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12: FUNCTIONS OF SEVERAL
VARIABLES

A function of the form y = f(x) is a function of a single variable; given a value
of x, we can find a value y. Even the vector—valued functions of Chapter 11 are
single—variable functions; the input is a single variable though the output is a
vector.

There are many situations where a desired quantity is a function of two or
more variables. Forinstance, wind chill is measured by knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s batting average, one
needs to know the number of hits and the number of at—bats.

This chapter studies multivariable functions, that is, functions with more
than one input.

12.1 Introduction to Multivariable Functions

Definition 12.1.1 Function of Two Variables

Let D be a subset of R2. A function f of two variables is a rule that assigns
each pair (x,y) in D avalue z = f(x,y) in R. D is the domain of f; the set
of all outputs of fis the range.

Example 12.1.1 Understanding a function of two variables
Let z = f(x,y) = x* — y. Evaluate f(1,2), f(2,1), and f(—2, 4); find the domain
and range of f.

SOLUTION Using the definition f(x,y) = x* — y, we have:

f(1,2)=1"-2=-1
f2,1)=22-1=3
f(-2,8) = (-2’ ~4 =0

The domain is not specified, so we take it to be all possible pairs in R? for which
fis defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is R2.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0, —r) = r.) So the range
Rof fisR.



Chapter 12 Functions of Several Variables
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Figure 12.1.1: lllustrating the domain of
f(x,y) in Example 12.1.2.
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Figure 12.1.2: Graphing a function of two
variables.

684

Example 12.1.2 Understanding a function of two variables

2 2
Let f(x,y) = /1 — % - yz Find the domain and range of f.

SOLUTION The domain is all pairs (x, y) allowable as input in f. Because
of the square—root, we need (x,y) such that 0 < 1 — % -
2 2
o<1-> ¥
9 4
2 2
Xy
4+l <
9 + 4 -

The above equation describes an ellipse and its interior as shown in Figure 12.1.1.
We can represent the domain D graphically with the figure; in set notation, we
can write D = {(x,y)| % + yzz <1}

The range is the set of all possible output values. The square—root ensures
that all output is > 0. Since the x and y terms are squared, then subtracted, in-
side the square—root, the largest output value comes at x = 0, y = 0: f(0,0) =
1. Thus the range R is the interval [0, 1].

Graphing Functions of Two Variables

The graph of a function f of two variables is the set of all points (x, y, f(x, y))
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by plotting points, but this has Iimitationls.
X2+y24+1
More points have been plotted than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the function looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 12.1.2b which does a far better job of illustrating
the behavior of f.

While technology is readily available to help us graph functions of two vari-
ables, there is still a paper—and—pencil approach that is useful to understand and
master as it, combined with high—quality graphics, gives one great insight into
the behavior of a function. This technique is known as sketching level curves.

Consider Figure 12.1.2(a) where 25 points have been plotted of f(x, y) =

Level Curves

It may be surprising to find that the problem of representing a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 12.1.3, represent the surface
of Earth by indicating points with the same elevation with contour lines. The

Notes:
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elevations marked are equally spaced; in this example, each thin line indicates
an elevation change in 50ft increments and each thick line indicates a change
of 200ft. When lines are drawn close together, elevation changes rapidly (as
one does not have to travel far to rise 50ft). When lines are far apart, such as
near “Aspen Campground,” elevation changes more gradually as one has to walk
farther to rise 50ft.

Given a function z = f(x,y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = cis a curve in the
x-y plane such that for all points (x, y) on the curve, f(x,y) = c.

When drawing level curves, it isimportant that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevation” is changing.
Examples will help one understand this concept.

Example 12.1.3 Drawing Level Curves

XZ 2
Let f(x,y) = 4/1— — — y—. Find the level curves of ffor c = 0, 0.2, 0.4, 0.6,
9 4

0.8 and 1.
SOLUTION Consider first ¢ = 0. The level curve for ¢ = 0 is the set of
all points (x, y) such that 0 = — % — %. Squaring both sides gives us

x2+
9

N

:1’

an ellipse centered at (0, 0) with horizontal major axis of length 6 and minor axis
of length 4. Thus for any point (x, y) on this curve, f(x,y) = 0.

Now consider the level curve for c = 0.2

2 2
02=4/1-%X ¥
9 4
2 2
004=1-_V
9 4
XZ yZ
X+ — 096
s "3
XZ y2
~1.
864 | 3.84

This is also an ellipse, where a = v/8.64 ~ 2.94 and b = /3.84 ~ 1.96.

