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Related Rates

In this section we look at problems that ask for the rate at which some variable changes. In
each case the rate is a derivative that has to be computed from the rate at which some other
variable (or perhaps several variables) is known to change. To find it, we write an equation
that relates the variables involved and differentiate it to get an equation that relates the rate
we seek to the rates we know. The problem of finding a rate you cannot measure easily
from some other rates that you can is called a related rates problem.

3.7 
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Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an
instant of time, then

Using the Chain Rule, we differentiate to find the related rates equation

So if we know the radius r of the balloon and the rate at which the volume is in-
creasing at a given instant of time, then we can solve this last equation for to find
how fast the radius is increasing at that instant. Note that it is easier to measure directly the
rate of increase of the volume than it is to measure the increase in the radius. The related
rates equation allows us to calculate from .

Very often the key to relating the variables in a related rates problem is drawing a picture
that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1 Pumping Out a Tank

How rapidly will the fluid level inside a vertical cylindrical tank drop if we pump the fluid
out at the rate of 3000 L min?

Solution We draw a picture of a partially filled vertical cylindrical tank, calling its ra-
dius r and the height of the fluid h (Figure 3.42). Call the volume of the fluid V.

As time passes, the radius remains constant, but V and h change. We think of V and h
as differentiable functions of time and use t to represent time. We are told that

We are asked to find

To find , we first write an equation that relates h to V. The equation depends on
the units chosen for V, r, and h. With V in liters and r and h in meters, the appropriate
equation for the cylinder’s volume is

because a cubic meter contains 1000 L.
Since V and h are differentiable functions of t, we can differentiate both sides of the

equation with respect to t to get an equation that relates to :

We substitute the known value and solve for :

dh
dt

=

-3000
1000pr2 = -

3
pr2 .

dh>dtdV>dt = -3000

dV
dt

= 1000pr2 
dh
dt

 .

dV>dtdh>dtV = 1000pr2h

V = 1000pr2h

dh>dt

dh
dt

.

dV
dt

= -3000.

>

dV>dtdr>dt

dr>dt
dV>dt

dV
dt

=

dV
dr

 
dr
dt

= 4pr2 
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dt

.

V =
4
3

 pr3 .
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� –3000 L/min

� ?

h

dh
dt

dV
dt

r

FIGURE 3.42 The rate of change of fluid
volume in a cylindrical tank is related to
the rate of change of fluid level in the tank
(Example 1).

We pump out at the rate of
3000 L min. The rate is negative
because the volume is decreasing.

>

How fast will the fluid level drop?

r is a constant.
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The fluid level will drop at the rate of 
The equation shows how the rate at which the fluid level drops de-

pends on the tank’s radius. If r is small, will be large; if r is large, will be
small.

 If r = 10 m: dh
dt

= -

3
100p

L -0.0095 m>min = -0.95 cm>min.

 If r = 1 m: dh
dt

= -

3
p L -0.95 m>min = -95 cm>min.

dh>dtdh>dt
dh>dt = -3>pr2

3>spr2d m>min.
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Related Rates Problem Strategy
1. Draw a picture and name the variables and constants. Use t for time. Assume

that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you have
chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two or
more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rate and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

EXAMPLE 2 A Rising Balloon

A hot air balloon rising straight up from a level field is tracked by a range finder 500 ft
from the liftoff point. At the moment the range finder’s elevation angle is the angle is
increasing at the rate of 0.14 rad min. How fast is the balloon rising at that moment?

Solution We answer the question in six steps.

1. Draw a picture and name the variables and constants (Figure 3.43). The variables in
the picture are

angle in radians the range finder makes with the ground.

height in feet of the balloon.

We let t represent time in minutes and assume that and y are differentiable functions of t.
The one constant in the picture is the distance from the range finder to the liftoff point

(500 ft). There is no need to give it a special symbol.

2. Write down the additional numerical information.

3. Write down what we are to find. We want when u = p>4.dy>dt

du
dt

= 0.14 rad>min when u =
p
4

u

y = the

u = the

> p>4,

� ?
y

Range
finder

Balloon

500 ft

�

� 0.14  rad/min
dt
d�

when � � �/4 
dt
dywhen � � �/4 

FIGURE 3.43 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).
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4. Write an equation that relates the variables y and

5. Differentiate with respect to t using the Chain Rule. The result tells how (which
we want) is related to (which we know).

6. Evaluate with and to find .

At the moment in question, the balloon is rising at the rate of 140 ft min.

EXAMPLE 3 A Highway Chase

A police cruiser, approaching a right-angled intersection from the north, is chasing a
speeding car that has turned the corner and is now moving straight east. When the cruiser
is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police determine
with radar that the distance between them and the car is increasing at 20 mph. If the cruiser
is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.44).
We let t represent time and set

We assume that x, y, and s are differentiable functions of t.
We want to find when

Note that is negative because y is decreasing.
We differentiate the distance equation

(we could also use ), and obtain

 =
12x2

+ y2
 ax 

dx
dt

+ y 
dy
dt
b .

 
ds
dt

=
1
s  ax 

dx
dt

+ y 
dy
dt
b

 2s 
ds
dt

= 2x 
dx
dt

+ 2y 
dy
dt

s = 2x2
+ y2

s2
= x2

+ y2

dy>dt

x = 0.8 mi, y = 0.6 mi, dy
dt

= -60 mph, ds
dt

= 20 mph.

dx>dt

 s = distance between car and cruiser at time t .

 y = position of cruiser at time t

 x = position of car at time t

>
sec 
p

4
= 22

dy
dt

= 500 A22 B2s0.14d = 140

dy>dtdu>dt = 0.14u = p>4

dy
dt

= 500 ssec2 ud 
du
dt

du>dt
dy>dt

y
500

= tan u or y = 500 tan u

u .
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x

y

0 x

y

Situation when
x � 0.8, y � 0.6

� –60
� 20

� ?dx
dt

dy
dt

ds
dt

FIGURE 3.44 The speed of the car is
related to the speed of the police cruiser
and the rate of change of the distance
between them (Example 3).
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3.7 Related Rates 217

Finally, use and solve for .

At the moment in question, the car’s speed is 70 mph.

EXAMPLE 4 Filling a Conical Tank

Water runs into a conical tank at the rate of The tank stands point down and has
a height of 10 ft and a base radius of 5 ft. How fast is the water level rising when the water
is 6 ft deep?

Solution Figure 3.45 shows a partially filled conical tank. The variables in the problem are

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We are asked for when

The water forms a cone with volume

This equation involves x as well as V and y. Because no information is given about x and
at the time in question, we need to eliminate x. The similar triangles in Figure 3.45

give us a way to express x in terms of y:

Therefore,

to give the derivative

Finally, use and to solve for .

At the moment in question, the water level is rising at about 0.32 ft min.>
 
dy
dt

=
1
p L 0.32

 9 =
p
4

 A6 B2 
dy
dt

dy>dtdV>dt = 9y = 6

dV
dt

=
p
12

# 3y2 
dy
dt

=
p
4

 y2 
dy
dt

.

V =
1
3

 p ay
2
b2

y =
p
12

 y3

x
y =

5
10
 or x =

y
2

.

dx>dt

V =
1
3

 px2y .

y = 6 ft and dV
dt

= 9 ft3>min.

dy>dt

 y = depth sftd of water in tank at time t .

 x = radius sftd of the surface of the water at time t

 V = volume sft3d of the water in the tank at time t smind

9 ft3>min.

 
dx
dt

=

202s0.8d2
+ s0.6d2

+ s0.6ds60d
0.8

= 70

 20 =
12s0.8d2

+ s0.6d2
 a0.8 

dx
dt

+ A0.6 B A -60 B b
dx>dtx = 0.8, y = 0.6, dy>dt = -60, ds>dt = 20,

10 ft

y

5 ft

x
dy
dt

� ?

when y � 6 ft

dV
dt

� 9 ft3/min

FIGURE 3.45 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 4).
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EXERCISES 3.7

1. Area Suppose that the radius r and area of a circle are
differentiable functions of t. Write an equation that relates 
to .

2. Surface area Suppose that the radius r and surface area
of a sphere are differentiable functions of t. Write an

equation that relates to .

3. Volume The radius r and height h of a right circular cylinder are
related to the cylinder’s volume V by the formula 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

4. Volume The radius r and height h of a right circular cone are re-
lated to the cone’s volume V by the equation 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

5. Changing voltage The voltage V (volts), current I (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation Suppose that V is in-
creasing at the rate of 1 volt sec while I is decreasing at the rate
of 1 3 amp sec. Let t denote time in seconds.

a. What is the value of ?

b. What is the value of ?

c. What equation relates to and ?

d. Find the rate at which R is changing when volts and
amp. Is R increasing, or decreasing?

6. Electrical power The power P (watts) of an electric circuit is
related to the circuit’s resistance R (ohms) and current I (amperes)
by the equation 

a. How are , , and related if none of P, R, and I
are constant?

b. How is related to if P is constant?

7. Distance Let x and y be differentiable functions of t and let
be the distance between the points (x, 0) and 

(0, y) in the xy-plane.

a. How is related to if y is constant?dx>dtds>dt

s = 2x2
+ y2

dI>dtdR>dt

dI>dtdR>dtdP>dt

P = RI2 .

I = 2
V = 12

dI>dtdV>dtdR>dt

dI>dt

dV>dt

V

R

I

� �

>>
>

V = IR .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = s1>3dpr2h .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = pr2h .

dr>dtdS>dt
S = 4pr2

dr>dt
dA>dt

A = pr2 b. How is related to and if neither x nor y is
constant?

c. How is related to if s is constant?

8. Diagonals If x, y, and z are lengths of the edges of a rectangular
box, the common length of the box’s diagonals is 

a. Assuming that x, y, and z are differentiable functions of t, how
is related to , , and ?

b. How is related to and if x is constant?

c. How are , , and related if s is constant?

9. Area The area A of a triangle with sides of lengths a and b en-
closing an angle of measure is

a. How is related to if a and b are constant?

b. How is related to and if only b is constant?

c. How is related to and if none of a,
b, and are constant?

10. Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm min. At what rate
is the plate’s area increasing when the radius is 50 cm?

