y = sin sp - td, 0 … t … p

x = cos 2t, y = sin 2t, 0 … t … p

90.

91.

92.

93.

94.

Theory, Examples, and Applications
95. Running machinery too fast Suppose that a piston is moving

straight up and down and that its position at time t sec is

with A and b positive. The value of A is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up
and down each second). What effect does doubling the frequency
have on the piston’s velocity, acceleration, and jerk? (Once you find
out, you will know why machinery breaks when you run it too fast.)

96. Temperatures in Fairbanks, Alaska The graph in Figure 3.33
shows the average Fahrenheit temperature in Fairbanks, Alaska,
during a typical 365-day year. The equation that approximates the
temperature on day x is

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature
increasing when it is increasing at its fastest?

y = 37 sin c 2p
365

 sx - 101d d + 25.

s = A cos s2pbtd ,

x = sec2 t - 1, y = tan t, t = -p>4
x = cos t, y = 1 + sin t, t = p>2
x = t - sin t, y = 1 - cos t, t = p>3
x = 2t2

+ 3, y = t4, t = -1

x = -2t + 1, y = 23t, t = 3
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FIGURE 3.33 Normal mean air temperatures at Fairbanks,
Alaska, plotted as data points, and the approximating sine
function (Exercise 96).

97. Particle motion The position of a particle moving along a co-

ordinate line is with s in meters and t in seconds.
Find the particle’s velocity and acceleration at 

98. Constant acceleration Suppose that the velocity of a falling
body is (k a constant) at the instant the body has
fallen s m from its starting point. Show that the body’s accelera-
tion is constant.

y = k1s m>sec

t = 6 sec.
s = 21 + 4t ,
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99. Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to when it is s
km from Earth’s center. Show that the meteorite’s acceleration is
inversely proportional to 

100. Particle acceleration A particle moves along the x-axis with
velocity Show that the particle’s acceleration is

101. Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

where g is the constant acceleration of gravity at the pendulum’s lo-
cation. If we measure g in centimeters per second squared, we meas-
ure L in centimeters and T in seconds. If the pendulum is made of
metal, its length will vary with temperature, either increasing or de-
creasing at a rate that is roughly proportional to L. In symbols, with
u being temperature and k the proportionality constant,

Assuming this to be the case, show that the rate at which the pe-
riod changes with respect to temperature is .

102. Chain Rule Suppose that and Then the
composites

are both differentiable at even though g itself is not differ-
entiable at Does this contradict the Chain Rule? Explain.

103. Tangents Suppose that is differentiable at and
that is differentiable at If the graph of

has a horizontal tangent at can we conclude
anything about the tangent to the graph of or the tan-
gent to the graph of Give reasons for your answer.

104. Suppose that is differentiable at is
differentiable at and is negative.
What, if anything, can be said about the values of and

105. The derivative of sin 2x Graph the function for
Then, on the same screen, graph

for and 0.2. Experiment with other values of h, in-
cluding negative values. What do you see happening as 
Explain this behavior.

106. The derivative of Graph for
Then, on the same screen, graph

y =

cos ssx + hd2d - cos sx2d
h

-2 … x … 3.
y = -2x sin sx2dcos sx2d

h : 0?
h = 1.0, 0.5 ,

y =

sin 2sx + hd - sin 2x

h

-2 … x … 3.5 .
y = 2 cos 2x

ƒ¿sg s -5dd?
g¿s -5d

sƒ � gd¿s -5du = g s -5d ,
x = -5, y = ƒsudu = g sxd

f at u = g s1d?
g at x = 1

x = 1,y = ƒsg sxdd
u = g s1d .y = ƒsud

x = 1u = g sxd
x = 0.

x = 0

sƒ � gdsxd = ƒ x ƒ
2

= x2 and sg � ƒdsxd = ƒ x2
ƒ = x2

g sxd = ƒ x ƒ .ƒsxd = x2

kT>2

dL
du

= kL .

T = 2pAL
g  ,

ƒsxdƒ¿sxd .
dx>dt = ƒsxd .

s2 .

1s
for Experiment with other values of h.
What do you see happening as Explain this behavior.

The curves in Exercises 107 and 108 are called Bowditch curves or
Lissajous figures. In each case, find the point in the interior of the first
quadrant where the tangent to the curve is horizontal, and find the
equations of the two tangents at the origin.

107. 108.

Using the Chain Rule, show that the power rule 
holds for the functions in Exercises 109 and 110.

109. 110.

COMPUTER EXPLORATIONS

Trigonometric Polynomials
111. As Figure 3.34 shows, the trigonometric “polynomial”

gives a good approximation of the sawtooth function 
on the interval How well does the derivative of ƒ ap-
proximate the derivative of g at the points where is de-
fined? To find out, carry out the following steps.

a. Graph (where defined) over 

b. Find .

c. Graph . Where does the approximation of by
seem to be best? Least good? Approximations by

trigonometric polynomials are important in the theories of
heat and oscillation, but we must not expect too much of
them, as we see in the next exercise.

dƒ>dt
dg>dtdƒ>dt

dƒ>dt

[-p, p] .dg>dt

dg>dt
[-p, p] .

s = g std

 -0.02546 cos 10t - 0.01299 cos 14t

 s = ƒstd = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

x3>4
= 2x1xx1>4

= 21x

xn
sd>dxdxn

= nxn - 1

h : 0?
h = 1.0, 0.7, and 0.3 .
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T

T

x

y

1–1

x � sin t
y � sin 2t

x

y

1–1

1

–1

x � sin 2t
y � sin 3t

T

t

s

0–� �

2
�

s � g(t)

s � f (t)

FIGURE 3.34 The approximation of a
sawtooth function by a trigonometric
“polynomial” (Exercise 111).
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112. (Continuation of Exercise 111.) In Exercise 111, the trigonomet-
ric polynomial that approximated the sawtooth function g (t)
on had a derivative that approximated the derivative of
the sawtooth function. It is possible, however, for a trigonometric
polynomial to approximate a function in a reasonable way with-
out its derivative approximating the function’s derivative at all
well. As a case in point, the “polynomial”

graphed in Figure 3.35 approximates the step function 
shown there. Yet the derivative of h is nothing like the derivative
of k.

s = kstd

 + 0.18189 sin 14t + 0.14147 sin 18t

 s = hstd = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

[-p, p]
ƒ(t)

a. Graph (where defined) over 

b. Find 

c. Graph to see how badly the graph fits the graph of
. Comment on what you see.

Parametrized Curves
Use a CAS to perform the following steps on the parametrized curves
in Exercises 113–116.

a. Plot the curve for the given interval of t values.

b. Find and at the point 

c. Find an equation for the tangent line to the curve at the point
defined by the given value Plot the curve together with
the tangent line on a single graph.

113.

114.

115.

116. x = et cos t, y = et sin t, 0 … t … p, t0 = p>2
x = t - cos t, y = 1 + sin t, -p … t … p, t0 = p>4
t0 = 3>2
x = 2t3

- 16t2
+ 25t + 5, y = t2

+ t - 3, 0 … t … 6,

x =

1
3

 t3, y =

1
2

 t2, 0 … t … 1, t0 = 1>2

t0 .

t0 .d2y>dx2dy>dx

dk>dt
dh>dt

dh>dt.

[-p, p] .dk>dt

205

1

t

s

0 �
2

�–� �
2

–

–1

s � k(t)

s � h(t)

FIGURE 3.35 The approximation of a
step function by a trigonometric
“polynomial” (Exercise 112).
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3.6 Implicit Differentiation 205

Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the
form that expresses y explicitly in terms of the variable x. We have learned rules
for differentiating functions defined in this way. In Section 3.5 we also learned how to find
the derivative when a curve is defined parametrically by equations and

A third situation occurs when we encounter equations like

(See Figures 3.36, 3.37, and 3.38.) These equations define an implicit relation between the
variables x and y. In some cases we may be able to solve such an equation for y as an ex-
plicit function (or even several functions) of x. When we cannot put an equation

in the form to differentiate it in the usual way, we may still be able
to find by implicit differentiation. This consists of differentiating both sides of the
equation with respect to x and then solving the resulting equation for This section de-
scribes the technique and uses it to extend the Power Rule for differentiation to include ra-
tional exponents. In the examples and exercises of this section it is always assumed that the
given equation determines y implicitly as a differentiable function of x.

Implicitly Defined Functions

We begin with an example.

y¿ .
dy>dx

y = ƒsxdFsx, yd = 0

x2
+ y2

- 25 = 0, y2
- x = 0, or x3

+ y3
- 9xy = 0.

y = ystd .
x = xstddy>dx

y = ƒsxd

3.6 

0 5–5
x

y

Slope � – �y
x

4
3

(3, –4)

y1 � �25 � x2

y2 � –�25 � x2

FIGURE 3.36 The circle combines the
graphs of two functions. The graph of is
the lower semicircle and passes through
s3, -4d .

y2
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EXAMPLE 1 Differentiating Implicitly

Find if 

Solution The equation defines two differentiable functions of x that we can actu-
ally find, namely and (Figure 3.37). We know how to calculate the
derivative of each of these for 

But suppose that we knew only that the equation defined y as one or more differ-
entiable functions of x for without knowing exactly what these functions were.
Could we still find ?

The answer is yes. To find , we simply differentiate both sides of the equation
with respect to x, treating as a differentiable function of x:

This one formula gives the derivatives we calculated for both explicit solutions 
and 

EXAMPLE 2 Slope of a Circle at a Point

Find the slope of circle at the point 

Solution The circle is not the graph of a single function of x. Rather it is the combined
graphs of two differentiable functions, and (Figure
3.36). The point lies on the graph of so we can find the slope by calculating
explicitly:

But we can also solve the problem more easily by differentiating the given equation of the
circle implicitly with respect to x:

The slope at is -
x
y `

s3, -4d
= -

3
-4

=

3
4

 .s3, -4d

 
dy
dx

= -

x
y .

 2x + 2y 
dy
dx

= 0

 
d
dx

 Ax2 B +

d
dx

 Ay2 B =

d
dx

 A25 B

dy2

dx
`
x = 3

= -

-2x

2225 - x2
`
x = 3

= -

-6

2225 - 9
=

3
4

 .

y2 ,s3, -4d
y2 = -225 - x2y1 = 225 - x2

s3, -4d .x2
+ y2

= 25

dy1

dx
=

1
2y1

=
1

21x
 and dy2

dx
=

1
2y2

=
1

2 A -1x B = -
1

21x
 .

y2 = -1x :
y1 = 1x

 
dy
dx

=
1
2y

 .

 2y 
dy
dx

= 1

 y2
= x

y = ƒsxdy2
= x

dy>dx
dy>dx

x 7 0
y2

= x

dy1

dx
=

1
21x
 and dy2

dx
= -

1
21x

 .

x 7 0:
y2 = -1xy1 = 1x

y2
= x

y2
= x .dy>dx
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x

y

0

y2 � x

Slope � �
2y1

1
2�x

1

Slope � � �
2y2

1
2�x

1

y1 � �x

y2 � ��x

P(x, �x )

Q(x, ��x )

FIGURE 3.37 The equation 
or as it is usually written, defines
two differentiable functions of x on the
interval Example 1 shows how to
find the derivatives of these functions
without solving the equation for y.y2

= x

x Ú 0.

y2
= x

y2
- x = 0,

x

y

0 5

5

A

x3 � y3 � 9xy � 0

y � f1(x)
(x0, y1)

y � f2(x)

y � f3(x)

(x0, y2)

(x0, y3)

x0

FIGURE 3.38 The curve
is not the graph

of any one function of x. The curve can,
however, be divided into separate arcs that
are the graphs of functions of x. This
particular curve, called a folium, dates to
Descartes in 1638.

x3
+ y3

- 9xy = 0

The Chain Rule gives 

d
dx

 Cƒ Ax B D2 = 2ƒsxdƒ¿sxd = 2y 
dy

dx
.

d
dx

 Ay2 B =
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Notice that unlike the slope formula for which applies only to points below the
x-axis, the formula applies everywhere the circle has a slope. Notice also
that the derivative involves both variables x and y, not just the independent variable x.

To calculate the derivatives of other implicitly defined functions, we proceed as in Ex-
amples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual
rules to differentiate both sides of the defining equation.

EXAMPLE 3 Differentiating Implicitly

Find if (Figure 3.39).

Solution

Treat xy as a product.

Collect terms with 

and factor out .

Solve for by dividing.

Notice that the formula for applies everywhere that the implicitly defined curve has
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x.

dy>dx

dy>dx 
dy
dx

=

2x + y cos xy
2y - x cos xy

dy>dxÁ s2y - x cos xyd 
dy
dx

= 2x + y cos xy

dy>dx Á 2y 
dy
dx

- scos xyd ax 
dy
dx
b = 2x + scos xydy

 2y 
dy
dx

= 2x + scos xyd ay + x 
dy
dx
b

 2y 
dy
dx

= 2x + scos xyd 
d
dx Axy B

 
d
dx

 Ay2 B =

d
dx

 Ax2 B +

d
dx

 Asin xy B
 y2

= x2
+ sin xy

y2
= x2

+ sin xydy>dx

dy>dx = -x>y dy2>dx ,
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y2 � x2 � sin xy

y

x

4

2

0 2 4–2–4

–2

–4

FIGURE 3.39 The graph of
in Example 3. The

example shows how to find slopes on this
implicitly defined curve.

y2
= x2

+ sin xy

Differentiate both sides with
respect to x Á

treating y as a function of
x and using the Chain Rule.
Á

Implicit Differentiation
1. Differentiate both sides of the equation with respect to x, treating y as a differ-

entiable function of x.

2. Collect the terms with on one side of the equation.

3. Solve for .dy>dx

dy>dx

Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important an-
gles are the angles the light makes with the line perpendicular to the surface of the lens at
the point of entry (angles A and B in Figure 3.40). This line is called the normal to the sur-
face at the point of entry. In a profile view of a lens like the one in Figure 3.40, the normal
is the line perpendicular to the tangent to the profile curve at the point of entry.