Notes:

Introduction to Multivariable Functions

Figure 12.1.3: A topographical map dis-
plays elevation by drawing contour lines,
along with the elevation is constant.

Sample taken from the public domain USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.
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In general, for z = ¢, the level curve is:

c= 1—)(—2—K

9 4

czzl—ﬁ—K

9 4
XZ yZ

4l =1-7
9+4
2 2
=1,

s1—c) " a1-c)

ellipses that are decreasing in size as c increases. A special case is when ¢ = 1;
there the ellipse is just the point (0, 0).

The level curves are shown in Figure 12.1.4(a). Note how the level curves for
¢ = 0and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 12.1.4(b), the curves are drawn on a graph of fin space. Note how
the elevations are evenly spaced. Near the level curves of c = 0and ¢ = 0.2 we
can see that findeed is growing quickly.

Example 12.1.4  Analyzing Level Curves

X
Let f(x,y) = # Find the level curves for z = c.
X2 +yr+1
SOLUTION We begin by setting f(x, y) = c for an arbitrary ¢ and seeing

if algebraic manipulation of the equation reveals anything significant.

xX+y — ¢
X+y24+1

Figure 12.1.4: Graphing the level curves
x+y=c0+y*+1).

in Example 12.1.3.

We recognize this as a circle, though the center and radius are not yet clear. By
completing the square, we can obtain:

i) L N,
2c Y=3%) T2 7

a circle centered at (1/(2c),1/(2c)) with radius \/1/(2¢2) — 1, where |¢| <
1/\/5 The level curves for c = +0.2, +0.4 and +0.6 are sketched in Figure
12.1.5(a). To help illustrate “elevation,” we use thicker lines for c values near 0,
and dashed lines indicate where ¢ < 0.

There is one special level curve, when ¢ = 0. The level curve in this situation
isx+y=0,theliney = —x.

Notes:
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12.1 Introduction to Multivariable Functions

In Figure 12.1.5(b) we see a graph of the surface. Note how the y-axis is
pointing away from the viewer to more closely resemble the orientation of the
level curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = —x without
elevation change, though the level curve does.

Functions of Three Variables
We extend our study of multivariable functions to functions of three vari-

ables. (One can make a function of as many variables as one likes; we limit our
study to three variables.)

Definition 12.1.2 Function of Three Variables

Let D be a subset of R3. A function f of three variables is a rule that
assigns each triple (x, y, z) inDavaluew = f(x,y,z) inR. Dis the domain
of f; the set of all outputs of fis the range.

Note how this definition closely resembles that of Definition 12.1.1.

Example 12.1.5 Understanding a function of three variables
x> +z 4+ 3sin
Let f(x,y,z) = % Evaluate f at the point (3,0,2) and find the
X+2y—z

domain and range of f. Figure 12.1.5: Graphing the level curves
in Example 12.1.4.

3 4+2+3sin0
3+2(0)—-2
As the domain of fis not specified, we take it to be the set of all triples (x, y, 2)
for which f(x, y, z) is defined. As we cannot divide by 0, we find the domain D is

SOLUTION f(3,0,2) =

D={(xy,2)|x+2y—z+#0}.

We recognize that the set of all points in R3 that are not in D form a plane in
space that passes through the origin (with normal vector (1,2, —1)).

We determine the range R is R; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near O we
can let y = 0 and choose z ~ —x?. To get numbers of arbitrarily large magni-
tude, we can let z =~ x + 2y.

Notes:

687



Chapter 12 Functions of Several Variables

Figure 12.1.6: A table of c values and the
corresponding radius r of the spheres of
constant value in Example 12.1.6.
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1.
0.5

0.25
0.125
0.0625

r

0.25

0.35
0.5
0.71
1.
1.41
2.
2.83
4.

Level Surfaces

It is very difficult to produce a meaningful graph of a function of three vari-
ables. A function of one variable is a curve drawn in 2 dimensions; a function of
two variables is a surface drawn in 3 dimensions; a function of three variables is
a hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x,y,2), the level surface at w = c is the surface in space formed by all points

(Xa Y, Z) wheref(x, Y, Z) =

Example 12.1.6 Finding level surfaces
If a point source S is radiating energy, the intensity / at a given point P in space
is inversely proportional to the square of the distance between S and P. That is,

when S = (0,0,0), I(x,y,2) for some constant k.