11. Changing dimensions in a rectangle The length l of a rectan-
gle is decreasing at the rate of 2 cm sec while the width w is in-
creasing at the rate of 2 cm sec. When and 
find the rates of change of (a) the area, (b) the perimeter, and (c)
the lengths of the diagonals of the rectangle. Which of these
quantities are decreasing, and which are increasing?

12. Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

Find the rates at which the box’s (a) volume, (b) surface area, and

(c) diagonal length are changing at the in-
stant when and 

13. A sliding ladder A 13-ft ladder is leaning against a house when
its base starts to slide away. By the time the base is 12 ft from the
house, the base is moving at the rate of 5 ft sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

c. At what rate is the angle between the ladder and the ground
changing then?

u

>

z = 2.x = 4, y = 3,
s = 2x2

+ y2
+ z2

dx
dt

= 1 m>sec, 
dy

dt
= -2 m>sec, dz

dt
= 1 m>sec .

w = 5 cm,l = 12 cm>
>

>
u

db>dtdu>dt, da>dt ,dA>dt

da>dtdu>dtdA>dt

du>dtdA>dt

A =

1
2

 ab sin u .

u

dz>dtdy>dtdx>dt

dz>dtdy>dtds>dt

dz>dtdy>dtdx>dtds>dt

2x2
+ y2

+ z2 .

s =

dy>dtdx>dt

dy>dtdx>dtds>dt
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14. Commercial air traffic Two commercial airplanes are flying at
40,000 ft along straight-line courses that intersect at right angles.
Plane A is approaching the intersection point at a speed of 442
knots (nautical miles per hour; a nautical mile is 2000 yd). Plane
B is approaching the intersection at 481 knots. At what rate is the
distance between the planes changing when A is 5 nautical miles
from the intersection point and B is 12 nautical miles from the in-
tersection point?

15. Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft sec. How
fast must she let out the string when the kite is 500 ft away from her?

16. Boring a cylinder The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one-thousandth of
an inch every 3 min. How rapidly is the cylinder volume increas-
ing when the bore (diameter) is 3.800 in.?

17. A growing sand pile Sand falls from a conveyor belt at the rate
of onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

18. A draining conical reservoir Water is flowing at the rate of
from a shallow concrete conical reservoir (vertex

down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

19. A draining hemispherical reservoir Water is flowing at the rate
of from a reservoir shaped like a hemispherical bowl of
radius 13 m, shown here in profile. Answer the following ques-
tions, given that the volume of water in a hemispherical bowl of ra-
dius R is when the water is y meters deep.

r

y

13

Center of sphere

Water level

V = sp>3dy2s3R - yd

6 m3>min

50 m3>min

10 m3>min

>

x
0

y

13-ft ladder

y(t)

x(t)

�

a. At what rate is the water level changing when the water is 8 m
deep?

b. What is the radius r of the water’s surface when the water is
y m deep?

c. At what rate is the radius r changing when the water is 8 m
deep?

20. A growing raindrop Suppose that a drop of mist is a perfect
sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drop’s radius increases at a constant rate.

21. The radius of an inflating balloon A spherical balloon is in-
flated with helium at the rate of How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?

22. Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft sec.

a. How fast is the boat approaching the dock when 10 ft of rope
are out?

b. At what rate is the angle changing then (see the figure)?

23. A balloon and a bicycle A balloon is rising vertically above a
level, straight road at a constant rate of 1 ft sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft sec passes under it. How fast is the distance s(t) be-
tween the bicycle and balloon increasing 3 sec later?

y

x
0

y(t)

s(t)

x(t)

>
>




Ring at edge
of dock

6'

u

>

100p ft3>min.
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24. Making coffee Coffee is draining from a conical filter into a
cylindrical coffeepot at the rate of 

a. How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

25. Cardiac output In the late 1860s, Adolf Fick, a professor of
physiology in the Faculty of Medicine in Würzberg, Germany, de-
veloped one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output as
you read this sentence is probably about 7 L min. At rest it is
likely to be a bit under 6 L min. If you are a trained marathon
runner running a marathon, your cardiac output can be as high as
30 L min.

Your cardiac output can be calculated with the formula

where Q is the number of milliliters of you exhale in a
minute and D is the difference between the concentration
(ml L) in the blood pumped to the lungs and the concentra-
tion in the blood returning from the lungs. With 
and 

fairly close to the 6 L min that most people have at basal (resting)
conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan Col-
lege of Medicine, East Tennessee State University.)

Suppose that when and we also know
that D is decreasing at the rate of 2 units a minute but that Q re-
mains unchanged. What is happening to the cardiac output?

D = 41,Q = 233

>
y =

233 ml>min

41 ml>L L 5.68 L>min,

D = 97 - 56 = 41 ml>L,
Q = 233 ml>min

CO2>
CO2

CO2

y =

Q

D
,

>
>

>

6"

6"

6"

How fast
is this
level rising?

How fast
is this
level falling?

10 in3>min.
26. Cost, revenue, and profit A company can manufacture x items

at a cost of c(x) thousand dollars, a sales revenue of r(x) thousand
dollars, and a profit of 
Find , , and for the following values of x and

.

a.

b.

27. Moving along a parabola A particle moves along the parabola
in the first quadrant in such a way that its x-coordinate

(measured in meters) increases at a steady 10 m sec. How fast is
the angle of inclination of the line joining the particle to the ori-
gin changing when 

28. Moving along another parabola A particle moves from right to
left along the parabolic curve in such a way that its 
x-coordinate (measured in meters) decreases at the rate of 8 m sec.
How fast is the angle of inclination of the line joining the parti-
cle to the origin changing when 

29. Motion in the plane The coordinates of a particle in the metric
xy-plane are differentiable functions of time t with 

How fast is the particle’s dis-
tance from the origin changing as it passes through the point
(5, 12)?

30. A moving shadow A man 6 ft tall walks at the rate of 5 ft sec
toward a streetlight that is 16 ft above the ground. At what rate is
the tip of his shadow moving? At what rate is the length of his
shadow changing when he is 10 ft from the base of the light?

31. Another moving shadow A light shines from the top of a pole
50 ft high. A ball is dropped from the same height from a point 30
ft away from the light. (See accompanying figure.) How fast is the
shadow of the ball moving along the ground sec later? (As-
sume the ball falls a distance )

32. Videotaping a moving car You are videotaping a race from a
stand 132 ft from the track, following a car that is moving at 180
mi h (264 ft sec). How fast will your camera angle be changing
when the car is right in front of you? A half second later?

u>>

x

Light

30

Shadow

0

50-ft
pole

Ball at time t � 0

1/2 sec later

x(t)

NOT TO SCALE

s = 16t2 ft in t sec .
1>2

>

-1 m>sec and dy>dt = -5 m>sec .
dx>dt =

x = -4?
u

>
y = 1-x

x = 3 m?
u

>
y = x2

when x = 1.5
r sxd = 70x, c sxd = x3

- 6x2
+ 45>x, and dx>dt = 0.05

when x = 2
r sxd = 9x, c sxd = x3

- 6x2
+ 15x, and dx>dt = 0.1

dx>dt
dp>dtdr>dtdc>dt

psxd = r sxd - c sxd thousand dollars .

220 Chapter 3: Differentiation

4100 AWL/Thomas_ch03p147-243  8/19/04  11:17 AM  Page 220

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



33. A melting ice layer A spherical iron ball 8 in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts at
the rate of how fast is the thickness of the ice de-
creasing when it is 2 in. thick? How fast is the outer surface area
of ice decreasing?

34. Highway patrol A highway patrol plane flies 3 mi above a level,
straight road at a steady 120 mi h. The pilot sees an oncoming car
and with radar determines that at the instant the line-of-sight dis-
tance from plane to car is 5 mi, the line-of-sight distance is decreas-
ing at the rate of 160 mi h. Find the car’s speed along the highway.

35. A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle the
sun makes with the ground is increasing at the rate of 0.27° min.
At what rate is the shadow decreasing? (Remember to use radi-
ans. Express your answer in inches per minute, to the nearest tenth.)

80'

�

>
u

>

>

10 in3>min,

Car

Camera

132'

�

36. Walkers A and B are walking on straight streets that meet at
right angles. A approaches the intersection at 2 m sec; B moves
away from the intersection 1 m sec. At what rate is the angle 
changing when A is 10 m from the intersection and B is 20 m
from the intersection? Express your answer in degrees per second
to the nearest degree.

37. Baseball players A baseball diamond is a square 90 ft on a
side. A player runs from first base to second at a rate of 16 ft sec.

a. At what rate is the player’s distance from third base changing
when the player is 30 ft from first base?

b. At what rates are angles and (see the figure) changing at
that time?

c. The player slides into second base at the rate of 15 ft sec. At
what rates are angles and changing as the player touches
base?

38. Ships Two ships are steaming straight away from a point O
along routes that make a 120° angle. Ship A moves at 14 knots
(nautical miles per hour; a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when

and OB = 3 nautical miles?OA = 5

90'

Second base

Player

Home

30' First
base

Third
base

�1

�2

u2u1

>
u2u1

>

O

A

B

�

u>
>
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3.8 Linearization and Differentials 221

Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the ac-
curacy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizations, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapter 11.

3.8 
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We introduce new variables dx and dy, called differentials, and define them in a way
that makes Leibniz’s notation for the derivative a true ratio. We use dy to estimate
error in measurement and sensitivity of a function to change. Application of these ideas
then provides for a precise proof of the Chain Rule (Section 3.5).

Linearization

As you can see in Figure 3.46, the tangent to the curve lies close to the curve near
the point of tangency. For a brief interval to either side, the y-values along the tangent line
give good approximations to the y-values on the curve. We observe this phenomenon by
zooming in on the two graphs at the point of tangency or by looking at tables of values for
the difference between ƒ(x) and its tangent line near the x-coordinate of the point of tan-
gency. Locally, every differentiable curve behaves like a straight line.

y = x2

dy>dx

222 Chapter 3: Differentiation

4

0
3–1

2

0
20

y � x2 and its tangent y � 2x � 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout
entire x-interval shown.

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

FIGURE 3.46 The more we magnify the graph of a function near a point where the
function is differentiable, the flatter the graph becomes and the more it resembles its
tangent.