A

Normal line

Light ray
Tangent

Point of entry
P

B

Curve of lens
surface

FIGURE 3.40 The profile of a lens,
showing the bending (refraction) of a ray
of light as it passes through the lens
surface.
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EXAMPLE 4 Tangent and Normal to the Folium of Descartes

Show that the point (2, 4) lies on the curve Then find the tangent and
normal to the curve there (Figure 3.41).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation
given for the curve: 

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a
formula for :

Solve for .

We then evaluate the derivative at 

The tangent at (2, 4) is the line through (2, 4) with slope :

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line
through (2, 4) with slope 

The quadratic formula enables us to solve a second-degree equation like
for y in terms of x. There is a formula for the three roots of a cubic

equation that is like the quadratic formula but much more complicated. If this formula is
used to solve the equation for y in terms of x, then three functions deter-
mined by the equation are

y = ƒsxd =
3C-

x3

2
+ Bx6

4
- 27x3

+
3C-

x3

2
- Bx6

4
- 27x3

x3
+ y3

= 9xy

y2
- 2xy + 3x2

= 0

 y = -

5
4

 x +

13
2

.

 y = 4 -

5
4

 sx - 2d

-5>4:

 y =
4
5 x +

12
5 .

 y = 4 +
4
5 Ax - 2 B

4>5

dy
dx
`
s2, 4d

=

3y - x2

y2
- 3x

`
s2, 4d

=

3s4d - 22

42
- 3s2d

=

8
10

=
4
5 .

sx, yd = s2, 4d :

dy>dx 
dy
dx

=

3y - x2

y2
- 3x

 .

 3sy2
- 3xd 

dy
dx

= 9y - 3x2

 s3y2
- 9xd 

dy
dx

+ 3x2
- 9y = 0

 3x2
+ 3y2 

dy
dx

- 9 ax 
dy
dx

+ y 
dx
dx
b = 0

 
d
dx

 Ax3 B +

d
dx

 Ay3 B -

d
dx

 A9xy B =

d
dx

 A0 B
 x3

+ y3
- 9xy = 0

dy>dx

23
+ 43

- 9s2ds4d = 8 + 64 - 72 = 0.

x3
+ y3

- 9xy = 0.
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x

y

0 2

4

 Tan
gen

t

N
orm

alx3 � y3 � 9xy � 0

FIGURE 3.41 Example 4 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).

Differentiate both sides
with respect to x.

Treat xy as a product and y
as a function of x.
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and

Using implicit differentiation in Example 4 was much simpler than calculating di-
rectly from any of the above formulas. Finding slopes on curves defined by higher-degree
equations usually requires implicit differentiation.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives. Here is an example.

EXAMPLE 5 Finding a Second Derivative Implicitly

Find if

Solution To start, we differentiate both sides of the equation with respect to x in order to
find 

Treat y as a function of x.

Solve for 

We now apply the Quotient Rule to find 

Finally, we substitute to express in terms of x and y.

Rational Powers of Differentiable Functions

We know that the rule

holds when n is an integer. Using implicit differentiation we can show that it holds when n
is any rational number.

d
dx

 xn
= nxn - 1

y– =

2x
y -

x2

y2 ax2

y b =

2x
y -

x4

y3 , when y Z 0

y–y¿ = x2>y
y– =

d
dx

 ax2

y b =

2xy - x2y¿

y2 =

2x
y -

x2

y2
# y¿

y– .

y¿ . y¿ =

x2

y , when y Z 0

 x2
- yy¿ = 0

 6x2
- 6yy¿ = 0

 
d
dx

 A2x3
- 3y2 B =

d
dx

 s8d

y¿ = dy>dx .

2x3
- 3y2

= 8.d2y>dx2

dy>dx

y =
1
2

 c-ƒsxd ; 2-3 aC3 -

x3

2
+ Bx6

4
- 27x3

- C3 -

x3

2
- Bx6

4
- 27x3b d .
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THEOREM 4 Power Rule for Rational Powers
If is a rational number, then is differentiable at every interior point of the
domain of and

d
dx

 xp>q
=

p
q x sp>qd - 1 .

x sp>qd - 1 ,
xp>qp>q
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EXAMPLE 6 Using the Rational Power Rule

(a)

(b)

(c)

Proof of Theorem 4 Let p and q be integers with and suppose that  
Then

Since p and q are integers (for which we already have the Power Rule), and assuming that
y is a differentiable function of x, we can differentiate both sides of the equation with re-
spect to x and get

If we can divide both sides of the equation by to solve for , obtaining

A law of exponents

which proves the rule.

We will drop the assumption of differentiability used in the proof of Theorem 4 in
Chapter 7, where we prove the Power Rule for any nonzero real exponent. (See Section
7.3.)

By combining the result of Theorem 4 with the Chain Rule, we get an extension of the
Power Chain Rule to rational powers of u: If is a rational number and u is a differen-
tiable function of x, then is a differentiable function of x and

provided that This restriction is necessary because 0 might be in the
domain of but not in the domain of as we see in the next example.u s p>qd - 1 ,up>qu Z 0 if s p>qd 6 1.

d
dx

 up>q
=

p
q u s p>qd - 1 

du
dx

 ,

up>q p>q

 =

p
q

# x s p>qd - 1, 

 =

p
q

# x s p - 1d - s p - p>qd

p
q sq - 1d = p -

p
q =

p
q

# xp - 1

xp - p>q

y = xp>q =

p
q

# xp - 1

sxp>qdq - 1

 
dy
dx

=

pxp - 1

qyq - 1

dy>dxqyq - 1y Z 0,

qyq - 1 
dy
dx

= pxp - 1 .

yq
= xp .

xp>q .
y = 2q xp

=q 7 0

for x Z 0
d
dx

 Ax-4>3 B = -
4
3

 x-7>3

for x Z 0
d
dx

 Ax2>3 B =
2
3

 x-1>3

for x 7 0
d
dx

 Ax1>2 B =
1
2

 x-1>2
=

1
21x
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EXAMPLE 7 Using the Rational Power and Chain Rules

function defined on 
$++%++&

(a) Power Chain Rule with

(b)

 =
1
5 ssin xdscos xd-6>5

 = -
1
5 scos xd-6>5 s -sin xd

 
d
dx

 scos xd-1>5
= -

1
5 scos xd-6>5 

d
dx

 scos xd

 =

-x

2 A1 - x2 B3>4
u = 1 - x2 

d
dx

 A1 - x2 B1>4 =
1
4

 A1 - x2 B-3>4(-2x)

[-1, 1]

3.6 Implicit Differentiation 211

(+++)+++*

derivative defined only on s -1, 1d
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3.6 Implicit Differentiation 211

EXERCISES 3.6

Derivatives of Rational Powers
Find in Exercises 1-10.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

Find the first derivatives of the functions in Exercises 11-18.

11. 12.

13. 14.

15. 16.

17. 18.

Differentiating Implicitly
Use implicit differentiation to find in Exercises 19-32.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. y2 cos a1y b = 2x + 2yy sin a1y b = 1 - xy

x + sin y = xyx + tan sxyd = 0

xy = cot sxydx = tan y

x2
=

x - y
x + yy2

=

x - 1
x + 1

s3xy + 7d2
= 6yx2sx - yd2

= x2
- y2

x3
- xy + y3

= 12xy + y2
= x + y

x3
+ y3

= 18xyx2y + xy2
= 6

dy>dx

ksud = ssin su + 5dd5>4hsud = 23 1 + cos s2ud
gsxd = 2s2x-1>2

+ 1d-1>3ƒsxd = 21 - 1x

z = cos [s1 - 6td2>3]y = sin [s2t + 5d-2>3]
r =

42u-3s =
72t2

y = xsx2
+ 1d-1>2y = xsx2

+ 1d1>2
y = s1 - 6xd2>3y = s2x + 5d-1>2
y = -22x - 1y = 72x + 6

y =
425xy = 23 2x

y = x-3>5y = x9>4
dy>dx

Find in Exercises 33-36.

33. 34.

35. 36.

Second Derivatives
In Exercises 37-42, use implicit differentiation to find and then

37. 38.

39. 40.

41. 42.

43. If find the value of at the point (2, 2).

44. If find the value of at the point 

Slopes, Tangents, and Normals
In Exercises 45 and 46, find the slope of the curve at the given points.

45. and 

46. and 

In Exercises 47-56, verify that the given point is on the curve and find
the lines that are (a) tangent and (b) normal to the curve at the given
point.

47.

48.

49. x2y2
= 9, s -1, 3d

x2
+ y2

= 25, s3, -4d
x2

+ xy - y2
= 1, s2, 3d

s1, -1dsx2
+ y2d2

= sx - yd2 at s1, 0d
s -2, -1dy2

+ x2
= y4

- 2x at s -2, 1d

s0, -1d .d2y>dx2xy + y2
= 1,

d2y>dx2x3
+ y3

= 16,

xy + y2
= 121y = x - y

y2
- 2x = 1 - 2yy2

= x2
+ 2x

x2>3
+ y2>3

= 1x2
+ y2

= 1

d2y>dx2 .
dy>dx

cos r + cot u = rusin srud =

1
2

r - 22u =

3
2

 u2>3
+

4
3

 u3>4u1>2
+ r1>2

= 1

dr>du

4100 AWL/Thomas_ch03p147-243  8/19/04  11:17 AM  Page 211

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



50.

51.

52.

53.

54.

55.

56.

57. Parallel tangents Find the two points where the curve
crosses the x-axis, and show that the tangents

to the curve at these points are parallel. What is the common
slope of these tangents?

58. Tangents parallel to the coordinate axes Find points on the
curve (a) where the tangent is parallel to the
x-axis and (b) where the tangent is parallel to the y-axis. In the
latter case, is not defined, but is. What value does

have at these points?

59. The eight curve Find the slopes of the curve at
the two points shown here.

60. The cissoid of Diocles (from about 200 B.C.) Find equations for
the tangent and normal to the cissoid of Diocles 
at (1, 1).

x

y

1

1

(1, 1)

0

y2(2 � x) � x3

y2s2 - xd = x3

x

y

0

1

–1

y4 � y2 � x2







�3
4

�3
2

,







�3
4

1
2

,

y4
= y2

- x2

dx>dy
dx>dydy>dx

x2
+ xy + y2

= 7

x2
+ xy + y2

= 7

x2 cos2 y - sin y = 0, s0, pd
y = 2 sin spx - yd, s1, 0d
x sin 2y = y cos 2x, sp>4, p>2d
2xy + p sin y = 2p, s1, p>2d
x2

- 23xy + 2y2
= 5, A23, 2 B

6x2
+ 3xy + 2y2

+ 17y - 6 = 0, s -1, 0d
y2

- 2x - 4y - 1 = 0, s -2, 1d 61. The devil’s curve (Gabriel Cramer [the Cramer of Cramer’s
rule], 1750) Find the slopes of the devil’s curve 

at the four indicated points.

62. The folium of Descartes (See Figure 3.38)

a. Find the slope of the folium of Descartes, 
at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a
horizontal tangent?

c. Find the coordinates of the point A in Figure 3.38, where the
folium has a vertical tangent.

Implicitly Defined Parametrizations
Assuming that the equations in Exercises 63–66 define x and y implic-
itly as differentiable functions find the slope of
the curve at the given value of t.

63.

64.

65.

66.

Theory and Examples
67. Which of the following could be true if 

a. b.

c. d.

68. Is there anything special about the tangents to the curves and
at the points Give reasons for your answer.

x

y

0

(1, 1)

y2 � x3

2x2 � 3y2 � 5

(1, –1)

s1, ;1d?2x2
+ 3y2

= 5
y2

= x3

ƒ¿sxd =

3
2

 x2>3
+ 6ƒ‡sxd = -

1
3

 x-4>3

ƒsxd =

9
10

 x5>3
- 7ƒsxd =

3
2

 x2>3
- 3

ƒ–sxd = x-1>3 ?

x sin t + 2x = t, t sin t - 2t = y, t = p

x + 2x3>2
= t2

+ t, y2t + 1 + 2t1y = 4, t = 0

x = 25 - 1t, y st - 1d = 1t, t = 4

x2
- 2tx + 2t2

= 4, 2y3
- 3t2

= 4, t = 2

x = ƒstd, y = g std
x = ƒstd, y = g std ,

x3
+ y3

- 9xy = 0

x

y

3–3

2

–2

(3, 2)

(3, –2)

(–3, 2)

(–3, –2)

y4 � 4y2 � x4 � 9x2

x4
- 9x2

y4
- 4y2 =
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69. Intersecting normal The line that is normal to the curve
at (1, 1) intersects the curve at what other

point?

70. Normals parallel to a line Find the normals to the curve
that are parallel to the line 

71. Normals to a parabola Show that if it is possible to draw three
normals from the point (a, 0) to the parabola shown here,
then a must be greater than . One of the normals is the x-axis.
For what value of a are the other two normals perpendicular?

72. What is the geometry behind the restrictions on the domains of
the derivatives in Example 6(b) and Example 7(a)?

In Exercises 73 and 74, find both (treating y as a differentiable
function of x) and (treating x as a differentiable function of y).
How do and seem to be related? Explain the relationship
geometrically in terms of the graphs.

73. 74.

COMPUTER EXPLORATIONS

75. a. Given that find two ways: (1) by
solving for y and differentiating the resulting functions in
the usual way and (2) by implicit differentiation. Do you
get the same result each way?

b. Solve the equation for y and graph the
resulting functions together to produce a complete graph of
the equation Then add the graphs of the first
derivatives of these functions to your display. Could you have

x4
+ 4y2

= 1.

x4
+ 4y2

= 1

dy>dxx4
+ 4y2

= 1,

x3
+ y2

= sin2 yxy3
+ x2y = 6

dx>dydy>dx
dx>dy

dy>dx

x

y

0 (a, 0)

x � y2

1>2
x = y2

2x + y = 0.xy + 2x - y = 0

x2
+ 2xy - 3y2

= 0
predicted the general behavior of the derivative graphs from
looking at the graph of Could you have
predicted the general behavior of the graph of 
by looking at the derivative graphs? Give reasons for your
answers.