B k
- x2 +y2 + 22
Let kK = 1; find the level surfaces of /.

SOLUTION We can (mostly) answer this question using “common sense.”
If energy (say, in the form of light) is emanating from the origin, its intensity will
be the same at all points equidistant from the origin. That is, at any point on
the surface of a sphere centered at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathematically. The level surface at | = c is defined by

1
C= ——F-.
X2+y2+22

A small amount of algebra reveals
1
%+ﬁ+£:?

Given an intensity ¢, the level surface | = cis a sphere of radius 1/4/c, centered
at the origin.

Figure 12.1.6 gives a table of the radii of the spheres for given c values. Nor-
mally one would use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 — not much
at all. To again halve the intensity, one moves 0.15, a little more than before.

Note how each time the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes.

In the next section we apply the concepts of limits to functions of two or
more variables.

Notes:



Exercises 12.1

Terms and Concepts

1. Give two examples (other than those given in the text) of
“real world” functions that require more than one input.

2. The graph of a function of two variables is a .

3. Most people are familiar with the concept of level curves in
the context of maps.

4. T/F: Along a level curve, the output of a function does not
change.

5. The analogue of a level curve for functions of three vari-
ables is a level

6. What does it mean when level curves are close together?
Far apart?
Problems

In Exercises 7 — 14, give the domain and range of the multi-
variable function.

7. flx,y) =X +y* +2
8. flx,y) =x+2y

9. f(xvy) =x—2

1
10. f(x,y) = X7 2y
1
WSV = i

12. f(x,y) = sinxcosy

13. f(x,y) = /9 — x> — y?

1
18. f(x,y) =~
fxy) = s S

In Exercises 15 — 22, describe in words and sketch the level
curves for the function and given c values.

15. f(x,y) =3x—2y;c=—2,0,2

16. f(x,y) =x* —y;;c=—1,0,1

17. fix,y) =x—y*;c = —2,0,2

1-—x*—y
18. f(x,y):TZX”;c:—z,o,z
2x — 2y
19. f(X7y) = m,cz _17071
y—x—1
20. f(va) = ———;¢= 73371505153
X

21 flx,y) = VX + 4y, c=1,2,3,4
22. f(x,y) =X +4y’;c=1,2,3,4

In Exercises 23 — 26, give the domain and range of the func-
tions of three variables.

X

23. f()(7 y7z) = m

v
17X27y2722

25. f(x,y,2) = \/z—x2 +y?

26. f(x,y,z) = 2> sinxcosy

24. f(x,y,2) =

In Exercises 27 — 30, describe the level surfaces of the given
functions of three variables.

27. f(x,y,2) =X +y* +2°
28. f(x,y,z) =z — x4y

X2+y2

z

29. f(x,y,2) =

z
30. f(x,y,2) = X—y

31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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Figure 12.2.1: |Illustrating open and
closed sets in the x-y plane.
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12.2 Limits and Continuity of Multivariable Functions

We continue with the pattern we have established in this text: after defining a
new kind of function, we apply calculus ideas to it. The previous section defined
functions of two and three variables; this section investigates what it means for
these functions to be “continuous.”

We begin with a series of definitions. We are used to “open intervals” such
as (1,3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 < x < 3.
We need analogous definitions for open and closed sets in the x-y plane.

Definition 12.2.1 Open Disk, Boundary and Interior Points,

Open and Closed Sets, Bounded Sets

An open disk B in R? centered at (xo, yo) with radius r is the set of all
points (x,y) such that v/(x — x0) + (y — yo)? < r.

Let S be a set of points in R2. A point P in R? is a boundary point of S
if all open disks centered at P contain both points in S and points notin S.

A point Pin Sis an interior point of S if there is an open disk centered at
P that contains only pointsin S.

A set S is open if every point in S is an interior point.
A set Sis closed if it contains all of its boundary points.
A set S is bounded if there is an M > 0 such that the open disk, cen-

tered at the origin with radius M, contains S. A set that is not bounded
is unbounded.

Figure 12.2.1 shows several sets in the x-y plane. In each set, point P, lies on
the boundary of the set as all open disks centered there contain both points in,
and not in, the set. In contrast, point P, is an interior point for there is an open
disk centered there that lies entirely within the set.