In general, the tangent to at a point where ƒ is differentiable (Figure
3.47), passes through the point (a, ƒ(a)), so its point-slope equation is

Thus, this tangent line is the graph of the linear function

For as long as this line remains close to the graph of ƒ, L(x) gives a good approximation to
ƒ(x).

Lsxd = ƒsad + ƒ¿sadsx - ad .

y = ƒsad + ƒ¿sadsx - ad .

x = a ,y = ƒsxd

x

y

0 a

Slope � f '(a)

y � f (x)

(a,  f (a))

FIGURE 3.47 The tangent to the
curve 
 Lsxd = ƒsad + ƒ¿sadsx - ad .

 y = ƒsxd at x = a is the line
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EXAMPLE 1 Finding a Linearization

Find the linearization of (Figure 3.48).ƒsxd = 21 + x at x = 0

3.8 Linearization and Differentials 223

DEFINITIONS Linearization, Standard Linear Approximation
If ƒ is differentiable at then the approximating function

is the linearization of ƒ at a. The approximation

of ƒ by L is the standard linear approximation of ƒ at a. The point is the
center of the approximation.

x = a

ƒsxd L Lsxd

Lsxd = ƒsad + ƒ¿sadsx - ad

x = a ,

x

y

0–1

2

1

1 2 3 4

y � �
5
4

x
4y � 1 � x

2

y � �1 � x

FIGURE 3.48 The graph of and its
linearizations at and Figure 3.49 shows a
magnified view of the small window about 1 on the y-axis.

x = 3.x = 0
y = 21 + x

Solution Since

we have and giving the linearization

See Figure 3.49.

Look at how accurate the approximation from Example 1 is
for values of x near 0.

As we move away from zero, we lose accuracy. For example, for the lineariza-
tion gives 2 as the approximation for which is not even accurate to one decimal place.

Do not be misled by the preceding calculations into thinking that whatever we do with
a linearization is better done with a calculator. In practice, we would never use a lineariza-
tion to find a particular square root. The utility of a linearization is its ability to replace a
complicated formula by a simpler one over an entire interval of values. If we have to work 
with for x close to 0 and can tolerate the small amount of error involved, we can21 + x

23,
x = 2,

21 + x L 1 + sx>2d

Lsxd = ƒsad + ƒ¿sadsx - ad = 1 +
1
2

 Ax - 0 B = 1 +

x
2

.

ƒ¿s0d = 1>2,ƒs0d = 1

ƒ¿sxd =
1
2

 A1 + x B-1>2 ,

1.0

0–0.1 0.1 0.2

1.1

0.9

y � 1 �

y � �1 � x

2
x

FIGURE 3.49 Magnified view of the
window in Figure 3.48.
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work with instead. Of course, we then need to know how much error there is.
We have more to say on the estimation of error in Chapter 11.

A linear approximation normally loses accuracy away from its center. As Figure 3.48

suggests, the approximation will probably be too crude to be use-
ful near There, we need the linearization at 

EXAMPLE 2 Finding a Linearization at Another Point

Find the linearization of at 

Solution We evaluate the equation defining With

we have

At the linearization in Example 2 gives

which differs from the true value by less than one one-thousandth. The
linearization in Example 1 gives

a result that is off by more than 25%.

EXAMPLE 3 Finding a Linearization for the Cosine Function

Find the linearization of at (Figure 3.50).

Solution Since and 
we have

 = -x +
p
2

.

 = 0 + s -1d ax -
p
2
b

 Lsxd = ƒsad + ƒ¿sadsx - ad

-1,
-sin sp>2d =ƒ¿sp>2d =ƒ¿sxd = -sin x,ƒsp>2d = cossp>2d = 0,

x = p>2ƒsxd = cos x

21 + x = 21 + 3.2 L 1 +

3.2
2

= 1 + 1.6 = 2.6,

24.2 L 2.04939

21 + x = 21 + 3.2 L

5
4

+

3.2
4

= 1.250 + 0.800 = 2.050,

x = 3.2,

Lsxd = 2 +
1
4

 Ax - 3 B =

5
4

+

x
4

.

ƒs3d = 2, ƒ¿s3d =
1
2

 A1 + x B-1>2 `
x = 3

=
1
4

,

Lsxd at a = 3.

x = 3.ƒsxd = 21 + x

x = 3.x = 3.
21 + x L 1 + sx>2d

1 + sx>2d

224 Chapter 3: Differentiation

Approximation True value

1.095445

1.024695

1.002497 610-521.005 L 1 +

0.005
2

= 1.00250

610-321.05 L 1 +

0.05
2

= 1.025

610-221.2 L 1 +

0.2
2

= 1.10

ƒ True value � approximation ƒ

x

y

0 �
2 y � cos x

y � –x � �
2

FIGURE 3.50 The graph of 
and its linearization at Near

(Example 3).
x = p>2, cos x L -x + sp>2d

x = p>2.
ƒsxd = cos x
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An important linear approximation for roots and powers is

(Exercise 15). This approximation, good for values of x sufficiently close to zero, has
broad application. For example, when x is small,

Differentials

We sometimes use the Leibniz notation to represent the derivative of y with respect
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx
and dy with the property that if their ratio exists, it will be equal to the derivative.

dy>dx

 
121 - x2

= s1 - x2d-1>2
L 1 + a- 1

2
bs -x2d = 1 +

1
2

 x2

k = 1>3;  replace x by 5x4 . 23 1 + 5x4
= s1 + 5x4d1>3

L 1 +
1
3

 A5x4 B = 1 +

5
3

 x4

k = -1;  replace x by -x . 
1

1 - x
= s1 - xd-1

L 1 + s -1ds -xd = 1 + x

k = 1>2 21 + x L 1 +
1
2

 x

s1 + xdk
L 1 + kx sx near 0; any number kd

3.8 Linearization and Differentials 225

replace x by -x2 .

k = -1>2;

DEFINITION Differential
Let be a differentiable function. The differential dx is an independent
variable. The differential dy is

dy = ƒ¿sxd dx .

y = ƒsxd

Unlike the independent variable dx, the variable dy is always a dependent variable. It
depends on both x and dx. If dx is given a specific value and x is a particular number in the
domain of the function ƒ, then the numerical value of dy is determined.

EXAMPLE 4 Finding the Differential dy

(a) Find dy if 

(b) Find the value of dy when and 

Solution

(a)

(b) Substituting and in the expression for dy, we have

The geometric meaning of differentials is shown in Figure 3.51. Let and set
The corresponding change in is

¢y = ƒsa + dxd - ƒsad .

y = ƒsxddx = ¢x .
x = a

dy = s5 # 14
+ 37d0.2 = 8.4.

dx = 0.2x = 1

dy = s5x4
+ 37d dx

dx = 0.2.x = 1

y = x5
+ 37x .
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The corresponding change in the tangent line L is

That is, the change in the linearization of ƒ is precisely the value of the differential dy
when and Therefore, dy represents the amount the tangent line rises or
falls when x changes by an amount 

If then the quotient of the differential dy by the differential dx is equal to the
derivative because

We sometimes write

in place of calling dƒ the differential of ƒ. For instance, if
then

Every differentiation formula like

has a corresponding differential form like

dsu + yd = du + dy or dssin ud = cos u du .

dsu + yd
dx

=

du
dx

+

dy
dx
 or dssin ud

dx
= cos u  

du
dx

df = ds3x2
- 6d = 6x dx .

ƒsxd = 3x2
- 6,dy = ƒ¿sxd dx ,

df = ƒ¿sxd dx

dy , dx =

ƒ¿sxd dx
dx

= ƒ¿sxd =

dy
dx

.

ƒ¿sxd
dx Z 0,

dx = ¢x.
dx = ¢x .x = a

 = ƒ¿(a) dx.

 = ƒ(a) + ƒ¿(a)[(a + dx) - a] - ƒ(a)

 ¢L = L(a + dx) - L(a)

226 Chapter 3: Differentiation

(++++++)++++++*

L(a � dx)
()*

L(a)

x

y

0 a

y � f (x)

�y � f (a � dx) � f (a)

�L � f '(a)dx

dx � �x

(a, f (a))

Tangent
line

a � dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely dy.

FIGURE 3.51 Geometrically, the differential dy is the change
in the linearization of ƒ when changes by an amount

dx = ¢x .
x = a¢L
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EXAMPLE 5 Finding Differentials of Functions

(a)

(b)

Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to pre-
dict how much this value will change if we move to a nearby point If dx is small,
then we can see from Figure 3.51 that is approximately equal to the differential dy.
Since

the differential approximation gives

where Thus the approximation can be used to calculate 
when ƒ(a) is known and dx is small.

EXAMPLE 6 Estimating with Differentials

The radius r of a circle increases from to 10.1 m (Figure 3.52). Use dA to esti-
mate the increase in the circle’s area A. Estimate the area of the enlarged circle and com-
pare your estimate to the true area.

Solution Since the estimated increase is

Thus,

The area of a circle of radius 10.1 m is approximately 
The true area is

The error in our estimate is which is the difference 

Error in Differential Approximation

Let ƒ(x) be differentiable at and suppose that is an increment of x. We
have two ways to describe the change in ƒ as x changes from a to 

How well does dƒ approximate ¢ƒ?

 The differential estimate: dƒ = ƒ¿sad ¢x .

The true change:  ¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x :
dx = ¢xx = a

¢A - dA .0.01p m2,

 = 102.01p m2.

 As10.1d = ps10.1d2

102p m2.

 = ps10d2
+ 2p = 102p .

 As10 + 0.1d L As10d + 2p

dA = A¿sad dr = 2pa dr = 2ps10ds0.1d = 2p m2.

A = pr2 ,

a = 10 m

ƒsa + dxd¢y L dydx = ¢x .