76. a. Given that find two ways: (1) by
solving for y and differentiating the resulting functions with
respect to x and (2) by implicit differentiation. Do you get the
same result each way?

b. Solve the equation for y and graph the
resulting functions together to produce a complete graph
of the equation Then add the graphs
of the functions’ first derivatives to your picture. Could
you have predicted the general behavior of the derivative
graphs from looking at the graph of 
Could you have predicted the general behavior of the graph
of by looking at the derivative graphs?
Give reasons for your answers.

Use a CAS to perform the following steps in Exercises 77–84.

a. Plot the equation with the implicit plotter of a CAS. Check to
see that the given point P satisfies the equation.

b. Using implicit differentiation, find a formula for the
derivative and evaluate it at the given point P.

c. Use the slope found in part (b) to find an equation for the
tangent line to the curve at P. Then plot the implicit curve and
tangent line together on a single graph.

77.

78.

79.

80.

81.

82.

83.

84. x21 + 2y + y = x2, P s1, 0d
2y2

+ sxyd1>3
= x2

+ 2, Ps1, 1d

xy3
+ tan (x + yd = 1, P ap

4
, 0b

x + tan ayx b = 2, P a1, 
p

4
b

y3
+ cos xy = x2, Ps1, 0d

y2
+ y =

2 + x
1 - x

 , Ps0, 1d

x5
+ y3x + yx2

+ y4
= 4, Ps1, 1d

x3
- xy + y3

= 7, Ps2, 1d

dy>dx

sx - 2d2
+ y2

= 4

sx - 2d2
+ y2

= 4?

sx - 2d2
+ y2

= 4.

sx - 2d2
+ y2

= 4

dy>dxsx - 2d2
+ y2

= 4

x4
+ 4y2

= 1
x4

+ 4y2
= 1?

213

T

4100 AWL/Thomas_ch03p147-243  8/19/04  11:17 AM  Page 213

3.6 Implicit Differentiation

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



3.7 Related Rates 213

Related Rates

In this section we look at problems that ask for the rate at which some variable changes. In
each case the rate is a derivative that has to be computed from the rate at which some other
variable (or perhaps several variables) is known to change. To find it, we write an equation
that relates the variables involved and differentiate it to get an equation that relates the rate
we seek to the rates we know. The problem of finding a rate you cannot measure easily
from some other rates that you can is called a related rates problem.

3.7 
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Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an
instant of time, then

Using the Chain Rule, we differentiate to find the related rates equation

So if we know the radius r of the balloon and the rate at which the volume is in-
creasing at a given instant of time, then we can solve this last equation for to find
how fast the radius is increasing at that instant. Note that it is easier to measure directly the
rate of increase of the volume than it is to measure the increase in the radius. The related
rates equation allows us to calculate from .

Very often the key to relating the variables in a related rates problem is drawing a picture
that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1 Pumping Out a Tank

How rapidly will the fluid level inside a vertical cylindrical tank drop if we pump the fluid
out at the rate of 3000 L min?

Solution We draw a picture of a partially filled vertical cylindrical tank, calling its ra-
dius r and the height of the fluid h (Figure 3.42). Call the volume of the fluid V.

As time passes, the radius remains constant, but V and h change. We think of V and h
as differentiable functions of time and use t to represent time. We are told that

We are asked to find

To find , we first write an equation that relates h to V. The equation depends on
the units chosen for V, r, and h. With V in liters and r and h in meters, the appropriate
equation for the cylinder’s volume is

because a cubic meter contains 1000 L.
Since V and h are differentiable functions of t, we can differentiate both sides of the

equation with respect to t to get an equation that relates to :

We substitute the known value and solve for :

dh
dt

=

-3000
1000pr2 = -

3
pr2 .

dh>dtdV>dt = -3000

dV
dt

= 1000pr2 
dh
dt

 .

dV>dtdh>dtV = 1000pr2h

V = 1000pr2h

dh>dt

dh
dt

.

dV
dt

= -3000.

>

dV>dtdr>dt

dr>dt
dV>dt

dV
dt

=

dV
dr

 
dr
dt

= 4pr2 
dr
dt

.

V =
4
3

 pr3 .

214 Chapter 3: Differentiation

� –3000 L/min

� ?

h

dh
dt

dV
dt

r

FIGURE 3.42 The rate of change of fluid
volume in a cylindrical tank is related to
the rate of change of fluid level in the tank
(Example 1).

We pump out at the rate of
3000 L min. The rate is negative
because the volume is decreasing.

>

How fast will the fluid level drop?

r is a constant.
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The fluid level will drop at the rate of 
The equation shows how the rate at which the fluid level drops de-

pends on the tank’s radius. If r is small, will be large; if r is large, will be
small.

 If r = 10 m: dh
dt

= -

3
100p

L -0.0095 m>min = -0.95 cm>min.

 If r = 1 m: dh
dt

= -

3
p L -0.95 m>min = -95 cm>min.

dh>dtdh>dt
dh>dt = -3>pr2

3>spr2d m>min.

3.7 Related Rates 215

Related Rates Problem Strategy
1. Draw a picture and name the variables and constants. Use t for time. Assume

that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you have
chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two or
more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rate and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

EXAMPLE 2 A Rising Balloon

A hot air balloon rising straight up from a level field is tracked by a range finder 500 ft
from the liftoff point. At the moment the range finder’s elevation angle is the angle is
increasing at the rate of 0.14 rad min. How fast is the balloon rising at that moment?

Solution We answer the question in six steps.

1. Draw a picture and name the variables and constants (Figure 3.43). The variables in
the picture are

angle in radians the range finder makes with the ground.

height in feet of the balloon.

We let t represent time in minutes and assume that and y are differentiable functions of t.
The one constant in the picture is the distance from the range finder to the liftoff point

(500 ft). There is no need to give it a special symbol.

2. Write down the additional numerical information.

3. Write down what we are to find. We want when u = p>4.dy>dt

du
dt

= 0.14 rad>min when u =
p
4

u

y = the

u = the

> p>4,

� ?
y

Range
finder

Balloon

500 ft

�

� 0.14  rad/min
dt
d�

when � � �/4 
dt
dywhen � � �/4 

FIGURE 3.43 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).
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4. Write an equation that relates the variables y and

5. Differentiate with respect to t using the Chain Rule. The result tells how (which
we want) is related to (which we know).

6. Evaluate with and to find .

At the moment in question, the balloon is rising at the rate of 140 ft min.

EXAMPLE 3 A Highway Chase

A police cruiser, approaching a right-angled intersection from the north, is chasing a
speeding car that has turned the corner and is now moving straight east. When the cruiser
is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police determine
with radar that the distance between them and the car is increasing at 20 mph. If the cruiser
is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.44).
We let t represent time and set

We assume that x, y, and s are differentiable functions of t.
We want to find when

Note that is negative because y is decreasing.
We differentiate the distance equation

(we could also use ), and obtain

 =
12x2

+ y2
 ax 

dx
dt

+ y 
dy
dt
b .

 
ds
dt

=
1
s  ax 

dx
dt

+ y 
dy
dt
b

 2s 
ds
dt

= 2x 
dx
dt

+ 2y 
dy
dt

s = 2x2
+ y2

s2
= x2

+ y2

dy>dt

x = 0.8 mi, y = 0.6 mi, dy
dt

= -60 mph, ds
dt

= 20 mph.

dx>dt

 s = distance between car and cruiser at time t .

 y = position of cruiser at time t

 x = position of car at time t

>
sec 
p

4
= 22

dy
dt

= 500 A22 B2s0.14d = 140

dy>dtdu>dt = 0.14u = p>4

dy
dt

= 500 ssec2 ud 
du
dt

du>dt
dy>dt

y
500

= tan u or y = 500 tan u

u .
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x

y

0 x

y

Situation when
x � 0.8, y � 0.6

� –60
� 20

� ?dx
dt

dy
dt

ds
dt

FIGURE 3.44 The speed of the car is
related to the speed of the police cruiser
and the rate of change of the distance
between them (Example 3).
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3.7 Related Rates 217

Finally, use and solve for .

At the moment in question, the car’s speed is 70 mph.

EXAMPLE 4 Filling a Conical Tank

Water runs into a conical tank at the rate of The tank stands point down and has
a height of 10 ft and a base radius of 5 ft. How fast is the water level rising when the water
is 6 ft deep?

Solution Figure 3.45 shows a partially filled conical tank. The variables in the problem are

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We are asked for when

The water forms a cone with volume

This equation involves x as well as V and y. Because no information is given about x and
at the time in question, we need to eliminate x. The similar triangles in Figure 3.45

give us a way to express x in terms of y:

Therefore,

to give the derivative

Finally, use and to solve for .

At the moment in question, the water level is rising at about 0.32 ft min.>
 
dy
dt

=
1
p L 0.32

 9 =
p
4

 A6 B2 
dy
dt

dy>dtdV>dt = 9y = 6

dV
dt

=
p
12

# 3y2 
dy
dt

=
p
4

 y2 
dy
dt

.

V =
1
3

 p ay
2
b2

y =
p
12

 y3

x
y =

5
10
 or x =

y
2

.

dx>dt

V =
1
3

 px2y .

y = 6 ft and dV
dt

= 9 ft3>min.

dy>dt

 y = depth sftd of water in tank at time t .

 x = radius sftd of the surface of the water at time t

 V = volume sft3d of the water in the tank at time t smind

9 ft3>min.

 
dx
dt

=

202s0.8d2
+ s0.6d2

+ s0.6ds60d
0.8

= 70

 20 =
12s0.8d2

+ s0.6d2
 a0.8 

dx
dt

+ A0.6 B A -60 B b
dx>dtx = 0.8, y = 0.6, dy>dt = -60, ds>dt = 20,

10 ft

y

5 ft

x
dy
dt

� ?

when y � 6 ft

dV
dt

� 9 ft3/min

FIGURE 3.45 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 4).
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218 Chapter 3: Differentiation

EXERCISES 3.7

1. Area Suppose that the radius r and area of a circle are
differentiable functions of t. Write an equation that relates 
to .

2. Surface area Suppose that the radius r and surface area
of a sphere are differentiable functions of t. Write an

equation that relates to .

3. Volume The radius r and height h of a right circular cylinder are
related to the cylinder’s volume V by the formula 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

4. Volume The radius r and height h of a right circular cone are re-
lated to the cone’s volume V by the equation 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

5. Changing voltage The voltage V (volts), current I (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation Suppose that V is in-
creasing at the rate of 1 volt sec while I is decreasing at the rate
of 1 3 amp sec. Let t denote time in seconds.

a. What is the value of ?

b. What is the value of ?

c. What equation relates to and ?

d. Find the rate at which R is changing when volts and
amp. Is R increasing, or decreasing?

6. Electrical power The power P (watts) of an electric circuit is
related to the circuit’s resistance R (ohms) and current I (amperes)
by the equation 

a. How are , , and related if none of P, R, and I
are constant?

b. How is related to if P is constant?

7. Distance Let x and y be differentiable functions of t and let
be the distance between the points (x, 0) and 

(0, y) in the xy-plane.

a. How is related to if y is constant?dx>dtds>dt

s = 2x2
+ y2

dI>dtdR>dt

dI>dtdR>dtdP>dt

P = RI2 .

I = 2
V = 12

dI>dtdV>dtdR>dt

dI>dt

dV>dt

V

R

I

� �

>>
>

V = IR .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = s1>3dpr2h .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = pr2h .

dr>dtdS>dt
S = 4pr2

dr>dt
dA>dt

A = pr2 b. How is related to and if neither x nor y is
constant?

c. How is related to if s is constant?

8. Diagonals If x, y, and z are lengths of the edges of a rectangular
box, the common length of the box’s diagonals is 

a. Assuming that x, y, and z are differentiable functions of t, how
is related to , , and ?

b. How is related to and if x is constant?

c. How are , , and related if s is constant?

9. Area The area A of a triangle with sides of lengths a and b en-
closing an angle of measure is

a. How is related to if a and b are constant?

b. How is related to and if only b is constant?

c. How is related to and if none of a,
b, and are constant?

10. Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm min. At what rate
is the plate’s area increasing when the radius is 50 cm?

11. Changing dimensions in a rectangle The length l of a rectan-
gle is decreasing at the rate of 2 cm sec while the width w is in-
creasing at the rate of 2 cm sec. When and 
find the rates of change of (a) the area, (b) the perimeter, and (c)
the lengths of the diagonals of the rectangle. Which of these
quantities are decreasing, and which are increasing?

12. Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

Find the rates at which the box’s (a) volume, (b) surface area, and

(c) diagonal length are changing at the in-
stant when and 

13. A sliding ladder A 13-ft ladder is leaning against a house when
its base starts to slide away. By the time the base is 12 ft from the
house, the base is moving at the rate of 5 ft sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

c. At what rate is the angle between the ladder and the ground
changing then?

u

>

z = 2.x = 4, y = 3,
s = 2x2

+ y2
+ z2

dx
dt

= 1 m>sec, 
dy

dt
= -2 m>sec, dz

dt
= 1 m>sec .

w = 5 cm,l = 12 cm>
>

>
u

db>dtdu>dt, da>dt ,dA>dt

da>dtdu>dtdA>dt

du>dtdA>dt

A =

1
2

 ab sin u .

u

dz>dtdy>dtdx>dt

dz>dtdy>dtds>dt

dz>dtdy>dtdx>dtds>dt

2x2
+ y2

+ z2 .

s =

dy>dtdx>dt

dy>dtdx>dtds>dt
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14. Commercial air traffic Two commercial airplanes are flying at
40,000 ft along straight-line courses that intersect at right angles.
Plane A is approaching the intersection point at a speed of 442
knots (nautical miles per hour; a nautical mile is 2000 yd). Plane
B is approaching the intersection at 481 knots. At what rate is the
distance between the planes changing when A is 5 nautical miles
from the intersection point and B is 12 nautical miles from the in-
tersection point?

15. Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft sec. How
fast must she let out the string when the kite is 500 ft away from her?