The set depicted in Figure 12.2.1(a) is a closed set as it contains all of its
boundary points. The set in (b) is open, for all of its points are interior points
(or, equivalently, it does not contain any of its boundary points). The set in (c)
is neither open nor closed as it contains some of its boundary points.

Notes:
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Example 12.2.1 Determining open/closed, bounded/unbounded

Determine if the domain of the function f(x,y) = /1 —x*/9 — y2/4 is open,

closed, or neither, and if it is bounded.

SOLUTION This domain of this function was found in Example 12.1.2 to
be D = {(x,y) | % + % < 1}, the region bounded by the ellipse % + % =1
Since the region includes the boundary (indicated by the use of “<”), the set
contains all of its boundary points and hence is closed. The region is bounded
as a disk of radius 4, centered at the origin, contains D.

Example 12.2.2 Determining open/closed, bounded/unbounded
Determine if the domain of f(x,y) = ﬁ is open, closed, or neither.

SOLUTION As we cannot divide by 0, we find the domain to be D =
{(x,y) | x —y # 0}. In other words, the domain is the set of all points (x, y) not
on the liney = x.

The domain is sketched in Figure 12.2.2. Note how we can draw an open
disk around any point in the domain that lies entirely inside the domain, and
also note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded.

Limits

Recall a pseudo—definition of the limit of a function of one variable: “lim f(x) =
X—C

L” means that if x is “really close” to ¢, then f(x) is “really close” to L. A similar
pseudo—definition holds for functions of two variables. We’'ll say that

“ lim  fix,y)=1L"
(x,y)—=(x0,%0) (9)

means “if the point (x, y) is really close to the point (xo, o), then f(x, y) is really
close to L.” The formal definition is given below.

Definition 12.2.2 Limit of a Function of Two Variables

Let S be a set containing P = (xo, ¥o) Where every open disk centered at
P contains points in S other than P, let f be a function of two variables
defined on S, except possibly at P, and let L be a real number. The limit
of f(x,y) as (x,y) approaches (xo, yo) is L, denoted

lim x,y) =1L,
(X,y)—>(Xo,yo)f( Y)

means that given any ¢ > 0, there exists 0 > 0 such that for all (x, y) in
S, where (x,y) # (xo, ¥o), if (x,y) is in the open disk centered at (xo, yo)
with radius ¢, then |f(x,y) — L| < e.

Notes:

Figure 12.2.2: Sketching the domain of
the function in Example 12.2.2.

Note: While our first limit definition was
defined over an open interval, we now
define limits over a set S in the plane
(where S does not have to be open). As
planar sets can be far more complicated
than intervals, our definition adds the re-
striction “. .. where every open disk cen-
tered at P contains points in S other than
P In this text, all sets we’ll consider will
satisfy this condition and we won’t bother
to check; itisincluded in the definition for
completeness.
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(X07 Yo, L)

(X07y07 O)

Figure 12.2.3: lllustrating the definition
of a limit. The open disk in the x-y plane
has radius ¢. Let (x, y) be any point in this
disk; f(x, y) is within € of L.
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The concept behind Definition 12.2.2 is sketched in Figure 12.2.3. Given ¢ >
0, find § > 0 such that if (x, y) is any point in the open disk centered at (xo, yo)
in the x-y plane with radius §, then f(x, y) should be within ¢ of L.

Computing limits using this definition is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Theorem 12.2.1 Basic Limit Properties of Functions of Two

Variables
Let b, xo, yo, L and K be real numbers, let n be a positive integer, and let
fand g be functions with the following limits:

lim
(%,y) = (X0,¥0)

lim and

(%,y)— (x0,¥0)

flxy) =1L g(x,y) =K.

The following limits hold.

lim b=b»b

(va)*)(x(lvyﬂ)

1. Constants:

lim
(x,y) = (x0,¥0)

lim

2. ldentity
(%,y) = (Xo0,¥0)

X = Xg; Y =Yo

lim  (f(x,y) £a(x,y)) =L+K

3. Sums/Differences:
(%)= (x0,¥0)
lim

4. Scalar Multiples:
(x,y)—(x0,¥0)

bf(Xay) = bL

5. Products: lim  flxy)-g(xy) =LK
(va)*)(XOﬂyO)

6. Quotients: lim  f(x,y)/g9(x,y) = L/K, (K # 0)
(X,y)%(Xo,yo)

7. Powers: lim  fO,y)"=L"

(%)= (x0,y0)

This theorem, combined with Theorems 1.3.2 and 1.3.3 of Section 1.3, al-
lows us to evaluate many limits.