ƒsa + dxd L ƒsad + dy

ƒsa + dxd = ƒsad + ¢y ,

¢y
a + dx .

d a x
x + 1

b =

sx + 1d dx - x dsx + 1d
sx + 1d2 =

x dx + dx - x dx
sx + 1d2 =

dx
sx + 1d2

dstan 2xd = sec2s2xd ds2xd = 2 sec2 2x dx

3.8 Linearization and Differentials 227

�A ≈ dA � 2�a dr

a � 10

dr � 0.1

FIGURE 3.52 When dr is
small compared with a, as it is
when and the
differential gives
a way to estimate the area of the
circle with radius 
(Example 6).

r = a + dr

dA = 2pa dr
a = 10,dr = 0.1
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We measure the approximation error by subtracting dƒ from 

As the difference quotient

approaches (remember the definition of ), so the quantity in parentheses be-
comes a very small number (which is why we called it ). In fact, as When

is small, the approximation error is smaller still.

Although we do not know exactly how small the error is and will not be able to make much
progress on this front until Chapter 11, there is something worth noting here, namely the
form taken by the equation.

¢ƒ = ƒ¿(a)¢x + P ¢x

P ¢x¢x
¢x : 0.P : 0P

ƒ¿sadƒ¿sad

ƒsa + ¢xd - ƒsad
¢x

¢x : 0,

 = P
#
¢x .

 = aƒ(a + ¢x) - ƒ(a)

¢x
- ƒ¿(a)b #

¢x

 = ƒ(a + ¢x) - ƒ(a) - ƒ¿(a)¢x

 = ¢ƒ - ƒ¿sad¢x

 Approximation error = ¢ƒ - dƒ

¢f :

228 Chapter 3: Differentiation

(++++)++++*

�ƒ

(+++++++)+++++++*

Call this part P

()*

true
change

(+)+*

estimated
change

()*

error

Change in near 

If is differentiable at and x changes from a to the
change in ƒ is given by an equation of the form

(1)

in which as ¢x : 0.P : 0

¢y = ƒ¿sad ¢x + P ¢x

¢y
a + ¢x ,x = ay = ƒsxd

x � ay � ƒsxd

In Example 6 we found that

so the approximation error is and 

Equation (1) enables us to bring the proof of the Chain Rule to a successful conclu-
sion.

Proof of the Chain Rule
Our goal is to show that if ƒ(u) is a differentiable function of u and is a dif-

ferentiable function of x, then the composite is a differentiable function of x.y = ƒsg sxdd
u = g sxd

0.01p>0.1 = 0.1p m.
P = 0.01p>¢r =¢A - dA = P ¢r = 0.01p

¢A = p(10.1)2
- p(10)2

= (102.01 - 100)p = (2p + 0.01p) m2

()*

error
()*

dA
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More precisely, if g is differentiable at and ƒ is differentiable at then the compos-
ite is differentiable at and

Let be an increment in x and let and be the corresponding increments in u
and y. Applying Equation (1) we have,

where Similarly,

where as Notice also that Combining the equations
for and gives

so

Since and go to zero as goes to zero, three of the four terms on the right vanish in
the limit, leaving

This concludes the proof.

Sensitivity to Change

The equation tells how sensitive the output of ƒ is to a change in input at dif-
ferent values of x. The larger the value of at x, the greater the effect of a given change dx.
As we move from a to a nearby point we can describe the change in ƒ in three ways:

True Estimated

Absolute change

Relative change

Percentage change

EXAMPLE 7 Finding the Depth of a Well

You want to calculate the depth of a well from the equation by timing how long it
takes a heavy stone you drop to splash into the water below. How sensitive will your calcu-
lations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation

ds = 32t dt

s = 16t2

df

ƒsad
* 100

¢f

ƒsad
* 100

df

ƒsad
¢f

ƒsad

df = ƒ¿sad dx¢f = ƒsa + dxd - ƒsad

a + dx ,
ƒ¿

df = ƒ¿sxd dx

dy
dx
`
x=x0

= lim
¢x:0

 
¢y

¢x
= ƒ¿su0dg¿sx0d = ƒ¿sgsx0dd # g¿sx0d .

¢xP2P1

¢y

¢x
= ƒ¿su0dg¿sx0d + P2 g¿sx0d + ƒ¿su0dP1 + P2P1 .

¢y = sƒ¿su0d + P2dsg¿sx0d + P1d¢x ,

¢y¢u
¢u : 0 as ¢x : 0.¢u : 0.P2 : 0

¢y = ƒ¿su0d¢u + P2 ¢u = sƒ¿su0d + P2d¢u ,

P1 : 0 as ¢x : 0.

¢u = g¿sx0d¢x + P1 ¢x = sg¿sx0d + P1d¢x ,

¢y¢u¢x

dy
dx
`
x=x0

= ƒ¿s gsx0dd # g¿sx0d .

x0

g sx0d ,x0
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depends on how big t is. If the change caused by is about

Three seconds later at the change caused by the same dt is

The estimated depth of the well differs from its true depth by a greater distance the longer
the time it takes the stone to splash into the water below, for a given error in measuring the
time.

EXAMPLE 8 Unclogging Arteries

In the late 1830s, French physiologist Jean Poiseuille (“pwa-ZOY”) discovered the for-
mula we use today to predict how much the radius of a partially clogged artery has to be
expanded to restore normal flow. His formula,

says that the volume V of fluid flowing through a small pipe or tube in a unit of time at a
fixed pressure is a constant times the fourth power of the tube’s radius r. How will a 10%
increase in r affect V?

Solution The differentials of r and V are related by the equation

The relative change in V is

The relative change in V is 4 times the relative change in r, so a 10% increase in r will pro-
duce a 40% increase in the flow.

EXAMPLE 9 Converting Mass to Energy

Newton’s second law,

is stated with the assumption that mass is constant, but we know this is not strictly true be-
cause the mass of a body increases with velocity. In Einstein’s corrected formula, mass has
the value

where the “rest mass” represents the mass of a body that is not moving and c is the
speed of light, which is about 300,000 km sec. Use the approximation

(2)

to estimate the increase in mass resulting from the added velocity y.¢m

121 - x2
L 1 +

1
2

 x2

>m0

m =

m021 - y2>c2
,

F =

d
dt

 smyd = m 
dy
dt

= ma ,

dV
V

=

4kr3 dr
kr4 = 4 

dr
r .

dV =

dV
dr

 dr = 4kr3 dr .

V = kr4 ,

ds = 32s5ds0.1d = 16 ft .

t = 5 sec,

ds = 32s2ds0.1d = 6.4 ft .

dt = 0.1t = 2 sec,

230 Chapter 3: Differentiation

Blockage

Opaque
dye

Angiography

An opaque dye is injected into a partially
blocked artery to make the inside visible under
X-rays.  This reveals the location and severity of
the blockage.

Inflatable
balloon on
    catheter

Angioplasty

A balloon-tipped catheter is inflated inside the
artery to widen it at the blockage site.
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Solution When y is very small compared with is close to zero and it is safe to
use the approximation

Eq. (2) with 

to obtain

or

(3)

Equation (3) expresses the increase in mass that results from the added velocity y.

Energy Interpretation
In Newtonian physics, is the kinetic energy (KE) of the body, and if we rewrite
Equation (3) in the form

we see that

or

So the change in kinetic energy in going from velocity 0 to velocity y is approxi-
mately equal to the change in mass times the square of the speed of light. Using

we see that a small change in mass can create a large change in
energy.
c L 3 * 108 m>sec,

s¢mdc2 ,
¢sKEd

s¢mdc2
L ¢sKEd .

sm - m0dc2
L

1
2

 m0 y2
=

1
2

 m0 y2
-

1
2

 m0s0d2
= ¢sKEd ,

sm - m0dc2
L

1
2

 m0 y2 ,

s1>2dm0 y2

m L m0 +
1
2

 m0 y2 a 1
c2 b .

m =

m021 - y2>c2
L m0 c1 +

1
2

 ay2

c2 b d = m0 +
1
2

 m0 y2 a 1
c2 b ,

x =

y
c

121 - y2>c2
L 1 +

1
2

 ay2

c2 b

c, y2>c2
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3.8 Linearization and Differentials 231

EXERCISES 3.8

Finding Linearizations
In Exercises 1–4, find the linearization L(x) of ƒ(x) at 

1.

2.

3.

4.

Linearization for Approximation
You want linearizations that will replace the functions in Exercises
5–10 over intervals that include the given points To make yourx0 .

ƒsxd = 23 x, a = -8

ƒsxd = x +

1
x  , a = 1

ƒsxd = 2x2
+ 9, a = -4

ƒsxd = x3
- 2x + 3, a = 2

x = a .

subsequent work as simple as possible, you want to center each lin-
earization not at but at a nearby integer at which the given
function and its derivative are easy to evaluate. What linearization do
you use in each case?

5.

6.

7.

8.

9.

10. ƒsxd =

x
x + 1

, x0 = 1.3

ƒsxd = 23 x, x0 = 8.5

ƒsxd = 1 + x, x0 = 8.1

ƒsxd = 2x2
+ 4x - 3, x0 = -0.9

ƒsxd = x-1, x0 = 0.9

ƒsxd = x2
+ 2x, x0 = 0.1

x = ax0
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Linearizing Trigonometric Functions
In Exercises 11–14, find the linearization of Then graph
the linearization and ƒ together.

11.

12.

13.

14.

The Approximation 
15. Show that the linearization of at is

16. Use the linear approximation to find an ap-
proximation for the function ƒ(x) for values of x near zero.

a. b.

c. d.

e. f.

17. Faster than a calculator Use the approximation 
to estimate the following.

a. b.

18. Find the linearization of How
is it related to the individual linearizations of and sin x
at 

Derivatives in Differential Form
In Exercises 19–30, find dy.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Approximation Error
In Exercises 31–36, each function ƒ(x) changes value when x changes
from Find

a. the change 

b. the value of the estimate and

c. the approximation error ƒ ¢ƒ - dƒ ƒ .

df = ƒ¿sx0d dx ;

¢ƒ = ƒsx0 + dxd - ƒsx0d ;

x0 to x0 + dx .

y = 2 cot a 11x
by = 3 csc s1 - 21xd

y = sec sx2
- 1dy = 4 tan sx3>3d

y = cos sx2dy = sin s51xd

xy2
- 4x3>2

- y = 02y3>2
+ xy - x = 0

y =

21x

3s1 + 1xd
y =

2x

1 + x2

y = x21 - x2y = x3
- 31x

x = 0?
2x + 1

ƒsxd = 2x + 1 + sin x at x = 0.