16. Boring a cylinder The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one-thousandth of
an inch every 3 min. How rapidly is the cylinder volume increas-
ing when the bore (diameter) is 3.800 in.?

17. A growing sand pile Sand falls from a conveyor belt at the rate
of onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

18. A draining conical reservoir Water is flowing at the rate of
from a shallow concrete conical reservoir (vertex

down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

19. A draining hemispherical reservoir Water is flowing at the rate
of from a reservoir shaped like a hemispherical bowl of
radius 13 m, shown here in profile. Answer the following ques-
tions, given that the volume of water in a hemispherical bowl of ra-
dius R is when the water is y meters deep.

r

y

13

Center of sphere

Water level

V = sp>3dy2s3R - yd

6 m3>min

50 m3>min

10 m3>min

>

x
0

y

13-ft ladder

y(t)

x(t)

�

a. At what rate is the water level changing when the water is 8 m
deep?

b. What is the radius r of the water’s surface when the water is
y m deep?

c. At what rate is the radius r changing when the water is 8 m
deep?

20. A growing raindrop Suppose that a drop of mist is a perfect
sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drop’s radius increases at a constant rate.

21. The radius of an inflating balloon A spherical balloon is in-
flated with helium at the rate of How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?

22. Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft sec.

a. How fast is the boat approaching the dock when 10 ft of rope
are out?

b. At what rate is the angle changing then (see the figure)?

23. A balloon and a bicycle A balloon is rising vertically above a
level, straight road at a constant rate of 1 ft sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft sec passes under it. How fast is the distance s(t) be-
tween the bicycle and balloon increasing 3 sec later?

y

x
0

y(t)

s(t)

x(t)

>
>




Ring at edge
of dock

6'

u

>

100p ft3>min.
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24. Making coffee Coffee is draining from a conical filter into a
cylindrical coffeepot at the rate of 

a. How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

25. Cardiac output In the late 1860s, Adolf Fick, a professor of
physiology in the Faculty of Medicine in Würzberg, Germany, de-
veloped one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output as
you read this sentence is probably about 7 L min. At rest it is
likely to be a bit under 6 L min. If you are a trained marathon
runner running a marathon, your cardiac output can be as high as
30 L min.

Your cardiac output can be calculated with the formula

where Q is the number of milliliters of you exhale in a
minute and D is the difference between the concentration
(ml L) in the blood pumped to the lungs and the concentra-
tion in the blood returning from the lungs. With 
and 

fairly close to the 6 L min that most people have at basal (resting)
conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan Col-
lege of Medicine, East Tennessee State University.)

Suppose that when and we also know
that D is decreasing at the rate of 2 units a minute but that Q re-
mains unchanged. What is happening to the cardiac output?

D = 41,Q = 233

>
y =

233 ml>min

41 ml>L L 5.68 L>min,

D = 97 - 56 = 41 ml>L,
Q = 233 ml>min

CO2>
CO2

CO2

y =

Q

D
,

>
>

>

6"

6"

6"

How fast
is this
level rising?

How fast
is this
level falling?

10 in3>min.
26. Cost, revenue, and profit A company can manufacture x items

at a cost of c(x) thousand dollars, a sales revenue of r(x) thousand
dollars, and a profit of 
Find , , and for the following values of x and

.

a.

b.

27. Moving along a parabola A particle moves along the parabola
in the first quadrant in such a way that its x-coordinate

(measured in meters) increases at a steady 10 m sec. How fast is
the angle of inclination of the line joining the particle to the ori-
gin changing when 

28. Moving along another parabola A particle moves from right to
left along the parabolic curve in such a way that its 
x-coordinate (measured in meters) decreases at the rate of 8 m sec.
How fast is the angle of inclination of the line joining the parti-
cle to the origin changing when 

29. Motion in the plane The coordinates of a particle in the metric
xy-plane are differentiable functions of time t with 

How fast is the particle’s dis-
tance from the origin changing as it passes through the point
(5, 12)?

30. A moving shadow A man 6 ft tall walks at the rate of 5 ft sec
toward a streetlight that is 16 ft above the ground. At what rate is
the tip of his shadow moving? At what rate is the length of his
shadow changing when he is 10 ft from the base of the light?

31. Another moving shadow A light shines from the top of a pole
50 ft high. A ball is dropped from the same height from a point 30
ft away from the light. (See accompanying figure.) How fast is the
shadow of the ball moving along the ground sec later? (As-
sume the ball falls a distance )

32. Videotaping a moving car You are videotaping a race from a
stand 132 ft from the track, following a car that is moving at 180
mi h (264 ft sec). How fast will your camera angle be changing
when the car is right in front of you? A half second later?

u>>

x

Light

30

Shadow

0

50-ft
pole

Ball at time t � 0

1/2 sec later

x(t)

NOT TO SCALE

s = 16t2 ft in t sec .
1>2

>

-1 m>sec and dy>dt = -5 m>sec .
dx>dt =

x = -4?
u

>
y = 1-x

x = 3 m?
u

>
y = x2

when x = 1.5
r sxd = 70x, c sxd = x3

- 6x2
+ 45>x, and dx>dt = 0.05

when x = 2
r sxd = 9x, c sxd = x3

- 6x2
+ 15x, and dx>dt = 0.1

dx>dt
dp>dtdr>dtdc>dt

psxd = r sxd - c sxd thousand dollars .
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33. A melting ice layer A spherical iron ball 8 in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts at
the rate of how fast is the thickness of the ice de-
creasing when it is 2 in. thick? How fast is the outer surface area
of ice decreasing?

34. Highway patrol A highway patrol plane flies 3 mi above a level,
straight road at a steady 120 mi h. The pilot sees an oncoming car
and with radar determines that at the instant the line-of-sight dis-
tance from plane to car is 5 mi, the line-of-sight distance is decreas-
ing at the rate of 160 mi h. Find the car’s speed along the highway.

35. A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle the
sun makes with the ground is increasing at the rate of 0.27° min.
At what rate is the shadow decreasing? (Remember to use radi-
ans. Express your answer in inches per minute, to the nearest tenth.)

80'

�

>
u

>

>

10 in3>min,

Car

Camera

132'

�

36. Walkers A and B are walking on straight streets that meet at
right angles. A approaches the intersection at 2 m sec; B moves
away from the intersection 1 m sec. At what rate is the angle 
changing when A is 10 m from the intersection and B is 20 m
from the intersection? Express your answer in degrees per second
to the nearest degree.

37. Baseball players A baseball diamond is a square 90 ft on a
side. A player runs from first base to second at a rate of 16 ft sec.

a. At what rate is the player’s distance from third base changing
when the player is 30 ft from first base?

b. At what rates are angles and (see the figure) changing at
that time?

c. The player slides into second base at the rate of 15 ft sec. At
what rates are angles and changing as the player touches
base?

38. Ships Two ships are steaming straight away from a point O
along routes that make a 120° angle. Ship A moves at 14 knots
(nautical miles per hour; a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when

and OB = 3 nautical miles?OA = 5

90'

Second base

Player

Home

30' First
base

Third
base

�1

�2

u2u1

>
u2u1

>

O

A

B

�

u>
>
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3.8 Linearization and Differentials 221

Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the ac-
curacy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizations, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapter 11.

3.8 
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We introduce new variables dx and dy, called differentials, and define them in a way
that makes Leibniz’s notation for the derivative a true ratio. We use dy to estimate
error in measurement and sensitivity of a function to change. Application of these ideas
then provides for a precise proof of the Chain Rule (Section 3.5).

Linearization

As you can see in Figure 3.46, the tangent to the curve lies close to the curve near
the point of tangency. For a brief interval to either side, the y-values along the tangent line
give good approximations to the y-values on the curve. We observe this phenomenon by
zooming in on the two graphs at the point of tangency or by looking at tables of values for
the difference between ƒ(x) and its tangent line near the x-coordinate of the point of tan-
gency. Locally, every differentiable curve behaves like a straight line.

y = x2

dy>dx

222 Chapter 3: Differentiation

4

0
3–1

2

0
20

y � x2 and its tangent y � 2x � 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout
entire x-interval shown.

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

FIGURE 3.46 The more we magnify the graph of a function near a point where the
function is differentiable, the flatter the graph becomes and the more it resembles its
tangent.

In general, the tangent to at a point where ƒ is differentiable (Figure
3.47), passes through the point (a, ƒ(a)), so its point-slope equation is

Thus, this tangent line is the graph of the linear function

For as long as this line remains close to the graph of ƒ, L(x) gives a good approximation to
ƒ(x).

Lsxd = ƒsad + ƒ¿sadsx - ad .

y = ƒsad + ƒ¿sadsx - ad .

x = a ,y = ƒsxd

x

y

0 a

Slope � f '(a)

y � f (x)

(a,  f (a))

FIGURE 3.47 The tangent to the
curve 
 Lsxd = ƒsad + ƒ¿sadsx - ad .

 y = ƒsxd at x = a is the line
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EXAMPLE 1 Finding a Linearization

Find the linearization of (Figure 3.48).ƒsxd = 21 + x at x = 0

3.8 Linearization and Differentials 223

DEFINITIONS Linearization, Standard Linear Approximation
If ƒ is differentiable at then the approximating function

is the linearization of ƒ at a. The approximation

of ƒ by L is the standard linear approximation of ƒ at a. The point is the
center of the approximation.

x = a

ƒsxd L Lsxd

Lsxd = ƒsad + ƒ¿sadsx - ad

x = a ,

x

y

0–1

2

1

1 2 3 4

y � �
5
4

x
4y � 1 � x

2

y � �1 � x

FIGURE 3.48 The graph of and its
linearizations at and Figure 3.49 shows a
magnified view of the small window about 1 on the y-axis.

x = 3.x = 0
y = 21 + x

Solution Since

we have and giving the linearization

See Figure 3.49.

Look at how accurate the approximation from Example 1 is
for values of x near 0.

As we move away from zero, we lose accuracy. For example, for the lineariza-
tion gives 2 as the approximation for which is not even accurate to one decimal place.

Do not be misled by the preceding calculations into thinking that whatever we do with
a linearization is better done with a calculator. In practice, we would never use a lineariza-
tion to find a particular square root. The utility of a linearization is its ability to replace a
complicated formula by a simpler one over an entire interval of values. If we have to work 
with for x close to 0 and can tolerate the small amount of error involved, we can21 + x

23,
x = 2,

21 + x L 1 + sx>2d

Lsxd = ƒsad + ƒ¿sadsx - ad = 1 +
1
2

 Ax - 0 B = 1 +

x
2

.

ƒ¿s0d = 1>2,ƒs0d = 1

ƒ¿sxd =
1
2

 A1 + x B-1>2 ,

1.0

0–0.1 0.1 0.2

1.1

0.9

y � 1 �

y � �1 � x

2
x

FIGURE 3.49 Magnified view of the
window in Figure 3.48.
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work with instead. Of course, we then need to know how much error there is.
We have more to say on the estimation of error in Chapter 11.

A linear approximation normally loses accuracy away from its center. As Figure 3.48

suggests, the approximation will probably be too crude to be use-
ful near There, we need the linearization at 

EXAMPLE 2 Finding a Linearization at Another Point

Find the linearization of at 

Solution We evaluate the equation defining With

we have

At the linearization in Example 2 gives

which differs from the true value by less than one one-thousandth. The
linearization in Example 1 gives

a result that is off by more than 25%.

EXAMPLE 3 Finding a Linearization for the Cosine Function

Find the linearization of at (Figure 3.50).

Solution Since and 
we have

 = -x +
p
2

.

 = 0 + s -1d ax -
p
2
b

 Lsxd = ƒsad + ƒ¿sadsx - ad

-1,
-sin sp>2d =ƒ¿sp>2d =ƒ¿sxd = -sin x,ƒsp>2d = cossp>2d = 0,

x = p>2ƒsxd = cos x

21 + x = 21 + 3.2 L 1 +

3.2
2

= 1 + 1.6 = 2.6,

24.2 L 2.04939

21 + x = 21 + 3.2 L

5
4

+

3.2
4

= 1.250 + 0.800 = 2.050,

x = 3.2,

Lsxd = 2 +
1
4

 Ax - 3 B =

5
4

+

x
4

.

ƒs3d = 2, ƒ¿s3d =
1
2

 A1 + x B-1>2 `
x = 3

=
1
4

,

Lsxd at a = 3.

x = 3.ƒsxd = 21 + x

x = 3.x = 3.
21 + x L 1 + sx>2d

1 + sx>2d

224 Chapter 3: Differentiation

Approximation True value

1.095445

1.024695

1.002497 610-521.005 L 1 +

0.005
2

= 1.00250

610-321.05 L 1 +

0.05
2

= 1.025

610-221.2 L 1 +

0.2
2

= 1.10

ƒ True value � approximation ƒ

x

y

0 �
2 y � cos x

y � –x � �
2

FIGURE 3.50 The graph of 
and its linearization at Near

(Example 3).
x = p>2, cos x L -x + sp>2d

x = p>2.
ƒsxd = cos x
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An important linear approximation for roots and powers is

(Exercise 15). This approximation, good for values of x sufficiently close to zero, has
broad application. For example, when x is small,

Differentials

We sometimes use the Leibniz notation to represent the derivative of y with respect
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx
and dy with the property that if their ratio exists, it will be equal to the derivative.

dy>dx

 
121 - x2

= s1 - x2d-1>2
L 1 + a- 1

2
bs -x2d = 1 +

1
2

 x2

k = 1>3;  replace x by 5x4 . 23 1 + 5x4
= s1 + 5x4d1>3

L 1 +
1
3

 A5x4 B = 1 +

5
3

 x4

k = -1;  replace x by -x . 
1

1 - x
= s1 - xd-1

L 1 + s -1ds -xd = 1 + x

k = 1>2 21 + x L 1 +
1
2

 x

s1 + xdk
L 1 + kx sx near 0; any number kd

3.8 Linearization and Differentials 225

replace x by -x2 .

k = -1>2;

DEFINITION Differential
Let be a differentiable function. The differential dx is an independent
variable. The differential dy is

dy = ƒ¿sxd dx .

y = ƒsxd

Unlike the independent variable dx, the variable dy is always a dependent variable. It
depends on both x and dx. If dx is given a specific value and x is a particular number in the
domain of the function ƒ, then the numerical value of dy is determined.