Example 12.2.3 Evaluating a limit
Evaluate the following limits:

3xy
m
(xy)—(0,0) X2 4 y?

) y
1. lim (f + cos(x ) 2.
(xy)—(1,m) \X 0)

Notes:
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SOLUTION

1. The aforementioned theorems allow us to simply evaluate y/x + cos(xy)
when x = 1 and y = 7. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim (y + cos(x: )) T+ cos
y . .
oy)—=(1,m) \X y 1

=7 —1.

2. We attempt to evaluate the limit by substituting 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit.

When dealing with functions of a single variable we also considered one—
sided limits and stated

limf(x) =L if,andonlyif, lim f(x)=L and lim f(x) =L.

X—cC x—ct X—+Cc—
That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direction, the left or the right.

In the plane, there are infinitely many directions from which (x,y) might
approach (xo, ¥o). In fact, we do not have to restrict ourselves to approaching
(xo, yo) from a particular direction, but rather we can approach that point along
a path that is not a straight line. It is possible to arrive at different limiting val-
ues by approaching (xo, o) along different paths. If this happens, we say that

lim  f(x,y) does not exist (this is analogous to the left and right hand limits
(x,y)— (x0,¥0)
of single variable functions not being equal).

Our theorems tell us that we can evaluate most limits quite simply, without
worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiting value is obtained regardless of the path chosen. The case where
the limit does not exist is often easier to deal with, for we can often pick two
paths along which the limit is different.

Example 12.2.4  Showing limits do not exist

1. Show lim 27)/ does not exist by finding the limits along the lines
(69)—(0,0) X* + y2
y = mx.

Notes:
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sin(x:
2. Show lim 09) does not exist by finding the limit along the path
(xy)=(0,0) X+y
y = —sinx.
SOLUTION
. 3xy . ,
1. Evaluating along the lines y = mx means replace all y’s

im
(69)—(0,0) X* + 2
with mx and evaluating the resulting limit:

3x(mx) , 3mx?
im = lim
(xm)—(0,0) X2 + (mx)?  x—=0 x*(m? + 1)
. 3m
= lim
x—=0m?2 +1

~ 3m
S mi4+1

While the limit exists for each choice of m, we get a different limit for each
choice of m. That is, along different lines we get differing limiting values,
meaning the limit does not exist.

2. letf(x,y) = STJ(:;'). We are to show that  lim  f(x,y) does not exist

(x,y)—(0,0)
by finding the limit along the path y = —sinx. First, however, consider
the limits found along the lines y = mx as done above.
y sin (x(mx)) i sin(mx?)
im — = lim ——=%
(x,mx)—(0,0) X + mx x=0 x(m + 1)
sin(mx? 1
— ||m M [
x—0 X m-+1

By applying L'Hopital’s Rule, we can show this limit is 0 except when m =
—1, that is, along the line y = —x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, ( lim  f(x,y) =0.

X.

,¥)—(0,0)
Now consider the limit along the path y = —sinx:
sin ( — xsinx sin ( — xsinx
i Sn(Exsing ) sin(Zxsinyg
(x,— sinx)—(0,0) X —SsIinx x—0 X —sinx

Now apply L'Hdpital’s Rule twice:

cos ( — xsinx)(—sinx — x cos x)

= lim “=0/0"

x—0 1 —cosx ( /o)

i sin ((— xsinx) (— sinx — xcosx)* + cos ( — xsinx) (—2 cos x + X sin x)
= lim

x—0 sinx

= “—2/0” = the limit does not exist.

Notes:
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Step back and consider what we have just discovered. Along any liney =
mx in the domain of the f(x,y), the limit is 0. However, along the path

y = — sinx, which lies in the domain of f(x, y) for all x £ 0, the limit does
not exist. Since the limit is not the same along every path to (0, 0), we say
sin(xy)

———= does not exist.
(xy)—(0,0) X+Yy

Example 12.2.5 Finding a limit
2,,2

X"y . .
Let f(x,y) = .Find lim X, V).
o) =% +y? (x,yH(o,o)f( y)
SOLUTION It is relatively easy to show that along any line y = mx, the

limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply Definition 12.2.2. Let ¢ > 0 be given. We
want to find § > O such thatif \/(x — 0)2 + (y — 0)2 < §, then |f(x,y) — 0| < e.