23 1.009s1.0002d50

1 + kx
s1 + xdk L

ƒsxd =
3B a1 -

1
2 + x

b2

ƒsxd = s4 + 3xd1>3

ƒsxd = 22 + x2ƒsxd =

121 + x

ƒsxd =

2
1 - x

ƒsxd = s1 - xd6

s1 + xdk
L 1 + kx

Lsxd = 1 + kx .
x = 0ƒsxd = s1 + xdk

s1 � xdk
« 1 � kx

ƒsxd = tan x at sad x = 0, sbd x = p>4
ƒsxd = sec x at sad x = 0, sbd x = -p>3
ƒsxd = cos x at sad x = 0, sbd x = -p>2
ƒsxd = sin x at sad x = 0, sbd x = p

ƒ at x = a .

31.

32.

33.

34.

35.

36.

Differential Estimates of Change
In Exercises 37–42, write a differential formula that estimates the
given change in volume or surface area.

37. The change in the volume of a sphere when the ra-
dius changes from to 

38. The change in the volume of a cube when the edge
lengths change from to 

39. The change in the surface area of a cube when the edge
lengths change from to 

40. The change in the lateral surface area of a
right circular cone when the radius changes from to 
and the height does not change

41. The change in the volume of a right circular cylinder
when the radius changes from to and the height does
not change

42. The change in the lateral surface area of a right circular
cylinder when the height changes from to and the ra-
dius does not change

Applications
43. The radius of a circle is increased from 2.00 to 2.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original
area.

44. The diameter of a tree was 10 in. During the following year, the
circumference increased 2 in. About how much did the tree’s di-
ameter increase? The tree’s cross-section area?

45. Estimating volume Estimate the volume of material in a cyl-
indrical shell with height 30 in., radius 6 in., and shell thickness
0.5 in.

h0 + dhh0

S = 2prh

r0 + drr0

V = pr2h

r0 + drr0

S = pr2r2
+ h2

x0 + dxx0

S = 6x2

x0 + dxx0

V = x3

r0 + drr0

V = s4>3dpr3

ƒsxd = x3
- 2x + 3, x0 = 2, dx = 0.1

ƒsxd = x-1, x0 = 0.5, dx = 0.1

ƒsxd = x4, x0 = 1, dx = 0.1

ƒsxd = x3
- x, x0 = 1, dx = 0.1

ƒsxd = 2x2
+ 4x - 3, x0 = -1, dx = 0.1

ƒsxd = x2
+ 2x, x0 = 1, dx = 0.1

x

y

0

dx

x0 � dx

df � f '(x0) dx

� f � f (x0 � dx) � f (x0)

Tangent

(x0, f (x0))

y � f (x)

x0

232 Chapter 3: Differentiation

4100 AWL/Thomas_ch03p147-243  8/19/04  11:17 AM  Page 232

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley



46. Estimating height of a building A surveyor, standing 30 ft
from the base of a building, measures the angle of elevation to the
top of the building to be 75°. How accurately must the angle be
measured for the percentage error in estimating the height of the
building to be less than 4%?

47. Tolerance The height and radius of a right circular cylinder are
equal, so the cylinder’s volume is The volume is to be
calculated with an error of no more than 1% of the true value.
Find approximately the greatest error that can be tolerated in the
measurement of h, expressed as a percentage of h.

48. Tolerance

a. About how accurately must the interior diameter of a 10-m-high
cylindrical storage tank be measured to calculate the tank’s
volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to paint
the side of the tank to within 5% of the true amount?

49. Minting coins A manufacturer contracts to mint coins for the
federal government. How much variation dr in the radius of the
coins can be tolerated if the coins are to weigh within of
their ideal weight? Assume that the thickness does not vary.

50. Sketching the change in a cube’s volume The volume 
of a cube with edges of length x increases by an amount when
x increases by an amount Show with a sketch how to repre-
sent geometrically as the sum of the volumes of

a. three slabs of dimensions x by x by 

b. three bars of dimensions x by by 

c. one cube of dimensions by by 

The differential formula estimates the change in V
with the three slabs.

51. The effect of flight maneuvers on the heart The amount of
work done by the heart’s main pumping chamber, the left ventri-
cle, is given by the equation

where W is the work per unit time, P is the average blood pres-
sure, V is the volume of blood pumped out during the unit of time,

W = PV +

Vdy2

2g
,

dV = 3x2 dx

¢x .¢x¢x

¢x¢x

¢x

¢V
¢x .

¢V
V = x3

1>1000

V = ph3 .

6 in.

0.5 in.

30 in.

(“delta”) is the weight density of the blood, y is the average ve-
locity of the exiting blood, and g is the acceleration of gravity.

When and y remain constant, W becomes a function
of g, and the equation takes the simplified form

As a member of NASA’s medical team, you want to know how sen-
sitive W is to apparent changes in g caused by flight maneuvers,
and this depends on the initial value of g. As part of your investi-
gation, you decide to compare the effect on W of a given change
dg on the moon, where with the effect the same
change dg would have on Earth, where Use the
simplified equation above to find the ratio of to 

52. Measuring acceleration of gravity When the length L of a
clock pendulum is held constant by controlling its temperature,
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change in
g. By keeping track of we can estimate the variation in g
from the equation that relates T, g, and L.

a. With L held constant and g as the independent variable,
calculate dT and use it to answer parts (b) and (c).

b. If g increases, will T increase or decrease? Will a pendulum
clock speed up or slow down? Explain.

c. A clock with a 100-cm pendulum is moved from a location
where to a new location. This increases the
period by Find dg and estimate the value of
g at the new location.

53. The edge of a cube is measured as 10 cm with an error of 1%. The
cube’s volume is to be calculated from this measurement. Esti-
mate the percentage error in the volume calculation.

54. About how accurately should you measure the side of a square to
be sure of calculating the area within 2% of its true value?

55. The diameter of a sphere is measured as and the vol-
ume is calculated from this measurement. Estimate the percent-
age error in the volume calculation.

56. Estimate the allowable percentage error in measuring the diameter D
of a sphere if the volume is to be calculated correctly to within 3%.

57. (Continuation of Example 7.) Show that a 5% error in measuring t
will cause about a 10% error in calculating s from the equation

58. (Continuation of Example 8.) By what percentage should r be in-
creased to increase V by 50%?

Theory and Examples
59. Show that the approximation of by its linearization at

the origin must improve as by showing that

lim
x:0

 
21 + x

1 + sx>2d
= 1.

x : 0
21 + x

s = 16t2 .

100 ; 1 cm

dT = 0.001 sec .
g = 980 cm>sec2

T = 2psL>gd1>2¢T ,

dWEarth .dWmoon

g = 32 ft>sec2 .
g = 5.2 ft>sec2 ,

W = a +

b
g   sa, b constantd .

P, V, d ,

d
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60. Show that the approximation of tan x by its linearization at the
origin must improve as by showing that

61. The linearization is the best linear approximation (This is
why we use the linearization.) Suppose that is differen-
tiable at and that is a linear function
in which m and c are constants. If the error 
were small enough near we might think of using g as a
linear approximation of ƒ instead of the linearization 

Show that if we impose on g the conditions

1. The approximation error is zero at 

2.

then Thus, the linearization L(x)
gives the only linear approximation whose error is both zero at

and negligible in comparison with 

62. Quadratic approximations

a. Let be a quadratic
approximation to ƒ(x) at with the properties:

i.

ii.

iii.

Determine the coefficients and 

b. Find the quadratic approximation to at

c. Graph and its quadratic approximation at
Then zoom in on the two graphs at the point (0, 1).

Comment on what you see.

d. Find the quadratic approximation to at 
Graph g and its quadratic approximation together. Comment
on what you see.

e. Find the quadratic approximation to at
Graph h and its quadratic approximation together.

Comment on what you see.

f. What are the linearizations of ƒ, g, and h at the respective
points in parts (b), (d), and (e)?

x = 0.
hsxd = 21 + x

x = 1.gsxd = 1>x
x = 0.

ƒsxd = 1>s1 - xd
x = 0.

ƒsxd = 1>s1 - xd
b2 .b0 , b1 ,

Q–sad = ƒ–sad
Q¿sad = ƒ¿sad
Qsad = ƒsad

x = a
Qsxd = b0 + b1sx - ad + b2sx - ad2

x
a

y � f (x)

(a, f (a))

The linearization, L(x):
y � f (a) � f '(a)(x � a)

Some other linear
approximation, g(x):
y � m(x � a) � c

x - a .x = a

g sxd = ƒsad + ƒ¿sadsx - ad .

lim
x:a

  
Esxd

x - a = 0

x = a .Esad = 0

ƒsad + ƒ¿sadsx - ad .
Lsxd =

x = a ,
Esxd = ƒsxd - g sxd

g sxd = msx - ad + cx = a
y = ƒsxd

lim
x:0

 
tan x

x = 1.

x : 0
63. Reading derivatives from graphs The idea that differentiable

curves flatten out when magnified can be used to estimate the val-
ues of the derivatives of functions at particular points. We magnify
the curve until the portion we see looks like a straight line through
the point in question, and then we use the screen’s coordinate grid
to read the slope of the curve as the slope of the line it resembles.

a. To see how the process works, try it first with the function
The slope you read should be 2.

b. Then try it with the curve 
�1. In each case, compare your estimate of the derivative
with the value of at the point. What pattern do you see?
Test it with other values of x. Chapter 7 will explain what is
going on.

64. Suppose that the graph of a differentiable function ƒ(x) has a hor-
izontal tangent at Can anything be said about the lin-
earization of ƒ at Give reasons for your answer.

65. To what relative speed should a body at rest be accelerated to in-
crease its mass by 1%?

66. Repeated root-taking

a. Enter 2 in your calculator and take successive square roots by
pressing the square root key repeatedly (or raising the
displayed number repeatedly to the 0.5 power). What pattern
do you see emerging? Explain what is going on. What
happens if you take successive tenth roots instead?

b. Repeat the procedure with 0.5 in place of 2 as the original
entry. What happens now? Can you use any positive number x
in place of 2? Explain what is going on.