EXAMPLE 4 Finding the Differential dy

(a) Find dy if 

(b) Find the value of dy when and 

Solution

(a)

(b) Substituting and in the expression for dy, we have

The geometric meaning of differentials is shown in Figure 3.51. Let and set
The corresponding change in is

¢y = ƒsa + dxd - ƒsad .

y = ƒsxddx = ¢x .
x = a

dy = s5 # 14
+ 37d0.2 = 8.4.

dx = 0.2x = 1

dy = s5x4
+ 37d dx

dx = 0.2.x = 1

y = x5
+ 37x .
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The corresponding change in the tangent line L is

That is, the change in the linearization of ƒ is precisely the value of the differential dy
when and Therefore, dy represents the amount the tangent line rises or
falls when x changes by an amount 

If then the quotient of the differential dy by the differential dx is equal to the
derivative because

We sometimes write

in place of calling dƒ the differential of ƒ. For instance, if
then

Every differentiation formula like

has a corresponding differential form like

dsu + yd = du + dy or dssin ud = cos u du .

dsu + yd
dx

=

du
dx

+

dy
dx
 or dssin ud

dx
= cos u  

du
dx

df = ds3x2
- 6d = 6x dx .

ƒsxd = 3x2
- 6,dy = ƒ¿sxd dx ,

df = ƒ¿sxd dx

dy , dx =

ƒ¿sxd dx
dx

= ƒ¿sxd =

dy
dx

.

ƒ¿sxd
dx Z 0,

dx = ¢x.
dx = ¢x .x = a

 = ƒ¿(a) dx.

 = ƒ(a) + ƒ¿(a)[(a + dx) - a] - ƒ(a)

 ¢L = L(a + dx) - L(a)

226 Chapter 3: Differentiation

(++++++)++++++*

L(a � dx)
()*

L(a)

x

y

0 a

y � f (x)

�y � f (a � dx) � f (a)

�L � f '(a)dx

dx � �x

(a, f (a))

Tangent
line

a � dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely dy.

FIGURE 3.51 Geometrically, the differential dy is the change
in the linearization of ƒ when changes by an amount

dx = ¢x .
x = a¢L
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EXAMPLE 5 Finding Differentials of Functions

(a)

(b)

Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to pre-
dict how much this value will change if we move to a nearby point If dx is small,
then we can see from Figure 3.51 that is approximately equal to the differential dy.
Since

the differential approximation gives

where Thus the approximation can be used to calculate 
when ƒ(a) is known and dx is small.

EXAMPLE 6 Estimating with Differentials

The radius r of a circle increases from to 10.1 m (Figure 3.52). Use dA to esti-
mate the increase in the circle’s area A. Estimate the area of the enlarged circle and com-
pare your estimate to the true area.

Solution Since the estimated increase is

Thus,

The area of a circle of radius 10.1 m is approximately 
The true area is

The error in our estimate is which is the difference 

Error in Differential Approximation

Let ƒ(x) be differentiable at and suppose that is an increment of x. We
have two ways to describe the change in ƒ as x changes from a to 

How well does dƒ approximate ¢ƒ?

 The differential estimate: dƒ = ƒ¿sad ¢x .

The true change:  ¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x :
dx = ¢xx = a

¢A - dA .0.01p m2,

 = 102.01p m2.

 As10.1d = ps10.1d2

102p m2.

 = ps10d2
+ 2p = 102p .

 As10 + 0.1d L As10d + 2p

dA = A¿sad dr = 2pa dr = 2ps10ds0.1d = 2p m2.

A = pr2 ,

a = 10 m

ƒsa + dxd¢y L dydx = ¢x .

ƒsa + dxd L ƒsad + dy

ƒsa + dxd = ƒsad + ¢y ,

¢y
a + dx .

d a x
x + 1

b =

sx + 1d dx - x dsx + 1d
sx + 1d2 =

x dx + dx - x dx
sx + 1d2 =

dx
sx + 1d2

dstan 2xd = sec2s2xd ds2xd = 2 sec2 2x dx

3.8 Linearization and Differentials 227

�A ≈ dA � 2�a dr

a � 10

dr � 0.1

FIGURE 3.52 When dr is
small compared with a, as it is
when and the
differential gives
a way to estimate the area of the
circle with radius 
(Example 6).

r = a + dr

dA = 2pa dr
a = 10,dr = 0.1
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We measure the approximation error by subtracting dƒ from 

As the difference quotient

approaches (remember the definition of ), so the quantity in parentheses be-
comes a very small number (which is why we called it ). In fact, as When

is small, the approximation error is smaller still.

Although we do not know exactly how small the error is and will not be able to make much
progress on this front until Chapter 11, there is something worth noting here, namely the
form taken by the equation.

¢ƒ = ƒ¿(a)¢x + P ¢x

P ¢x¢x
¢x : 0.P : 0P

ƒ¿sadƒ¿sad

ƒsa + ¢xd - ƒsad
¢x

¢x : 0,

 = P
#
¢x .

 = aƒ(a + ¢x) - ƒ(a)

¢x
- ƒ¿(a)b #

¢x

 = ƒ(a + ¢x) - ƒ(a) - ƒ¿(a)¢x

 = ¢ƒ - ƒ¿sad¢x

 Approximation error = ¢ƒ - dƒ

¢f :

228 Chapter 3: Differentiation

(++++)++++*

�ƒ

(+++++++)+++++++*

Call this part P

()*

true
change

(+)+*

estimated
change

()*

error

Change in near 

If is differentiable at and x changes from a to the
change in ƒ is given by an equation of the form

(1)

in which as ¢x : 0.P : 0

¢y = ƒ¿sad ¢x + P ¢x

¢y
a + ¢x ,x = ay = ƒsxd

x � ay � ƒsxd

In Example 6 we found that

so the approximation error is and 

Equation (1) enables us to bring the proof of the Chain Rule to a successful conclu-
sion.

Proof of the Chain Rule
Our goal is to show that if ƒ(u) is a differentiable function of u and is a dif-

ferentiable function of x, then the composite is a differentiable function of x.y = ƒsg sxdd
u = g sxd

0.01p>0.1 = 0.1p m.
P = 0.01p>¢r =¢A - dA = P ¢r = 0.01p

¢A = p(10.1)2
- p(10)2

= (102.01 - 100)p = (2p + 0.01p) m2

()*

error
()*

dA
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More precisely, if g is differentiable at and ƒ is differentiable at then the compos-
ite is differentiable at and

Let be an increment in x and let and be the corresponding increments in u
and y. Applying Equation (1) we have,

where Similarly,

where as Notice also that Combining the equations
for and gives

so

Since and go to zero as goes to zero, three of the four terms on the right vanish in
the limit, leaving

This concludes the proof.

Sensitivity to Change

The equation tells how sensitive the output of ƒ is to a change in input at dif-
ferent values of x. The larger the value of at x, the greater the effect of a given change dx.
As we move from a to a nearby point we can describe the change in ƒ in three ways:

True Estimated

Absolute change

Relative change

Percentage change

EXAMPLE 7 Finding the Depth of a Well

You want to calculate the depth of a well from the equation by timing how long it
takes a heavy stone you drop to splash into the water below. How sensitive will your calcu-
lations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation

ds = 32t dt

s = 16t2

df

ƒsad
* 100

¢f

ƒsad
* 100

df

ƒsad
¢f

ƒsad

df = ƒ¿sad dx¢f = ƒsa + dxd - ƒsad

a + dx ,
ƒ¿

df = ƒ¿sxd dx

dy
dx
`
x=x0

= lim
¢x:0

 
¢y

¢x
= ƒ¿su0dg¿sx0d = ƒ¿sgsx0dd # g¿sx0d .

¢xP2P1

¢y

¢x
= ƒ¿su0dg¿sx0d + P2 g¿sx0d + ƒ¿su0dP1 + P2P1 .

¢y = sƒ¿su0d + P2dsg¿sx0d + P1d¢x ,

¢y¢u
¢u : 0 as ¢x : 0.¢u : 0.P2 : 0

¢y = ƒ¿su0d¢u + P2 ¢u = sƒ¿su0d + P2d¢u ,

P1 : 0 as ¢x : 0.

¢u = g¿sx0d¢x + P1 ¢x = sg¿sx0d + P1d¢x ,

¢y¢u¢x

dy
dx
`
x=x0

= ƒ¿s gsx0dd # g¿sx0d .

x0

g sx0d ,x0
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depends on how big t is. If the change caused by is about

Three seconds later at the change caused by the same dt is

The estimated depth of the well differs from its true depth by a greater distance the longer
the time it takes the stone to splash into the water below, for a given error in measuring the
time.

EXAMPLE 8 Unclogging Arteries

In the late 1830s, French physiologist Jean Poiseuille (“pwa-ZOY”) discovered the for-
mula we use today to predict how much the radius of a partially clogged artery has to be
expanded to restore normal flow. His formula,

says that the volume V of fluid flowing through a small pipe or tube in a unit of time at a
fixed pressure is a constant times the fourth power of the tube’s radius r. How will a 10%
increase in r affect V?

Solution The differentials of r and V are related by the equation

The relative change in V is

The relative change in V is 4 times the relative change in r, so a 10% increase in r will pro-
duce a 40% increase in the flow.

EXAMPLE 9 Converting Mass to Energy

Newton’s second law,

is stated with the assumption that mass is constant, but we know this is not strictly true be-
cause the mass of a body increases with velocity. In Einstein’s corrected formula, mass has
the value

where the “rest mass” represents the mass of a body that is not moving and c is the
speed of light, which is about 300,000 km sec. Use the approximation

(2)

to estimate the increase in mass resulting from the added velocity y.¢m

121 - x2
L 1 +

1
2

 x2

>m0

m =

m021 - y2>c2
,

F =

d
dt

 smyd = m 
dy
dt

= ma ,

dV
V

=

4kr3 dr
kr4 = 4 

dr
r .

dV =

dV
dr

 dr = 4kr3 dr .

V = kr4 ,

ds = 32s5ds0.1d = 16 ft .

t = 5 sec,

ds = 32s2ds0.1d = 6.4 ft .

dt = 0.1t = 2 sec,

230 Chapter 3: Differentiation

Blockage

Opaque
dye

Angiography

An opaque dye is injected into a partially
blocked artery to make the inside visible under
X-rays.  This reveals the location and severity of
the blockage.

Inflatable
balloon on
    catheter

Angioplasty

A balloon-tipped catheter is inflated inside the
artery to widen it at the blockage site.
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Solution When y is very small compared with is close to zero and it is safe to
use the approximation

Eq. (2) with 

to obtain

or

(3)

Equation (3) expresses the increase in mass that results from the added velocity y.

Energy Interpretation
In Newtonian physics, is the kinetic energy (KE) of the body, and if we rewrite
Equation (3) in the form

we see that

or

So the change in kinetic energy in going from velocity 0 to velocity y is approxi-
mately equal to the change in mass times the square of the speed of light. Using

we see that a small change in mass can create a large change in
energy.
c L 3 * 108 m>sec,

s¢mdc2 ,
¢sKEd

s¢mdc2
L ¢sKEd .

sm - m0dc2
L

1
2

 m0 y2
=

1
2

 m0 y2
-

1
2

 m0s0d2
= ¢sKEd ,

sm - m0dc2
L

1
2

 m0 y2 ,

s1>2dm0 y2

m L m0 +
1
2

 m0 y2 a 1
c2 b .

m =

m021 - y2>c2
L m0 c1 +

1
2

 ay2

c2 b d = m0 +
1
2

 m0 y2 a 1
c2 b ,

x =

y
c

121 - y2>c2
L 1 +

1
2

 ay2

c2 b

c, y2>c2
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3.8 Linearization and Differentials 231

EXERCISES 3.8

Finding Linearizations
In Exercises 1–4, find the linearization L(x) of ƒ(x) at 

1.

2.

3.

4.

Linearization for Approximation
You want linearizations that will replace the functions in Exercises
5–10 over intervals that include the given points To make yourx0 .

ƒsxd = 23 x, a = -8

ƒsxd = x +

1
x  , a = 1

ƒsxd = 2x2
+ 9, a = -4

ƒsxd = x3
- 2x + 3, a = 2

x = a .

subsequent work as simple as possible, you want to center each lin-
earization not at but at a nearby integer at which the given
function and its derivative are easy to evaluate. What linearization do
you use in each case?

5.

6.

7.

8.

9.

10. ƒsxd =

x
x + 1

, x0 = 1.3

ƒsxd = 23 x, x0 = 8.5

ƒsxd = 1 + x, x0 = 8.1

ƒsxd = 2x2
+ 4x - 3, x0 = -0.9

ƒsxd = x-1, x0 = 0.9

ƒsxd = x2
+ 2x, x0 = 0.1

x = ax0
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Linearizing Trigonometric Functions
In Exercises 11–14, find the linearization of Then graph
the linearization and ƒ together.

11.

12.

13.

14.

The Approximation 
15. Show that the linearization of at is

16. Use the linear approximation to find an ap-
proximation for the function ƒ(x) for values of x near zero.

a. b.

c. d.

e. f.

17. Faster than a calculator Use the approximation 
to estimate the following.

a. b.

18. Find the linearization of How
is it related to the individual linearizations of and sin x
at 

Derivatives in Differential Form
In Exercises 19–30, find dy.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Approximation Error
In Exercises 31–36, each function ƒ(x) changes value when x changes
from Find

a. the change 

b. the value of the estimate and

c. the approximation error ƒ ¢ƒ - dƒ ƒ .

df = ƒ¿sx0d dx ;

¢ƒ = ƒsx0 + dxd - ƒsx0d ;

x0 to x0 + dx .

y = 2 cot a 11x
by = 3 csc s1 - 21xd

y = sec sx2
- 1dy = 4 tan sx3>3d

y = cos sx2dy = sin s51xd

xy2
- 4x3>2

- y = 02y3>2
+ xy - x = 0

y =

21x

3s1 + 1xd
y =

2x

1 + x2

y = x21 - x2y = x3
- 31x

x = 0?
2x + 1

ƒsxd = 2x + 1 + sin x at x = 0.