5 2
Set § < 4/¢/5. Note that y

VX2 4+ y? < 6, thenx? < &%

X2+ y?
Let \/(x — 0)2 + (y — 0)2 = /x2 + y2 < 4. Consider |f(x,y) — O]:

< 5forall (x,y) # (0,0), and that if

|f(x,y) - O| =

522
S
X2+y2
X 24
X2+y2
<65

<t
5

= E&.

Thus if \/(x —0)2+ (y —0)? < & then |[f(x,y) — 0| < &, which is what we
5 2,,2
wanted to show. Thus  lim % =
(xy)—(0,0) X= +y

Continuity

Definition 1.5.1 defines what it means for a function of one variable to be
continuous. In brief, it meant that the graph of the function did not have breaks,
holes, jumps, etc. We define continuity for functions of two variables in a similar
way as we did for functions of one variable.

Notes:
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Definition 12.2.3 Continuous

Let a function f(x, y) be defined on a set S containing the point (xo, yo)-

1. fis continuous at (xo,yo) if  lim  f(x,y) = f(xo0, ¥o)-
(%,y)—(xo0,¥0)

2. fis continuous on S if fis continuous at all points in S. If fis contin-
uous at all points in R?, we say that f is continuous everywhere.

Example 12.2.6 Continuity of a function of two variables

Let f(x,y) = HeT x#0 Is f continuous at (0,0)? Is f continuous
24 cosy x=0" T

everywhere?
SOLUTION To determine if fis continuous at (0, 0), we need to compare
lim  f(x,y) to f(0,0).

i (o,o)f( y) to f(0,0)

Applying the definition of f, we see that f(0,0) = cos0 = 1.
We now consider the limit  lim  f(x,y). Substituting O for x and y in
(x,y)—(0,0)
(cosysinx)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit. )
sinx
Consider two related limits: lim cosy and lim ——. The first
(x,y)—(0,0) (xy)—(0,0) X

limit does not contain x, and since cos y is continuous,

lim cosy=limcosy=cos0=1.
(xy)—(0,0) y—0

The second limit does not contain y. By Theorem 1.3.5 we can say

. sin x . sinx
lim — = lim — = 1.
(xy)—(0,0) X x=0 X

Finally, Theorem 12.2.1 of this section states that we can combine these two
limits as follows:

i cosysinx . sinx
lim ——— = lim (cosy) <>
(x,y)—(0,0) X (x,y)—(0,0) X
. . sinx
:( lim cosy)( lim )
(xy)—(0,0) (xy)—(0,0) X

= (1)(1)
=1.

Notes:
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We have found that  lim oY% _ £(0,0), so f is continuous at
(x,y)—(0,0) X
(0,0).
A similar analysis shows that f is continuous at all points in R?. As long as
x # 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is continuous everywhere. A graph

of fis given in Figure 12.2.4. Notice how it has no breaks, jumps, etc.

The following theorem is very similar to Theorem 1.5.1, giving us ways to
combine continuous functions to create other continuous functions.

Theorem 12.2.2 Properties of Continuous Functions

. Figure 12.2.4: A graph of f(x,y) in Exam-
Let fand g be continuous on a set S, let ¢ be a real number, and let n be ple 12.2.6.

a positive integer. The following functions are continuous on S.

1. Sums/Differences: f+tg

2. Constant Multiples: ¢ - f

3. Products: f-g

4. Quotients: f/a (aslongsasg # 0on S)

5. Powers: f"

6. Roots: \Vf (if nis even then f > 0on S; if nis odd,
then true for all values of fon S.)

7. Compositions: Adjust the definitions of f and g to: Let f be

continuous on S, where the range of fon S is
J, and let g be a single variable function that is
continuous on J. Then g o f, i.e., g(f(x,y)), is
continuous on S.

Example 12.2.7 Establishing continuity of a function
Let f(x,y) = sin(x? cos y). Show f is continuous everywhere.

SOLUTION We will apply both Theorems 1.5.1and 12.2.2. Let f;(x,y) =
x2. Since y is not actually used in the function, and polynomials are continuous
(by Theorem 1.5.1), we conclude f; is continuous everywhere. A similar state-
ment can be made about f>(x,y) = cosy. Part 3 of Theorem 12.2.2 states that
f3 = f1 - f, is continuous everywhere, and Part 7 of the theorem states the
composition of sine with f3 is continuous: that is, sin(f3) = sin(x* cosy) is con-
tinuous everywhere.