COMPUTER EXPLORATIONS

Comparing Functions with Their Linearizations
In Exercises 67–70, use a CAS to estimate the magnitude of the error
in using the linearization in place of the function over a specified in-
terval I. Perform the following steps:

a. Plot the function ƒ over I.

b. Find the linearization L of the function at the point a.

c. Plot ƒ and L together on a single graph.

d. Plot the absolute error and find its maximum
value.

e. From your graph in part (d), estimate as large a as you can,
satisfying

for Then check graphically to see if your
holds true.

67.

68.

69.

70. ƒsxd = 1x - sin x, [0, 2p], a = 2

ƒsxd = x2>3sx - 2d, [-2, 3], a = 2

ƒsxd =

x - 1
4x2

+ 1
, c- 3

4
, 1 d , a =

1
2

ƒsxd = x3
+ x2

- 2x, [-1, 2], a = 1

d-estimate
P = 0.5, 0.1, and 0.01 .

ƒ x - a ƒ 6 d Q ƒ ƒsxd - Lsxd ƒ 6 P

d 7 0

ƒ ƒsxd - Lsxd ƒ  over I

x = a?
x = a .

ex

y = ex at x = 1, x = 0, and x =

y = x2 at x = 1.
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Chapter 3 235

Chapter 3 Questions to Guide Your Review

1. What is the derivative of a function ƒ? How is its domain related
to the domain of ƒ? Give examples.

2. What role does the derivative play in defining slopes, tangents,
and rates of change?

3. How can you sometimes graph the derivative of a function when
all you have is a table of the function’s values?

4. What does it mean for a function to be differentiable on an open
interval? On a closed interval?

5. How are derivatives and one-sided derivatives related?

6. Describe geometrically when a function typically does not have a
derivative at a point.

7. How is a function’s differentiability at a point related to its conti-
nuity there, if at all?

8. Could the unit step function

possibly be the derivative of some other function on 
Explain.

9. What rules do you know for calculating derivatives? Give some
examples.

10. Explain how the three formulas

a.

b.

c.

enable us to differentiate any polynomial.

11. What formula do we need, in addition to the three listed in Ques-
tion 10, to differentiate rational functions?

12. What is a second derivative? A third derivative? How many deriv-
atives do the functions you know have? Give examples.

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

d
dx

 scud = c 
du
dx

d
dx

 sxnd = nxn - 1

[-1, 1]?

Usxd = e0, x 6 0

1, x Ú 0

13. What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.

14. How do derivatives arise in the study of motion? What can you
learn about a body’s motion along a line by examining the deriva-
tives of the body’s position function? Give examples.

15. How can derivatives arise in economics?

16. Give examples of still other applications of derivatives.

17. What do the limits and 
have to do with the derivatives of the sine and cosine functions?
What are the derivatives of these functions?

18. Once you know the derivatives of sin x and cos x, how can you
find the derivatives of tan x, cot x, sec x, and csc x? What are the
derivatives of these functions?

19. At what points are the six basic trigonometric functions continu-
ous? How do you know?

20. What is the rule for calculating the derivative of a composite of
two differentiable functions? How is such a derivative evaluated?
Give examples.

21. What is the formula for the slope of a parametrized curve
When does the formula apply? When can

you expect to be able to find as well? Give examples.

22. If u is a differentiable function of x, how do you find if
n is an integer? If n is a rational number? Give examples.

23. What is implicit differentiation? When do you need it? Give ex-
amples.

24. How do related rates problems arise? Give examples.

25. Outline a strategy for solving related rates problems. Illustrate
with an example.

26. What is the linearization L(x) of a function ƒ(x) at a point 
What is required of ƒ at a for the linearization to exist? How are
linearizations used? Give examples.

27. If x moves from a to a nearby value how do you estimate
the corresponding change in the value of a differentiable function
ƒ(x)? How do you estimate the relative change? The percentage
change? Give an example.

a + dx ,

x = a?

sd>dxdsund
d2y>dx2

x = ƒstd, y = g std?
dy>dx

limh:0 sscos h - 1d>hdlimh:0 sssin hd>hd
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Chapter 3 Practice Exercises

Derivatives of Functions
Find the derivatives of the functions in Exercises 1-40.

1. 2.

3. 4. y = x7
+ 27x -

1
p + 1

y = x3
- 3sx2

+ p2d

y = 3 - 0.7x3
+ 0.3x7y = x5

- 0.125x2
+ 0.25x

5. 6.

7. 8.

9. 10. s =

11t - 1
s =

1t

1 + 1t

y = a-1 -

csc u

2
-

u2

4
b2

y = su2
+ sec u + 1d3

y = s2x - 5ds4 - xd-1y = sx + 1d2sx2
+ 2xd
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11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Implicit Differentiation
In Exercises 41–48, find .

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49 and 50, find .

49. 50.

In Exercises 51 and 52, find .

51. 52.

53. Find by implicit differentiation:

a. b.

54. a. By differentiating implicitly, show that

b. Then show that 

Numerical Values of Derivatives
55. Suppose that functions ƒ(x) and g(x) and their first derivatives

have the following values at and x = 1.x = 0

d2y>dx2
= -1>y3 .

dy>dx = x>y .
x2

- y2
= 1

y2
= 1 -

2
xx3

+ y3
= 1

d2y>dx2

2rs - r - s + s2
= -3r cos 2s + sin2 s = p

dr>ds

q = s5p2
+ 2pd-3>2p3

+ 4pq - 3q2
= 2

dp>dq

y2
= A1 + x

1 - x
y2

=

x
x + 1

x2y2
= 11xy = 1

5x4>5
+ 10y6>5

= 15x3
+ 4xy - 3y4>3

= 2x

x2
+ xy + y2

- 5x = 2xy + 2x + 3y = 1

dy>dx

y = s3 + cos3 3xd-1>3y =

3

s5x2
+ sin 2xd3>2

y = 20s3x - 4d1>4s3x - 4d-1>5y = s2x + 1d22x + 1

r = a1 + sin u

1 - cos u
b2

r = a sin u

cos u - 1
b2

y = 4x2x + 1xy = Bx2
+ x

x2

y = a 21x

21x + 1
b2

y = a 1x
1 + x

b2

s =

-1
15s15t - 1d3s = a 4t

t + 1
b-2

y = x-2 sin2 sx3dy = x2 sin2 s2x2d
y = x2 cot 5xy = 5 cot x2

y = 1x csc sx + 1d3y = x-1>2 sec s2xd2

y = 21x sin 1xy =

1
2

 x2 csc 
2
x

r = sin Au + 2u + 1 Br = sin 22u

r = 2u2cos ur = 22u sin u

s = csc5 s1 - t + 3t2ds = ssec t + tan td5

s = cot3 a2t bs = cos4 s1 - 2td

y =

1
sin2 x

-

2
sin x

y = 2 tan2 x - sec2 x x ƒ(x) g (x) ƒ�(x) g�(x)

0 1 1
1 3 5

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

g.

56. Suppose that the function ƒ(x) and its first derivative have the fol-
lowing values at and 

x ƒ(x) ƒ�(x)

0 9
1

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

57. Find the value of at if and 

58. Find the value of at if and 

59. Find the value of at if and

60. Find the value of at if and

61. If find the value of at the point (0, 1).

62. If find at the point (8, 8).

Derivative Definition
In Exercises 63 and 64, find the derivative using the definition.

63. 64.

65. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

x = 0?

x = 0?

ƒsxd = e x2, -1 … x 6 0

-x2, 0 … x … 1.

g sxd = 2x2
+ 1ƒstd =

1
2t + 1

d2y>dx2x1>3
+ y1>3

= 4,

d2y>dx2y3
+ y = 2 cos x ,

u2t + u = 1.
r = su2

+ 7d1>3t = 0dr>dt

r = 8 sin ss + p>6d .
w = sin A1r - 2 Bs = 0dw>ds

su2
+ 2ud1>3 .

t =s = t2
+ 5tu = 2ds>du

x = t2
+ p .y = 3 sin 2xt = 0dy>dt

10 sin apx
2
b  ƒ 2sxd, x = 1

ƒsxd
2 + cos x

 , x = 0

ƒs1 - 5 tan xd, x = 0ƒs1xd, x = 1

2ƒsxd, x = 01x ƒsxd, x = 1

1>5-3
-2

x = 1.x = 0

ƒsx + g sxdd, x = 0

sx + ƒsxdd3>2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
, x = 1

ƒsxdg2sxd, x = 06ƒsxd - g sxd, x = 1

-41>2
1>2-3
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66. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

67. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

68. For what value or values of the constant m, if any, is

a. continuous at 

b. differentiable at 

Give reasons for your answers.

Slopes, Tangents, and Normals
69. Tangents with specified slope Are there any points on the

curve where the slope is If so,
find them.

70. Tangents with specified slope Are there any points on the
curve where the slope is 3? If so, find them.

71. Horizontal tangents Find the points on the curve 
where the tangent is parallel to the x-

axis.

72. Tangent intercepts Find the x- and y-intercepts of the line that
is tangent to the curve at the point 

73. Tangents perpendicular or parallel to lines Find the points on
the curve where the tangent is

a. perpendicular to the line 

b. parallel to the line 

74. Intersecting tangents Show that the tangents to the curve
at and intersect at right angles.

75. Normals parallel to a line Find the points on the curve
where the normal is parallel to the

line Sketch the curve and normals together, labeling
each with its equation.

76. Tangent and normal lines Find equations for the tangent and
normal to the curve at the point Sketch
the curve, tangent, and normal together, labeling each with its
equation.

sp>2, 1d .y = 1 + cos x

y = -x>2.
y = tan x, -p>2 6 x 6 p>2,

x = -px = py = sp sin xd>x
y = 22 - 12x .

y = 1 - sx>24d .

y = 2x3
- 3x2

- 12x + 20

s -2, -8d .y = x3

2x3
- 3x2

- 12x + 20
y =

y = x - 1>s2xd

-3>2?y = sx>2d + 1>s2x - 4d

x = 0?

x = 0?

ƒsxd = e  sin 2x, x … 0

mx, x 7 0

x = 1?

x = 1?

ƒsxd = e x, 0 … x … 1

2 - x, 1 6 x … 2.

x = 0?

x = 0?