23 1.009s1.0002d50

1 + kx
s1 + xdk L

ƒsxd =
3B a1 -

1
2 + x

b2

ƒsxd = s4 + 3xd1>3

ƒsxd = 22 + x2ƒsxd =

121 + x

ƒsxd =

2
1 - x

ƒsxd = s1 - xd6

s1 + xdk
L 1 + kx

Lsxd = 1 + kx .
x = 0ƒsxd = s1 + xdk

s1 � xdk
« 1 � kx

ƒsxd = tan x at sad x = 0, sbd x = p>4
ƒsxd = sec x at sad x = 0, sbd x = -p>3
ƒsxd = cos x at sad x = 0, sbd x = -p>2
ƒsxd = sin x at sad x = 0, sbd x = p

ƒ at x = a .

31.

32.

33.

34.

35.

36.

Differential Estimates of Change
In Exercises 37–42, write a differential formula that estimates the
given change in volume or surface area.

37. The change in the volume of a sphere when the ra-
dius changes from to 

38. The change in the volume of a cube when the edge
lengths change from to 

39. The change in the surface area of a cube when the edge
lengths change from to 

40. The change in the lateral surface area of a
right circular cone when the radius changes from to 
and the height does not change

41. The change in the volume of a right circular cylinder
when the radius changes from to and the height does
not change

42. The change in the lateral surface area of a right circular
cylinder when the height changes from to and the ra-
dius does not change

Applications
43. The radius of a circle is increased from 2.00 to 2.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original
area.

44. The diameter of a tree was 10 in. During the following year, the
circumference increased 2 in. About how much did the tree’s di-
ameter increase? The tree’s cross-section area?

45. Estimating volume Estimate the volume of material in a cyl-
indrical shell with height 30 in., radius 6 in., and shell thickness
0.5 in.

h0 + dhh0

S = 2prh

r0 + drr0

V = pr2h

r0 + drr0

S = pr2r2
+ h2

x0 + dxx0

S = 6x2

x0 + dxx0

V = x3

r0 + drr0

V = s4>3dpr3

ƒsxd = x3
- 2x + 3, x0 = 2, dx = 0.1

ƒsxd = x-1, x0 = 0.5, dx = 0.1

ƒsxd = x4, x0 = 1, dx = 0.1

ƒsxd = x3
- x, x0 = 1, dx = 0.1

ƒsxd = 2x2
+ 4x - 3, x0 = -1, dx = 0.1

ƒsxd = x2
+ 2x, x0 = 1, dx = 0.1

x

y

0

dx

x0 � dx

df � f '(x0) dx

� f � f (x0 � dx) � f (x0)

Tangent

(x0, f (x0))

y � f (x)

x0
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46. Estimating height of a building A surveyor, standing 30 ft
from the base of a building, measures the angle of elevation to the
top of the building to be 75°. How accurately must the angle be
measured for the percentage error in estimating the height of the
building to be less than 4%?

47. Tolerance The height and radius of a right circular cylinder are
equal, so the cylinder’s volume is The volume is to be
calculated with an error of no more than 1% of the true value.
Find approximately the greatest error that can be tolerated in the
measurement of h, expressed as a percentage of h.

48. Tolerance

a. About how accurately must the interior diameter of a 10-m-high
cylindrical storage tank be measured to calculate the tank’s
volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to paint
the side of the tank to within 5% of the true amount?

49. Minting coins A manufacturer contracts to mint coins for the
federal government. How much variation dr in the radius of the
coins can be tolerated if the coins are to weigh within of
their ideal weight? Assume that the thickness does not vary.

50. Sketching the change in a cube’s volume The volume 
of a cube with edges of length x increases by an amount when
x increases by an amount Show with a sketch how to repre-
sent geometrically as the sum of the volumes of

a. three slabs of dimensions x by x by 

b. three bars of dimensions x by by 

c. one cube of dimensions by by 

The differential formula estimates the change in V
with the three slabs.

51. The effect of flight maneuvers on the heart The amount of
work done by the heart’s main pumping chamber, the left ventri-
cle, is given by the equation

where W is the work per unit time, P is the average blood pres-
sure, V is the volume of blood pumped out during the unit of time,

W = PV +

Vdy2

2g
,

dV = 3x2 dx

¢x .¢x¢x

¢x¢x

¢x

¢V
¢x .

¢V
V = x3

1>1000

V = ph3 .

6 in.

0.5 in.

30 in.

(“delta”) is the weight density of the blood, y is the average ve-
locity of the exiting blood, and g is the acceleration of gravity.

When and y remain constant, W becomes a function
of g, and the equation takes the simplified form

As a member of NASA’s medical team, you want to know how sen-
sitive W is to apparent changes in g caused by flight maneuvers,
and this depends on the initial value of g. As part of your investi-
gation, you decide to compare the effect on W of a given change
dg on the moon, where with the effect the same
change dg would have on Earth, where Use the
simplified equation above to find the ratio of to 

52. Measuring acceleration of gravity When the length L of a
clock pendulum is held constant by controlling its temperature,
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change in
g. By keeping track of we can estimate the variation in g
from the equation that relates T, g, and L.

a. With L held constant and g as the independent variable,
calculate dT and use it to answer parts (b) and (c).

b. If g increases, will T increase or decrease? Will a pendulum
clock speed up or slow down? Explain.

c. A clock with a 100-cm pendulum is moved from a location
where to a new location. This increases the
period by Find dg and estimate the value of
g at the new location.

53. The edge of a cube is measured as 10 cm with an error of 1%. The
cube’s volume is to be calculated from this measurement. Esti-
mate the percentage error in the volume calculation.

54. About how accurately should you measure the side of a square to
be sure of calculating the area within 2% of its true value?

55. The diameter of a sphere is measured as and the vol-
ume is calculated from this measurement. Estimate the percent-
age error in the volume calculation.

56. Estimate the allowable percentage error in measuring the diameter D
of a sphere if the volume is to be calculated correctly to within 3%.

57. (Continuation of Example 7.) Show that a 5% error in measuring t
will cause about a 10% error in calculating s from the equation

58. (Continuation of Example 8.) By what percentage should r be in-
creased to increase V by 50%?

Theory and Examples
59. Show that the approximation of by its linearization at

the origin must improve as by showing that

lim
x:0

 
21 + x

1 + sx>2d
= 1.

x : 0
21 + x

s = 16t2 .

100 ; 1 cm

dT = 0.001 sec .
g = 980 cm>sec2

T = 2psL>gd1>2¢T ,

dWEarth .dWmoon

g = 32 ft>sec2 .
g = 5.2 ft>sec2 ,

W = a +

b
g   sa, b constantd .

P, V, d ,

d
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60. Show that the approximation of tan x by its linearization at the
origin must improve as by showing that

61. The linearization is the best linear approximation (This is
why we use the linearization.) Suppose that is differen-
tiable at and that is a linear function
in which m and c are constants. If the error 
were small enough near we might think of using g as a
linear approximation of ƒ instead of the linearization 

Show that if we impose on g the conditions

1. The approximation error is zero at 

2.

then Thus, the linearization L(x)
gives the only linear approximation whose error is both zero at

and negligible in comparison with 

62. Quadratic approximations

a. Let be a quadratic
approximation to ƒ(x) at with the properties:

i.

ii.

iii.

Determine the coefficients and 

b. Find the quadratic approximation to at

c. Graph and its quadratic approximation at
Then zoom in on the two graphs at the point (0, 1).

Comment on what you see.

d. Find the quadratic approximation to at 
Graph g and its quadratic approximation together. Comment
on what you see.

e. Find the quadratic approximation to at
Graph h and its quadratic approximation together.

Comment on what you see.

f. What are the linearizations of ƒ, g, and h at the respective
points in parts (b), (d), and (e)?

x = 0.
hsxd = 21 + x

x = 1.gsxd = 1>x
x = 0.

ƒsxd = 1>s1 - xd
x = 0.

ƒsxd = 1>s1 - xd
b2 .b0 , b1 ,

Q–sad = ƒ–sad
Q¿sad = ƒ¿sad
Qsad = ƒsad

x = a
Qsxd = b0 + b1sx - ad + b2sx - ad2

x
a

y � f (x)

(a, f (a))

The linearization, L(x):
y � f (a) � f '(a)(x � a)

Some other linear
approximation, g(x):
y � m(x � a) � c

x - a .x = a

g sxd = ƒsad + ƒ¿sadsx - ad .

lim
x:a

  
Esxd

x - a = 0

x = a .Esad = 0

ƒsad + ƒ¿sadsx - ad .
Lsxd =

x = a ,
Esxd = ƒsxd - g sxd

g sxd = msx - ad + cx = a
y = ƒsxd

lim
x:0

 
tan x

x = 1.

x : 0
63. Reading derivatives from graphs The idea that differentiable

curves flatten out when magnified can be used to estimate the val-
ues of the derivatives of functions at particular points. We magnify
the curve until the portion we see looks like a straight line through
the point in question, and then we use the screen’s coordinate grid
to read the slope of the curve as the slope of the line it resembles.

a. To see how the process works, try it first with the function
The slope you read should be 2.

b. Then try it with the curve 
�1. In each case, compare your estimate of the derivative
with the value of at the point. What pattern do you see?
Test it with other values of x. Chapter 7 will explain what is
going on.

64. Suppose that the graph of a differentiable function ƒ(x) has a hor-
izontal tangent at Can anything be said about the lin-
earization of ƒ at Give reasons for your answer.

65. To what relative speed should a body at rest be accelerated to in-
crease its mass by 1%?

66. Repeated root-taking

a. Enter 2 in your calculator and take successive square roots by
pressing the square root key repeatedly (or raising the
displayed number repeatedly to the 0.5 power). What pattern
do you see emerging? Explain what is going on. What
happens if you take successive tenth roots instead?

b. Repeat the procedure with 0.5 in place of 2 as the original
entry. What happens now? Can you use any positive number x
in place of 2? Explain what is going on.

COMPUTER EXPLORATIONS

Comparing Functions with Their Linearizations
In Exercises 67–70, use a CAS to estimate the magnitude of the error
in using the linearization in place of the function over a specified in-
terval I. Perform the following steps:

a. Plot the function ƒ over I.

b. Find the linearization L of the function at the point a.

c. Plot ƒ and L together on a single graph.

d. Plot the absolute error and find its maximum
value.

e. From your graph in part (d), estimate as large a as you can,
satisfying

for Then check graphically to see if your
holds true.

67.

68.

69.

70. ƒsxd = 1x - sin x, [0, 2p], a = 2

ƒsxd = x2>3sx - 2d, [-2, 3], a = 2

ƒsxd =

x - 1
4x2

+ 1
, c- 3

4
, 1 d , a =

1
2

ƒsxd = x3
+ x2

- 2x, [-1, 2], a = 1

d-estimate
P = 0.5, 0.1, and 0.01 .

ƒ x - a ƒ 6 d Q ƒ ƒsxd - Lsxd ƒ 6 P

d 7 0

ƒ ƒsxd - Lsxd ƒ  over I

x = a?
x = a .

ex

y = ex at x = 1, x = 0, and x =

y = x2 at x = 1.

234 Chapter 3: Differentiation

The error is negligible when compared
with x - a .

T

T

T

T

T
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Chapter 3 235

Chapter 3 Questions to Guide Your Review

1. What is the derivative of a function ƒ? How is its domain related
to the domain of ƒ? Give examples.

2. What role does the derivative play in defining slopes, tangents,
and rates of change?

3. How can you sometimes graph the derivative of a function when
all you have is a table of the function’s values?

4. What does it mean for a function to be differentiable on an open
interval? On a closed interval?

5. How are derivatives and one-sided derivatives related?

6. Describe geometrically when a function typically does not have a
derivative at a point.

7. How is a function’s differentiability at a point related to its conti-
nuity there, if at all?

8. Could the unit step function

possibly be the derivative of some other function on 
Explain.

9. What rules do you know for calculating derivatives? Give some
examples.

10. Explain how the three formulas

a.

b.

c.

enable us to differentiate any polynomial.

11. What formula do we need, in addition to the three listed in Ques-
tion 10, to differentiate rational functions?

12. What is a second derivative? A third derivative? How many deriv-
atives do the functions you know have? Give examples.

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

d
dx

 scud = c 
du
dx

d
dx

 sxnd = nxn - 1

[-1, 1]?

Usxd = e0, x 6 0

1, x Ú 0

13. What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.

14. How do derivatives arise in the study of motion? What can you
learn about a body’s motion along a line by examining the deriva-
tives of the body’s position function? Give examples.

15. How can derivatives arise in economics?

16. Give examples of still other applications of derivatives.

17. What do the limits and 
have to do with the derivatives of the sine and cosine functions?
What are the derivatives of these functions?

18. Once you know the derivatives of sin x and cos x, how can you
find the derivatives of tan x, cot x, sec x, and csc x? What are the
derivatives of these functions?

19. At what points are the six basic trigonometric functions continu-
ous? How do you know?

20. What is the rule for calculating the derivative of a composite of
two differentiable functions? How is such a derivative evaluated?
Give examples.

21. What is the formula for the slope of a parametrized curve
When does the formula apply? When can

you expect to be able to find as well? Give examples.

22. If u is a differentiable function of x, how do you find if
n is an integer? If n is a rational number? Give examples.

23. What is implicit differentiation? When do you need it? Give ex-
amples.

24. How do related rates problems arise? Give examples.

25. Outline a strategy for solving related rates problems. Illustrate
with an example.

26. What is the linearization L(x) of a function ƒ(x) at a point 
What is required of ƒ at a for the linearization to exist? How are
linearizations used? Give examples.