Notes:
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Functions of Three Variables

The definitions and theorems given in this section can be extended in a natu-
ral way to definitions and theorems about functions of three (or more) variables.
We cover the key concepts here; some terms from Definitions 12.2.1 and 12.2.3
are not redefined but their analogous meanings should be clear to the reader.

Definition 12.2.4 Open Balls, Limit, Continuous

1. An open ball in R? centered at (xo, Yo, Zo) with radius r is the set of all
points (x,y,z) such that \/(x —x0)2 + (y — y0)2 + (z— 20)2 = r.

2. Let D be a set in R3 containing (X0, Yo, Zo) where every open ball cen-
tered at (xo, Yo, 20) contains points of D other than (xo, yo, 2o), and let
f(x,y,z) be a function of three variables defined on D, except possibly
at (xo, Yo, 20). The limit of f(x,y,z) as (x, y, z) approaches (xo, Yo, Z0) is
L, denoted

lim x,y,2) =L,
(X7y72)_>(xo7y0720)f( Y )
means that given any € > 0, there is a § > 0 such that for all (x,y, z)
in D, (x,y,2) # (xo0,Y0,20), if (x,y,2) is in the open ball centered at
(X0, Y0, 20) with radius ¢, then |f(x,y,2) — L| < e.

3. Letf(x,y,z) be defined on a set D containing (xo, Yo, Zo)- fis continuous
at (xo, Yo, 2o) if lim f(x,y,2) = f(xo, Y0, 20); if fis continuous
(%,y,2) = (X0,¥0,20)
at all points in D, we say f is continuous on D.

These definitions can also be extended naturally to apply to functions of four
or more variables. Theorem 12.2.2 also applies to function of three or more
variables, allowing us to say that the function

eXZ-H’ /y2+22+3

sin(xyz) + 5

flx,y,2) =

is continuous everywhere.

When considering single variable functions, we studied limits, then continu-
ity, then the derivative. In our current study of multivariable functions, we have
studied limits and continuity. In the next section we study derivation, which
takes on a slight twist as we are in a multivarible context.

Notes:



Exercises 12.2

Terms and Concepts

1. Describe in your own words the difference between bound-
ary and interior points of a set.

2. Use your own words to describe (informally) what

lim x,y) = 17 means.
(X,y)—>(1,2)f( y)

3. Give an example of a closed, bounded set.
4. Give an example of a closed, unbounded set.
5. Give an example of a open, bounded set.

6. Give an example of a open, unbounded set.

Problems

In Exercises 7 — 10, a set S is given.

(a) Give one boundary point and one interior point, when
possible, of S.

(b) State whether S is open, closed, or neither.

(c) State whether S is bounded or unbounded.

i o3 )

~N

-5={Mw

o]

CS={(xy) |y #x}
9. S={(x,y) |X +y =1}
10. S= {(x,y)|y > sinx}

In Exercises 11 — 14:
(a) Find the domain D of the given function.
(b) State whether D is an open or closed set.

(c) State whether D is bounded or unbounded.

11. f(x,y) = /9 — x> — y?

12. f(x,y) =y — x*

1
13. f(x,y) = N
X —
14. f(x,y) = ey

In Exercises 15 — 20, a limit is given. Evaluate the limit along
the paths given, then state why these results show the given

limit does not exist.

15.

16.

17.

18.

19.

20.

X —y?

lim
(x,y)—(0,0) X2 + y?

(a) Alongthe pathy = 0.

(b) Along the path x = 0.
Xty
(x,y)—(0,0) X — ¥

(a) Along the pathy = mx.

xy — Y

lim
()= (0,0) ¥2 +x

(a) Along the pathy = mx.
(b) Along the path x = 0.

sr2
lim sin(x*)
(xy)—(0,0) Yy
(a) Along the pathy = mx.
(b) Along the path y = x*.
m x+y—3
=12 x2—1
(a) Alongthe pathy = 2.
(b) Alongthe pathy = x + 1.

sin x

lim
(x,y)—(m,7/2) COSY

(a) Along the path x = 7.

(b) Alongthe pathy = x — /2.
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(b)

Figure 12.3.1: By fixing y = 2, the surface
f(x,y) = x* + 2y* is a curve in space.