ƒsxd = e x, -1 … x 6 0

tan x,   0 … x … p>4.

77. Tangent parabola The parabola is to be tangent
to the line Find C.

78. Slope of tangent Show that the tangent to the curve at
any point meets the curve again at a point where the slope
is four times the slope at 

79. Tangent curve For what value of c is the curve 
tangent to the line through the points 

80. Normal to a circle Show that the normal line at any point of the
circle passes through the origin.

Tangents and Normals to Implicitly
Defined Curves
In Exercises 81–86, find equations for the lines that are tangent and
normal to the curve at the given point.

81.

82.

83.

84.

85.

86.

87. Find the slope of the curve at the points (1, 1)
and 

88. The graph shown suggests that the curve 
might have horizontal tangents at the x-axis. Does it? Give rea-
sons for your answer.

Tangents to Parametrized Curves
In Exercises 89 and 90, find an equation for the line in the xy-plane
that is tangent to the curve at the point corresponding to the given
value of t. Also, find the value of at this point.

89.

90.

Analyzing Graphs
Each of the figures in Exercises 91 and 92 shows two graphs, the
graph of a function together with the graph of its derivative

Which graph is which? How do you know?ƒ¿sxd .
y = ƒsxd

x = 1 + 1>t2, y = 1 - 3>t, t = 2

x = s1>2d tan t, y = s1>2d sec t, t = p>3
d2y>dx2

x

y

0

–1

1
y � sin (x � sin x)

� 2�–2� –�

y = sin sx - sin xd
s1, -1d .

x3y3
+ y2

= x + y

x3>2
+ 2y3>2

= 17, s1, 4d
x + 1xy = 6, s4, 1d
s y - xd2

= 2x + 4, s6, 2d
xy + 2x - 5y = 2, s3, 2d
x3

+ y2
= 2, s1, 1d

x2
+ 2y2

= 9, s1, 2d

x2
+ y2

= a2

s0, 3d and s5, -2d?
y = c>sx + 1d

sa, a3d .
sa, a3d

y = x3

y = x .
y = x2

+ C
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91. 92.

93. Use the following information to graph the function for

i. The graph of ƒ is made of line segments joined end to end.

ii. The graph starts at the point 

iii. The derivative of ƒ, where defined, agrees with the step func-
tion shown here.

94. Repeat Exercise 93, supposing that the graph starts at in-
stead of 

Exercises 95 and 96 are about the graphs in Figure 3.53 (right-hand
column). The graphs in part (a) show the numbers of rabbits and foxes
in a small arctic population. They are plotted as functions of time for
200 days. The number of rabbits increases at first, as the rabbits repro-
duce. But the foxes prey on rabbits and, as the number of foxes in-
creases, the rabbit population levels off and then drops. Figure 3.53b
shows the graph of the derivative of the rabbit population. We made it
by plotting slopes.

95. a. What is the value of the derivative of the rabbit population in
Figure 3.53 when the number of rabbits is largest? Smallest?

b. What is the size of the rabbit population in Figure 3.53 when
its derivative is largest? Smallest (negative value)?

96. In what units should the slopes of the rabbit and fox population
curves be measured?

Trigonometric Limits

97. 98. lim
x:0

 
3x - tan 7x

2x
lim
x:0

  
sin x

2x2
- x

s -1, 2d .
s -1, 0d

x

y

1–1 2

1

–1
3 4 5 6

–2

y � f '(x)

s -1, 2d .

-1 … x … 6.
y = ƒsxd

99. 100.

101.

102.

103. 104.

Show how to extend the functions in Exercises 105 and 106 to be con-
tinuous at the origin.

105. 106.

Related Rates
107. Right circular cylinder The total surface area S of a right cir-

cular cylinder is related to the base radius r and height h by the
equation 

a. How is related to if h is constant?

b. How is related to if r is constant?dh>dtdS>dt

dr>dtdS>dt

S = 2pr2
+ 2prh .

ƒsxd =

tan stan xd
sin ssin xd

g sxd =

tan stan xd
tan x

lim
u:0

 
1 - cos u

u2lim
x:0

  
x sin x

2 - 2 cos x

lim
u:0+

 
1 - 2 cot2 u

5 cot2 u - 7 cot u - 8

lim
u: sp>2d-

 
4 tan2 u + tan u + 1

tan2 u + 5

lim
u:0

 
sin ssin ud
u

lim
r:0

  
sin r

tan 2r
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FIGURE 3.53 Rabbits and foxes in an arctic predator-prey food chain.
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c. How is related to and if neither r nor h is
constant?

d. How is related to if S is constant?

108. Right circular cone The lateral surface area S of a right circu-
lar cone is related to the base radius r and height h by the equa-
tion 

a. How is related to if h is constant?

b. How is related to if r is constant?

c. How is related to and if neither r nor h is
constant?

109. Circle’s changing area The radius of a circle is changing at
the rate of At what rate is the circle’s area chang-
ing when 

110. Cube’s changing edges The volume of a cube is increasing at
the rate of at the instant its edges are 20 cm long.
At what rate are the lengths of the edges changing at that instant?

111. Resistors connected in parallel If two resistors of and 
ohms are connected in parallel in an electric circuit to make an
R-ohm resistor, the value of R can be found from the equation

If is decreasing at the rate of 1 ohm sec and is increasing
at the rate of 0.5 ohm sec, at what rate is R changing when

and 

112. Impedance in a series circuit The impedance Z (ohms) in a
series circuit is related to the resistance R (ohms) and reactance
X (ohms) by the equation If R is increasing at
3 ohms sec and X is decreasing at 2 ohms sec, at what rate is Z
changing when and 

113. Speed of moving particle The coordinates of a particle mov-
ing in the metric xy-plane are differentiable functions of time t
with and How fast is the
particle moving away from the origin as it passes through the
point 

114. Motion of a particle A particle moves along the curve 
in the first quadrant in such a way that its distance from the origin in-
creases at the rate of 11 units per second. Find when 

115. Draining a tank Water drains from the conical tank shown in
the accompanying figure at the rate of 

a. What is the relation between the variables h and r in the figure?

b. How fast is the water level dropping when h = 6 ft?

5 ft3>min.

x = 3.dx>dt

y = x3>2
s3, -4d?

dy>dt = 5 m/sec .dx>dt = 10 m/sec

X = 20 ohms?R = 10 ohms
>>

Z = 2R2
+ X 2 .

R2 = 50 ohms?R1 = 75 ohms
>

R2>R1

�
R

�
R2R1

1
R

=

1
R1

+

1
R2

.

R2R1

1200 cm3>min

r = 10 m?
-2>p m>sec.

dh>dtdr>dtdS>dt

dh>dtdS>dt

dr>dtdS>dt

S = pr2r2
+ h2 .

dh>dtdr>dt

dh>dtdr>dtdS>dt

116. Rotating spool As television cable is pulled from a large spool
to be strung from the telephone poles along a street, it unwinds
from the spool in layers of constant radius (see accompanying
figure). If the truck pulling the cable moves at a steady 6 ft sec
(a touch over 4 mph), use the equation to find how fast
(radians per second) the spool is turning when the layer of radius
1.2 ft is being unwound.

117. Moving searchlight beam The figure shows a boat 1 km off-
shore, sweeping the shore with a searchlight. The light turns at a
constant rate, 

a. How fast is the light moving along the shore when it reaches
point A?

b. How many revolutions per minute is 0.6 rad sec?

118. Points moving on coordinate axes Points A and B move along
the x- and y-axes, respectively, in such a way that the distance r
(meters) along the perpendicular from the origin to the line AB
remains constant. How fast is OA changing, and is it increasing,
or decreasing, when and B is moving toward O at the
rate of 0.3r m sec?>

OB = 2r

1 km
A

x

�

>

du>dt = -0.6 rad/sec.

1.2'

s = ru
>

r

h

3Exit rate: 5 ft3/min

10'

4'
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Linearization
119. Find the linearizations of

a. b.

Graph the curves and linearizations together.

120. We can obtain a useful linear approximation of the function
by combining the approximations

to get

Show that this result is the standard linear approximation of
at 

121. Find the linearization of 

122. Find the linearization of 

Differential Estimates of Change
123. Surface area of a cone Write a formula that estimates the

change that occurs in the lateral surface area of a right circular
cone when the height changes from and the radius
does not change.

(Lateral surface area)

h

r

1
3

V �    �r2h

S � �r�r2 � h2

h0 to h0 + dh

at x = 0.
ƒsxd = 2>s1 - xd + 21 + x - 3.1

ƒsxd = 21 + x + sin x - 0.5 at x = 0.

x = 0.1>s1 + tan xd

1
1 + tan x

L 1 - x .

1
1 + x

L 1 - x and tan x L x

ƒsxd = 1>s1 + tan xd at x = 0

sec x at x = -p>4.tan x at x = -p>4

124. Controlling error

a. How accurately should you measure the edge of a cube to be
reasonably sure of calculating the cube’s surface area with an
error of no more than 2%?

b. Suppose that the edge is measured with the accuracy
required in part (a). About how accurately can the cube’s
volume be calculated from the edge measurement? To find
out, estimate the percentage error in the volume calculation
that might result from using the edge measurement.

125. Compounding error The circumference of the equator of a
sphere is measured as 10 cm with a possible error of 0.4 cm.
This measurement is then used to calculate the radius. The radius
is then used to calculate the surface area and volume of the
sphere. Estimate the percentage errors in the calculated values of

a. the radius.

b. the surface area.

c. the volume.

126. Finding height To find the height of a lamppost (see accom-
panying figure), you stand a 6 ft pole 20 ft from the lamp and
measure the length a of its shadow, finding it to be 15 ft, give or
take an inch. Calculate the height of the lamppost using the
value and estimate the possible error in the result.

h

6 ft

20 ft
a

a = 15
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240 Chapter 3: Differentiation

Chapter 3 Additional and Advanced Exercises

1. An equation like is called an identity because
it holds for all values of An equation like is not an
identity because it holds only for selected values of not all. If
you differentiate both sides of a trigonometric identity in with
respect to the resulting new equation will also be an identity.