27. If x moves from a to a nearby value how do you estimate
the corresponding change in the value of a differentiable function
ƒ(x)? How do you estimate the relative change? The percentage
change? Give an example.

a + dx ,

x = a?

sd>dxdsund
d2y>dx2

x = ƒstd, y = g std?
dy>dx

limh:0 sscos h - 1d>hdlimh:0 sssin hd>hd
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Chapter 3 Practice Exercises

Derivatives of Functions
Find the derivatives of the functions in Exercises 1-40.

1. 2.

3. 4. y = x7
+ 27x -

1
p + 1

y = x3
- 3sx2

+ p2d

y = 3 - 0.7x3
+ 0.3x7y = x5

- 0.125x2
+ 0.25x

5. 6.

7. 8.

9. 10. s =

11t - 1
s =

1t

1 + 1t

y = a-1 -

csc u

2
-

u2

4
b2

y = su2
+ sec u + 1d3

y = s2x - 5ds4 - xd-1y = sx + 1d2sx2
+ 2xd
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11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Implicit Differentiation
In Exercises 41–48, find .

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49 and 50, find .

49. 50.

In Exercises 51 and 52, find .

51. 52.

53. Find by implicit differentiation:

a. b.

54. a. By differentiating implicitly, show that

b. Then show that 

Numerical Values of Derivatives
55. Suppose that functions ƒ(x) and g(x) and their first derivatives

have the following values at and x = 1.x = 0

d2y>dx2
= -1>y3 .

dy>dx = x>y .
x2

- y2
= 1

y2
= 1 -

2
xx3

+ y3
= 1

d2y>dx2

2rs - r - s + s2
= -3r cos 2s + sin2 s = p

dr>ds

q = s5p2
+ 2pd-3>2p3

+ 4pq - 3q2
= 2

dp>dq

y2
= A1 + x

1 - x
y2

=

x
x + 1

x2y2
= 11xy = 1

5x4>5
+ 10y6>5

= 15x3
+ 4xy - 3y4>3

= 2x

x2
+ xy + y2

- 5x = 2xy + 2x + 3y = 1

dy>dx

y = s3 + cos3 3xd-1>3y =

3

s5x2
+ sin 2xd3>2

y = 20s3x - 4d1>4s3x - 4d-1>5y = s2x + 1d22x + 1

r = a1 + sin u

1 - cos u
b2

r = a sin u

cos u - 1
b2

y = 4x2x + 1xy = Bx2
+ x

x2

y = a 21x

21x + 1
b2

y = a 1x
1 + x

b2

s =

-1
15s15t - 1d3s = a 4t

t + 1
b-2

y = x-2 sin2 sx3dy = x2 sin2 s2x2d
y = x2 cot 5xy = 5 cot x2

y = 1x csc sx + 1d3y = x-1>2 sec s2xd2

y = 21x sin 1xy =

1
2

 x2 csc 
2
x

r = sin Au + 2u + 1 Br = sin 22u

r = 2u2cos ur = 22u sin u

s = csc5 s1 - t + 3t2ds = ssec t + tan td5

s = cot3 a2t bs = cos4 s1 - 2td

y =

1
sin2 x

-

2
sin x

y = 2 tan2 x - sec2 x x ƒ(x) g (x) ƒ�(x) g�(x)

0 1 1
1 3 5

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

g.

56. Suppose that the function ƒ(x) and its first derivative have the fol-
lowing values at and 

x ƒ(x) ƒ�(x)

0 9
1

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

57. Find the value of at if and 

58. Find the value of at if and 

59. Find the value of at if and

60. Find the value of at if and

61. If find the value of at the point (0, 1).

62. If find at the point (8, 8).

Derivative Definition
In Exercises 63 and 64, find the derivative using the definition.

63. 64.

65. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

x = 0?

x = 0?

ƒsxd = e x2, -1 … x 6 0

-x2, 0 … x … 1.

g sxd = 2x2
+ 1ƒstd =

1
2t + 1

d2y>dx2x1>3
+ y1>3

= 4,

d2y>dx2y3
+ y = 2 cos x ,

u2t + u = 1.
r = su2

+ 7d1>3t = 0dr>dt

r = 8 sin ss + p>6d .
w = sin A1r - 2 Bs = 0dw>ds

su2
+ 2ud1>3 .

t =s = t2
+ 5tu = 2ds>du

x = t2
+ p .y = 3 sin 2xt = 0dy>dt

10 sin apx
2
b  ƒ 2sxd, x = 1

ƒsxd
2 + cos x

 , x = 0

ƒs1 - 5 tan xd, x = 0ƒs1xd, x = 1

2ƒsxd, x = 01x ƒsxd, x = 1

1>5-3
-2

x = 1.x = 0

ƒsx + g sxdd, x = 0

sx + ƒsxdd3>2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
, x = 1

ƒsxdg2sxd, x = 06ƒsxd - g sxd, x = 1

-41>2
1>2-3
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66. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

67. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

68. For what value or values of the constant m, if any, is

a. continuous at 

b. differentiable at 

Give reasons for your answers.

Slopes, Tangents, and Normals
69. Tangents with specified slope Are there any points on the

curve where the slope is If so,
find them.

70. Tangents with specified slope Are there any points on the
curve where the slope is 3? If so, find them.

71. Horizontal tangents Find the points on the curve 
where the tangent is parallel to the x-

axis.

72. Tangent intercepts Find the x- and y-intercepts of the line that
is tangent to the curve at the point 

73. Tangents perpendicular or parallel to lines Find the points on
the curve where the tangent is

a. perpendicular to the line 

b. parallel to the line 

74. Intersecting tangents Show that the tangents to the curve
at and intersect at right angles.

75. Normals parallel to a line Find the points on the curve
where the normal is parallel to the

line Sketch the curve and normals together, labeling
each with its equation.

76. Tangent and normal lines Find equations for the tangent and
normal to the curve at the point Sketch
the curve, tangent, and normal together, labeling each with its
equation.

sp>2, 1d .y = 1 + cos x

y = -x>2.
y = tan x, -p>2 6 x 6 p>2,

x = -px = py = sp sin xd>x
y = 22 - 12x .

y = 1 - sx>24d .

y = 2x3
- 3x2

- 12x + 20

s -2, -8d .y = x3

2x3
- 3x2

- 12x + 20
y =

y = x - 1>s2xd

-3>2?y = sx>2d + 1>s2x - 4d

x = 0?

x = 0?

ƒsxd = e  sin 2x, x … 0

mx, x 7 0

x = 1?

x = 1?

ƒsxd = e x, 0 … x … 1

2 - x, 1 6 x … 2.

x = 0?

x = 0?

ƒsxd = e x, -1 … x 6 0

tan x,   0 … x … p>4.

77. Tangent parabola The parabola is to be tangent
to the line Find C.

78. Slope of tangent Show that the tangent to the curve at
any point meets the curve again at a point where the slope
is four times the slope at 

79. Tangent curve For what value of c is the curve 
tangent to the line through the points 

80. Normal to a circle Show that the normal line at any point of the
circle passes through the origin.

Tangents and Normals to Implicitly
Defined Curves
In Exercises 81–86, find equations for the lines that are tangent and
normal to the curve at the given point.

81.

82.

83.

84.

85.

86.

87. Find the slope of the curve at the points (1, 1)
and 

88. The graph shown suggests that the curve 
might have horizontal tangents at the x-axis. Does it? Give rea-
sons for your answer.

Tangents to Parametrized Curves
In Exercises 89 and 90, find an equation for the line in the xy-plane
that is tangent to the curve at the point corresponding to the given
value of t. Also, find the value of at this point.

89.

90.

Analyzing Graphs
Each of the figures in Exercises 91 and 92 shows two graphs, the
graph of a function together with the graph of its derivative

Which graph is which? How do you know?ƒ¿sxd .
y = ƒsxd

x = 1 + 1>t2, y = 1 - 3>t, t = 2

x = s1>2d tan t, y = s1>2d sec t, t = p>3
d2y>dx2

x

y

0

–1

1
y � sin (x � sin x)

� 2�–2� –�

y = sin sx - sin xd
s1, -1d .

x3y3
+ y2

= x + y

x3>2
+ 2y3>2

= 17, s1, 4d
x + 1xy = 6, s4, 1d
s y - xd2

= 2x + 4, s6, 2d
xy + 2x - 5y = 2, s3, 2d
x3

+ y2
= 2, s1, 1d

x2
+ 2y2

= 9, s1, 2d

x2
+ y2

= a2

s0, 3d and s5, -2d?
y = c>sx + 1d

sa, a3d .
sa, a3d

y = x3

y = x .
y = x2

+ C
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91. 92.

93. Use the following information to graph the function for

i. The graph of ƒ is made of line segments joined end to end.

ii. The graph starts at the point 

iii. The derivative of ƒ, where defined, agrees with the step func-
tion shown here.

94. Repeat Exercise 93, supposing that the graph starts at in-
stead of 

Exercises 95 and 96 are about the graphs in Figure 3.53 (right-hand
column). The graphs in part (a) show the numbers of rabbits and foxes
in a small arctic population. They are plotted as functions of time for
200 days. The number of rabbits increases at first, as the rabbits repro-
duce. But the foxes prey on rabbits and, as the number of foxes in-
creases, the rabbit population levels off and then drops. Figure 3.53b
shows the graph of the derivative of the rabbit population. We made it
by plotting slopes.

95. a. What is the value of the derivative of the rabbit population in
Figure 3.53 when the number of rabbits is largest? Smallest?

b. What is the size of the rabbit population in Figure 3.53 when
its derivative is largest? Smallest (negative value)?

96. In what units should the slopes of the rabbit and fox population
curves be measured?

Trigonometric Limits

97. 98. lim
x:0

 
3x - tan 7x

2x
lim
x:0

  
sin x

2x2
- x

s -1, 2d .
s -1, 0d

x

y

1–1 2

1

–1
3 4 5 6

–2

y � f '(x)

s -1, 2d .

-1 … x … 6.
y = ƒsxd

99. 100.

101.

102.

103. 104.

Show how to extend the functions in Exercises 105 and 106 to be con-
tinuous at the origin.

105. 106.

Related Rates
107. Right circular cylinder The total surface area S of a right cir-

cular cylinder is related to the base radius r and height h by the
equation 

a. How is related to if h is constant?

b. How is related to if r is constant?dh>dtdS>dt

dr>dtdS>dt

S = 2pr2
+ 2prh .

ƒsxd =

tan stan xd
sin ssin xd

g sxd =

tan stan xd
tan x

lim
u:0

 
1 - cos u

u2lim
x:0

  
x sin x

2 - 2 cos x

lim
u:0+

 
1 - 2 cot2 u

5 cot2 u - 7 cot u - 8

lim
u: sp>2d-

 
4 tan2 u + tan u + 1

tan2 u + 5

lim
u:0

 
sin ssin ud
u

lim
r:0

  
sin r

tan 2r
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y
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(20, 1700)
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(a)

(20, 40)

0 50 100 150 200

50

–50

–100

Derivative of the rabbit population

0

(b)

Number
of rabbits

Initial no. rabbits � 1000
Initial no. foxes � 40

Time (days)

Number
of foxes

�100

Time (days)

FIGURE 3.53 Rabbits and foxes in an arctic predator-prey food chain.
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c. How is related to and if neither r nor h is
constant?

d. How is related to if S is constant?

108. Right circular cone The lateral surface area S of a right circu-
lar cone is related to the base radius r and height h by the equa-
tion 

a. How is related to if h is constant?

b. How is related to if r is constant?

c. How is related to and if neither r nor h is
constant?

109. Circle’s changing area The radius of a circle is changing at
the rate of At what rate is the circle’s area chang-
ing when 

110. Cube’s changing edges The volume of a cube is increasing at
the rate of at the instant its edges are 20 cm long.
At what rate are the lengths of the edges changing at that instant?

111. Resistors connected in parallel If two resistors of and 
ohms are connected in parallel in an electric circuit to make an
R-ohm resistor, the value of R can be found from the equation

If is decreasing at the rate of 1 ohm sec and is increasing
at the rate of 0.5 ohm sec, at what rate is R changing when

and 

112. Impedance in a series circuit The impedance Z (ohms) in a
series circuit is related to the resistance R (ohms) and reactance
X (ohms) by the equation If R is increasing at
3 ohms sec and X is decreasing at 2 ohms sec, at what rate is Z
changing when and 

113. Speed of moving particle The coordinates of a particle mov-
ing in the metric xy-plane are differentiable functions of time t
with and How fast is the
particle moving away from the origin as it passes through the
point 

114. Motion of a particle A particle moves along the curve 
in the first quadrant in such a way that its distance from the origin in-
creases at the rate of 11 units per second. Find when 

115. Draining a tank Water drains from the conical tank shown in
the accompanying figure at the rate of 

a. What is the relation between the variables h and r in the figure?

b. How fast is the water level dropping when h = 6 ft?

5 ft3>min.

x = 3.dx>dt

y = x3>2
s3, -4d?

dy>dt = 5 m/sec .dx>dt = 10 m/sec

X = 20 ohms?R = 10 ohms
>>

Z = 2R2
+ X 2 .

R2 = 50 ohms?R1 = 75 ohms
>

R2>R1

�
R

�
R2R1

1
R

=

1
R1

+

1
R2

.

R2R1

1200 cm3>min

r = 10 m?
-2>p m>sec.

dh>dtdr>dtdS>dt

dh>dtdS>dt

dr>dtdS>dt

S = pr2r2
+ h2 .

dh>dtdr>dt

dh>dtdr>dtdS>dt

116. Rotating spool As television cable is pulled from a large spool
to be strung from the telephone poles along a street, it unwinds
from the spool in layers of constant radius (see accompanying
figure). If the truck pulling the cable moves at a steady 6 ft sec
(a touch over 4 mph), use the equation to find how fast
(radians per second) the spool is turning when the layer of radius
1.2 ft is being unwound.

117. Moving searchlight beam The figure shows a boat 1 km off-
shore, sweeping the shore with a searchlight. The light turns at a
constant rate, 

a. How fast is the light moving along the shore when it reaches
point A?

b. How many revolutions per minute is 0.6 rad sec?