Differentiate the following to show that the resulting equa-
tions hold for all 

a.

b. cos 2u = cos2 u - sin2 u

sin 2u = 2 sin u cos u

u .

u ,
u

u ,
sin u = 0.5u .

sin2 u + cos2 u = 1 2. If the identity is differenti-
ated with respect to x, is the resulting equation also an identity? Does
this principle apply to the equation Explain.

3. a. Find values for the constants a, b, and c that will make

satisfy the conditions

ƒs0d = g s0d, ƒ¿s0d = g¿s0d, and ƒ–s0d = g–s0d .

ƒsxd = cos x and g sxd = a + bx + cx2

x2
- 2x - 8 = 0?

sin sx + ad = sin x cos a + cos x sin a
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b. Find values for b and c that will make

satisfy the conditions

c. For the determined values of a, b, and c, what happens for the
third and fourth derivatives of ƒ and g in each of parts (a)
and (b)?

4. Solutions to differential equations

a. Show that and 
(a and b constants) all satisfy the equation

b. How would you modify the functions in part (a) to satisfy the
equation

Generalize this result.

5. An osculating circle Find the values of h, k, and a that make
the circle tangent to the parabola

at the point (1, 2) and that also make the second de-
rivatives have the same value on both curves there. Cir-
cles like this one that are tangent to a curve and have the same
second derivative as the curve at the point of tangency are called
osculating circles (from the Latin osculari, meaning “to kiss”).
We encounter them again in Chapter 13.

6. Marginal revenue A bus will hold 60 people. The number x of
people per trip who use the bus is related to the fare charged
( p dollars) by the law Write an expression
for the total revenue r(x) per trip received by the bus company.
What number of people per trip will make the marginal revenue

equal to zero? What is the corresponding fare? (This fare is
the one that maximizes the revenue, so the bus company should
probably rethink its fare policy.)

7. Industrial production

a. Economists often use the expression “rate of growth” in
relative rather than absolute terms. For example, let 
be the number of people in the labor force at time t in a given
industry. (We treat this function as though it were
differentiable even though it is an integer-valued step
function.)

Let be the average production per person in the
labor force at time t. The total production is then 
If the labor force is growing at the rate of 4% per year

and the production per worker is growing
at the rate of 5% per year find the rate of
growth of the total production, y.

b. Suppose that the labor force in part (a) is decreasing at
the rate of 2% per year while the production per person is
increasing at the rate of 3% per year. Is the total production
increasing, or is it decreasing, and at what rate?

sdy>dt = 0.05yd ,
sdu>dt = 0.04ud

y = uy .
y = g std

u = ƒstd

dr>dx

p = [3 - sx>40d]2 .

d2y>dx2
y = x2

+ 1
sx - hd2

+ s y - kd2
= a2

y– + 4y = 0?

y– + y = 0.

y = a cos x + b sin xy = sin x, y = cos x ,

ƒs0d = g s0d and ƒ¿s0d = g¿s0d .

ƒsxd = sin sx + ad and g sxd = b sin x + c cos x

8. Designing a gondola The designer of a 30-ft-diameter spheri-
cal hot air balloon wants to suspend the gondola 8 ft below the
bottom of the balloon with cables tangent to the surface of the
balloon, as shown. Two of the cables are shown running from the
top edges of the gondola to their points of tangency, 
and How wide should the gondola be?

9. Pisa by parachute The photograph shows Mike McCarthy
parachuting from the top of the Tower of Pisa on August 5, 1988.
Make a rough sketch to show the shape of the graph of his speed
during the jump.

x
0

15 ft

Suspension
cables

Gondola
Width

8 ft

y

x2 � y2 � 225

(12, –9)(–12, –9)

NOT TO SCALE

s12, -9d .
s -12, -9d
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Mike McCarthy of London jumped from the Tower of Pisa and then
opened his parachute in what he said was a world record low-level
parachute jump of 179 ft. (Source: Boston Globe, Aug. 6, 1988.)
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10. Motion of a particle The position at time of a particle
moving along a coordinate line is

a. What is the particle’s starting position 

b. What are the points farthest to the left and right of the origin
reached by the particle?

c. Find the particle’s velocity and acceleration at the points in
part (b).

d. When does the particle first reach the origin? What are its
velocity, speed, and acceleration then?

11. Shooting a paper clip On Earth, you can easily shoot a paper
clip 64 ft straight up into the air with a rubber band. In t sec after
firing, the paper clip is above your hand.

a. How long does it take the paper clip to reach its maximum
height? With what velocity does it leave your hand?

b. On the moon, the same acceleration will send the paper clip
to a height of in t sec. About how long will
it take the paper clip to reach its maximum height, and how
high will it go?

12. Velocities of two particles At time t sec, the positions of two
particles on a coordinate line are 
and When do the particles have the
same velocities?

13. Velocity of a particle A particle of constant mass m moves
along the x-axis. Its velocity y and position x satisfy the equation

where and are constants. Show that whenever 

14. Average and instantaneous velocity

a. Show that if the position x of a moving point is given by a
quadratic function of then the average
velocity over any time interval is equal to the
instantaneous velocity at the midpoint of the time interval.

b. What is the geometric significance of the result in part (a)?

15. Find all values of the constants m and b for which the function

is

a. continuous at 

b. differentiable at 

16. Does the function

ƒsxd = L 1 - cos x
x , x Z 0

0, x = 0

x = p .

x = p .

y = e  sin x, x 6 p

mx + b, x Ú p

[t1, t2]
t, x = At2

+ Bt + C ,

m 
dy
dt

= -kx .

y Z 0,x0k, y0 ,

1
2

 msy2
- y0 

2d =

1
2

 k sx0 
2

- x2d ,

s2 = - t3
+ 9t2

- 12t m.
s1 = 3t3

- 12t2
+ 18t + 5 m

s = 64t - 2.6t2 ft

s = 64t - 16t2 ft

st = 0d?

s = 10 cos st + p>4d .

t Ú 0 have a derivative at Explain.

17. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of ƒ.

18. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of g.

19. Odd differentiable functions Is there anything special about
the derivative of an odd differentiable function of x? Give reasons
for your answer.

20. Even differentiable functions Is there anything special about
the derivative of an even differentiable function of x? Give rea-
sons for your answer.

21. Suppose that the functions ƒ and g are defined throughout an
open interval containing the point that ƒ is differentiable at 
that and that g is continuous at Show that the prod-
uct ƒg is differentiable at This process shows, for example,
that although is not differentiable at the product is
differentiable at 

22. (Continuation of Exercise 21.) Use the result of Exercise 21 to
show that the following functions are differentiable at 

a. b. c.

d.

23. Is the derivative of

continuous at How about the derivative of 
Give reasons for your answers.

24. Suppose that a function ƒ satisfies the following conditions for all
real values of x and y:

i.

ii. where 

Show that the derivative exists at every value of x and that

25. The generalized product rule Use mathematical induction to
prove that if is a finite product of differentiable
functions, then is differentiable on their common domain and

dy

dx
=

du1

dx
 u2

Á un + u1 
du2

dx
Á un +

Á
+ u1 u2

Á un - 1 
dun

dx
.

y
y = u1 u2

Á un

ƒ¿sxd = ƒsxd .
ƒ¿sxd

limx:0 g sxd = 1.ƒsxd = 1 + xg sxd ,

ƒsx + yd = ƒsxd # ƒs yd .

k sxd = xhsxd?x = 0?

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

23 x s1 - cos xdx2>3 sin xƒ x ƒ sin x

x = 0.

x = 0.
x ƒ x ƒx = 0,ƒ x ƒ

x0 .
x0 .ƒsx0d = 0,

x0 ,x0 ,

g sxd = eax + b, x … -1

ax3
+ x + 2b, x 7 -1

ƒsxd = eax, x 6 2

ax2
- bx + 3, x Ú 2

x = 0?
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26. Leibniz’s rule for higher-order derivatives of products Leib-
niz’s rule for higher-order derivatives of products of differentiable
functions says that

a.

b.

c.

The equations in parts (a) and (b) are special cases of the
equation in part (c). Derive the equation in part (c) by
mathematical induction, using

27. The period of a clock pendulum The period T of a clock pen-
dulum (time for one full swing and back) is given by the formula

where T is measured in seconds, 
and L, the length of the pendulum, is measured in feet. Find ap-
proximately

32.2 ft>sec2 ,g =T 2
= 4p2L>g ,

am
k
b + a m

k + 1
b =

m!
k!sm - kd!

+

m!
sk + 1d!sm - k - 1d!

.

 +
Á

+ u 
dny

dxn .

 +

nsn - 1d Á sn - k + 1d
k!

 
dn - ku

dxn - k
 
dky

dxk

dnsuyd
dxn =

dnu
dxn  y + n 

dn - 1u

dxn - 1  
dy
dx

+
Á

d3suyd
dx3 =

d3u

dx3  y + 3 
d2u

dx2  
dy
dx

+ 3 
du
dx

 
d2y

dx2 + u 
d3y

dx3

d2suyd
dx2 =

d2u

dx2  y + 2 
du
dx

 
dy
dx

+ u 
d2y

dx2

a. the length of a clock pendulum whose period is 

b. the change dT in T if the pendulum in part (a) is lengthened
0.01 ft.

c. the amount the clock gains or loses in a day as a result of the
period’s changing by the amount dT found in part (b).

28. The melting ice cube Assume an ice cube retains its cubical
shape as it melts. If we call its edge length s, its volume is 
and its surface area is We assume that V and s are differen-
tiable functions of time t. We assume also that the cube’s volume
decreases at a rate that is proportional to its surface area. (This
latter assumption seems reasonable enough when we think that
the melting takes place at the surface: Changing the amount of
surface changes the amount of ice exposed to melt.) In mathemat-
ical terms,

The minus sign indicates that the volume is decreasing. We as-
sume that the proportionality factor k is constant. (It probably de-
pends on many things, such as the relative humidity of the sur-
rounding air, the air temperature, and the incidence or absence of
sunlight, to name only a few.) Assume a particular set of condi-
tions in which the cube lost 1 4 of its volume during the first
hour, and that the volume is when How long will it take
the ice cube to melt?

t = 0.V0

>

dV
dt

= -k s6s2d, k 7 0.

6s2 .
V = s3

T = 1 sec .
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