118. Points moving on coordinate axes Points A and B move along
the x- and y-axes, respectively, in such a way that the distance r
(meters) along the perpendicular from the origin to the line AB
remains constant. How fast is OA changing, and is it increasing,
or decreasing, when and B is moving toward O at the
rate of 0.3r m sec?>

OB = 2r

1 km
A

x

�

>

du>dt = -0.6 rad/sec.

1.2'

s = ru
>

r

h

3Exit rate: 5 ft3/min

10'

4'
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Linearization
119. Find the linearizations of

a. b.

Graph the curves and linearizations together.

120. We can obtain a useful linear approximation of the function
by combining the approximations

to get

Show that this result is the standard linear approximation of
at 

121. Find the linearization of 

122. Find the linearization of 

Differential Estimates of Change
123. Surface area of a cone Write a formula that estimates the

change that occurs in the lateral surface area of a right circular
cone when the height changes from and the radius
does not change.

(Lateral surface area)

h

r

1
3

V �    �r2h

S � �r�r2 � h2

h0 to h0 + dh

at x = 0.
ƒsxd = 2>s1 - xd + 21 + x - 3.1

ƒsxd = 21 + x + sin x - 0.5 at x = 0.

x = 0.1>s1 + tan xd

1
1 + tan x

L 1 - x .

1
1 + x

L 1 - x and tan x L x

ƒsxd = 1>s1 + tan xd at x = 0

sec x at x = -p>4.tan x at x = -p>4

124. Controlling error

a. How accurately should you measure the edge of a cube to be
reasonably sure of calculating the cube’s surface area with an
error of no more than 2%?

b. Suppose that the edge is measured with the accuracy
required in part (a). About how accurately can the cube’s
volume be calculated from the edge measurement? To find
out, estimate the percentage error in the volume calculation
that might result from using the edge measurement.

125. Compounding error The circumference of the equator of a
sphere is measured as 10 cm with a possible error of 0.4 cm.
This measurement is then used to calculate the radius. The radius
is then used to calculate the surface area and volume of the
sphere. Estimate the percentage errors in the calculated values of

a. the radius.

b. the surface area.

c. the volume.

126. Finding height To find the height of a lamppost (see accom-
panying figure), you stand a 6 ft pole 20 ft from the lamp and
measure the length a of its shadow, finding it to be 15 ft, give or
take an inch. Calculate the height of the lamppost using the
value and estimate the possible error in the result.

h

6 ft

20 ft
a

a = 15
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240 Chapter 3: Differentiation

Chapter 3 Additional and Advanced Exercises

1. An equation like is called an identity because
it holds for all values of An equation like is not an
identity because it holds only for selected values of not all. If
you differentiate both sides of a trigonometric identity in with
respect to the resulting new equation will also be an identity.

Differentiate the following to show that the resulting equa-
tions hold for all 

a.

b. cos 2u = cos2 u - sin2 u

sin 2u = 2 sin u cos u

u .

u ,
u

u ,
sin u = 0.5u .

sin2 u + cos2 u = 1 2. If the identity is differenti-
ated with respect to x, is the resulting equation also an identity? Does
this principle apply to the equation Explain.

3. a. Find values for the constants a, b, and c that will make

satisfy the conditions

ƒs0d = g s0d, ƒ¿s0d = g¿s0d, and ƒ–s0d = g–s0d .

ƒsxd = cos x and g sxd = a + bx + cx2

x2
- 2x - 8 = 0?

sin sx + ad = sin x cos a + cos x sin a
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b. Find values for b and c that will make

satisfy the conditions

c. For the determined values of a, b, and c, what happens for the
third and fourth derivatives of ƒ and g in each of parts (a)
and (b)?

4. Solutions to differential equations

a. Show that and 
(a and b constants) all satisfy the equation

b. How would you modify the functions in part (a) to satisfy the
equation

Generalize this result.

5. An osculating circle Find the values of h, k, and a that make
the circle tangent to the parabola

at the point (1, 2) and that also make the second de-
rivatives have the same value on both curves there. Cir-
cles like this one that are tangent to a curve and have the same
second derivative as the curve at the point of tangency are called
osculating circles (from the Latin osculari, meaning “to kiss”).
We encounter them again in Chapter 13.

6. Marginal revenue A bus will hold 60 people. The number x of
people per trip who use the bus is related to the fare charged
( p dollars) by the law Write an expression
for the total revenue r(x) per trip received by the bus company.
What number of people per trip will make the marginal revenue

equal to zero? What is the corresponding fare? (This fare is
the one that maximizes the revenue, so the bus company should
probably rethink its fare policy.)

7. Industrial production

a. Economists often use the expression “rate of growth” in
relative rather than absolute terms. For example, let 
be the number of people in the labor force at time t in a given
industry. (We treat this function as though it were
differentiable even though it is an integer-valued step
function.)

Let be the average production per person in the
labor force at time t. The total production is then 
If the labor force is growing at the rate of 4% per year

and the production per worker is growing
at the rate of 5% per year find the rate of
growth of the total production, y.

b. Suppose that the labor force in part (a) is decreasing at
the rate of 2% per year while the production per person is
increasing at the rate of 3% per year. Is the total production
increasing, or is it decreasing, and at what rate?

sdy>dt = 0.05yd ,
sdu>dt = 0.04ud

y = uy .
y = g std

u = ƒstd

dr>dx

p = [3 - sx>40d]2 .

d2y>dx2
y = x2

+ 1
sx - hd2

+ s y - kd2
= a2

y– + 4y = 0?

y– + y = 0.

y = a cos x + b sin xy = sin x, y = cos x ,

ƒs0d = g s0d and ƒ¿s0d = g¿s0d .

ƒsxd = sin sx + ad and g sxd = b sin x + c cos x

8. Designing a gondola The designer of a 30-ft-diameter spheri-
cal hot air balloon wants to suspend the gondola 8 ft below the
bottom of the balloon with cables tangent to the surface of the
balloon, as shown. Two of the cables are shown running from the
top edges of the gondola to their points of tangency, 
and How wide should the gondola be?

9. Pisa by parachute The photograph shows Mike McCarthy
parachuting from the top of the Tower of Pisa on August 5, 1988.
Make a rough sketch to show the shape of the graph of his speed
during the jump.

x
0

15 ft

Suspension
cables

Gondola
Width

8 ft

y

x2 � y2 � 225

(12, –9)(–12, –9)

NOT TO SCALE

s12, -9d .
s -12, -9d
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Mike McCarthy of London jumped from the Tower of Pisa and then
opened his parachute in what he said was a world record low-level
parachute jump of 179 ft. (Source: Boston Globe, Aug. 6, 1988.)

4100 AWL/Thomas_ch03p147-243  8/19/04  11:17 AM  Page 241

Photograph is not available.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



10. Motion of a particle The position at time of a particle
moving along a coordinate line is

a. What is the particle’s starting position 

b. What are the points farthest to the left and right of the origin
reached by the particle?

c. Find the particle’s velocity and acceleration at the points in
part (b).

d. When does the particle first reach the origin? What are its
velocity, speed, and acceleration then?

11. Shooting a paper clip On Earth, you can easily shoot a paper
clip 64 ft straight up into the air with a rubber band. In t sec after
firing, the paper clip is above your hand.

a. How long does it take the paper clip to reach its maximum
height? With what velocity does it leave your hand?

b. On the moon, the same acceleration will send the paper clip
to a height of in t sec. About how long will
it take the paper clip to reach its maximum height, and how
high will it go?

12. Velocities of two particles At time t sec, the positions of two
particles on a coordinate line are 
and When do the particles have the
same velocities?

13. Velocity of a particle A particle of constant mass m moves
along the x-axis. Its velocity y and position x satisfy the equation

where and are constants. Show that whenever 

14. Average and instantaneous velocity

a. Show that if the position x of a moving point is given by a
quadratic function of then the average
velocity over any time interval is equal to the
instantaneous velocity at the midpoint of the time interval.

b. What is the geometric significance of the result in part (a)?

15. Find all values of the constants m and b for which the function

is

a. continuous at 

b. differentiable at 

16. Does the function

ƒsxd = L 1 - cos x
x , x Z 0

0, x = 0

x = p .

x = p .

y = e  sin x, x 6 p

mx + b, x Ú p

[t1, t2]
t, x = At2

+ Bt + C ,

m 
dy
dt

= -kx .

y Z 0,x0k, y0 ,

1
2

 msy2
- y0 

2d =

1
2

 k sx0 
2

- x2d ,

s2 = - t3
+ 9t2

- 12t m.
s1 = 3t3

- 12t2
+ 18t + 5 m

s = 64t - 2.6t2 ft

s = 64t - 16t2 ft

st = 0d?

s = 10 cos st + p>4d .

t Ú 0 have a derivative at Explain.

17. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of ƒ.

18. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of g.

19. Odd differentiable functions Is there anything special about
the derivative of an odd differentiable function of x? Give reasons
for your answer.

20. Even differentiable functions Is there anything special about
the derivative of an even differentiable function of x? Give rea-
sons for your answer.

21. Suppose that the functions ƒ and g are defined throughout an
open interval containing the point that ƒ is differentiable at 
that and that g is continuous at Show that the prod-
uct ƒg is differentiable at This process shows, for example,
that although is not differentiable at the product is
differentiable at 

22. (Continuation of Exercise 21.) Use the result of Exercise 21 to
show that the following functions are differentiable at 

a. b. c.

d.

23. Is the derivative of

continuous at How about the derivative of 
Give reasons for your answers.

24. Suppose that a function ƒ satisfies the following conditions for all
real values of x and y:

i.

ii. where 

Show that the derivative exists at every value of x and that

25. The generalized product rule Use mathematical induction to
prove that if is a finite product of differentiable
functions, then is differentiable on their common domain and

dy

dx
=

du1

dx
 u2

Á un + u1 
du2

dx
Á un +

Á
+ u1 u2

Á un - 1 
dun

dx
.

y
y = u1 u2

Á un

ƒ¿sxd = ƒsxd .
ƒ¿sxd

limx:0 g sxd = 1.ƒsxd = 1 + xg sxd ,

ƒsx + yd = ƒsxd # ƒs yd .

k sxd = xhsxd?x = 0?

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

23 x s1 - cos xdx2>3 sin xƒ x ƒ sin x

x = 0.

x = 0.
x ƒ x ƒx = 0,ƒ x ƒ

x0 .
x0 .ƒsx0d = 0,

x0 ,x0 ,

g sxd = eax + b, x … -1

ax3
+ x + 2b, x 7 -1

ƒsxd = eax, x 6 2

ax2
- bx + 3, x Ú 2

x = 0?
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26. Leibniz’s rule for higher-order derivatives of products Leib-
niz’s rule for higher-order derivatives of products of differentiable
functions says that

a.

b.

c.

The equations in parts (a) and (b) are special cases of the
equation in part (c). Derive the equation in part (c) by
mathematical induction, using

27. The period of a clock pendulum The period T of a clock pen-
dulum (time for one full swing and back) is given by the formula

where T is measured in seconds, 
and L, the length of the pendulum, is measured in feet. Find ap-
proximately

32.2 ft>sec2 ,g =T 2
= 4p2L>g ,

am
k
b + a m

k + 1
b =

m!
k!sm - kd!

+

m!
sk + 1d!sm - k - 1d!

.

 +
Á

+ u 
dny

dxn .

 +

nsn - 1d Á sn - k + 1d
k!

 
dn - ku

dxn - k
 
dky

dxk

dnsuyd
dxn =

dnu
dxn  y + n 

dn - 1u

dxn - 1  
dy
dx

+
Á

d3suyd
dx3 =

d3u

dx3  y + 3 
d2u

dx2  
dy
dx

+ 3 
du
dx

 
d2y

dx2 + u 
d3y

dx3

d2suyd
dx2 =

d2u

dx2  y + 2 
du
dx

 
dy
dx

+ u 
d2y

dx2

a. the length of a clock pendulum whose period is 

b. the change dT in T if the pendulum in part (a) is lengthened
0.01 ft.

c. the amount the clock gains or loses in a day as a result of the
period’s changing by the amount dT found in part (b).

28. The melting ice cube Assume an ice cube retains its cubical
shape as it melts. If we call its edge length s, its volume is 
and its surface area is We assume that V and s are differen-
tiable functions of time t. We assume also that the cube’s volume
decreases at a rate that is proportional to its surface area. (This
latter assumption seems reasonable enough when we think that
the melting takes place at the surface: Changing the amount of
surface changes the amount of ice exposed to melt.) In mathemat-
ical terms,

The minus sign indicates that the volume is decreasing. We as-
sume that the proportionality factor k is constant. (It probably de-
pends on many things, such as the relative humidity of the sur-
rounding air, the air temperature, and the incidence or absence of
sunlight, to name only a few.) Assume a particular set of condi-
tions in which the cube lost 1 4 of its volume during the first
hour, and that the volume is when How long will it take
the ice cube to melt?

t = 0.V0

>

dV
dt

= -k s6s2d, k 7 0.

6s2 .
V = s3

T = 1 sec .
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Chapter 3 Technology Application Projects

Mathematica/Maple Module
Convergence of Secant Slopes to the Derivative Function
You will visualize the secant line between successive points on a curve and observe what happens as the distance between them becomes small.
The function, sample points, and secant lines are plotted on a single graph, while a second graph compares the slopes of the secant lines with the
derivative function.

Mathematica/Maple Module
Derivatives, Slopes, Tangent Lines, and Making Movies
Parts I–III. You will visualize the derivative at a point, the linearization of a function, and the derivative of a function. You learn how to plot the
function and selected tangents on the same graph.
Part IV (Plotting Many Tangents)
Part V (Making Movies). Parts IV and V of the module can be used to animate tangent lines as one moves along the graph of a function.

Mathematica/Maple Module
Convergence of Secant Slopes to the Derivative Function
You will visualize right-hand and left-hand derivatives.

Mathematica/Maple Module
Motion Along a Straight Line:
Observe dramatic animated visualizations of the derivative relations among the position, velocity, and acceleration functions. Figures in the text
can be animated.

Position : Velocity : Acceleration
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