Alternate notations for fi(x, y) include:
0 of o0z
af(xa y) ’ a ) a ’

with similar notations for f,(x,y). For
ease of notation, fi(x,y) is often abbre-
viated fy.

and zy,
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12.3 Partial Derivatives

Let y be a function of x. We have studied in great detail the derivative of y with
respect to x, that s, %, which measures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This section begins our investigation into these rates

of change.

Consider the function z = f(x, y) = x> + 2y?, as graphed in Figure 12.3.1(a).
By fixing y = 2, we focus our attention to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x,2) = x* + 8 which is a function of just one variable. We
can take the derivative of z with respect to x along this curve and find equations
of tangent lines, etc.

The key notion to extract from this example is: by treating y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of partial derivatives. We state the formal,
limit—based definition first, then show how to compute these partial derivatives
without directly taking limits.

Definition 12.3.1 Partial Derivative
Let z = f(x, y) be a continuous function on a set S in R2.

1. The partial derivative of f with respect to x is:

o fxthy) = flxy)
fx(xay> —’!I_I':':) h .

2. The partial derivative of f with respect to y is:

o fooy+h) —flixy)
fy(X7 y) - ’lyl_rpo h .

Example 12.3.1 Computing partial derivatives with the limit definition
Let f(x,y) = x?y + 2x + y3. Find f,(x, y) using the limit definition.

Notes:



SOLUTION Using Definition 12.3.1, we have:

. f(X+h,y)*f(X,y)
x\ X, = |
fx.y) h@o h
(x+h)2y+2(x+h)+y>— Py +2x+y?)
=
T h0 h
i X2y + 2xhy + h?y + 2x + 2h + y* — (X2y + 2x + )
h—0 h
__ 2xhy + h’y + 2h
= lim ——————
h—0 h
= lim 2xy + hy + 2
h—0

= 2xy + 2.
We have found fy(x,y) = 2xy + 2.

Example 12.3.1 found a partial derivative using the formal, limit—based def-
inition. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivatives to compute partial derivatives easily. When comput-
ing fx(x,y), we hold y fixed — it does not vary. Therefore we can compute the
derivative with respect to x by treating y as a constant or coefficient.

Justas & (5x2) = 10x, we compute 2 (x2y) = 2xy. Here we are treating y
as a coefficient.

Justas £ (5%) = 0, we compute 2 (y*) = 0. Here we are treating y as a
constant. More examples will help make this clear.

Example 12.3.2 Finding partial derivatives
Find fy(x, y) and f,(x, y) in each of the following.

1. fix,y) =y> + 5y —x+7
2. f(x,y) = cos(xy?) + sinx

3. fix,y) =V V¥ +1

SOLUTION

1. We have f(x,y) = x3y? + 5> — x + 7.
Begin with f,(x, y). Keep y fixed, treating it as a constant or coefficient, as
appropriate:
f(x,y) =334y — 1.

Note how the 5y? and 7 terms go to zero.

Notes:

12.3 Partial Derivatives
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To compute f,(x, y), we hold x fixed:
f,(x,y) = 2X°y + 10y.
Note how the —x and 7 terms go to zero.

2. We have f(x, y) = cos(xy?) + sin x.
Begin with f,(x, y). We need to apply the Chain Rule with the cosine term;
y? is the coefficient of the x-term inside the cosine function.

f(x,y) = —sin(xy*)(y?) + cosx = —y? sin(xy?) + cos x.

To find f,(x,y), note that x is the coefficient of the y? term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

£, (x,y) = —sin(xy?)(2xy) = —2xysin(xy?).

3. We have f(x,y) = eV VX 1.
Beginning with f,(x, y), note how we need to apply the Product Rule.

23 23l _
fil,y) = €7 () Vo + 14V 2 (¢ + 1) Y2 (2x)
XeX2y3
Ny

Note that when finding f, (x, ) we do not have to apply the Product Rule;
since vx* + 1 does ngg contain y, we treat it as fixed and hence becomes
a coefficient of the e*7 term.

f(x,y) = e"z”3(3x2y2)\/x2 11=332e V2 + 1.

= 2xy3e’(2”3 X2+ 1+

We have shown how to compute a partial derivative, but it may still not be
clear what a partial derivative means. Given z = f(x,y), f«(x,y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your location, you might walk up, sharply down, or perhaps not
change elevation at all. This is similar to measuring z,: you are moving only east
(in the “x”-direction) and not north/south at all. Going back to your original lo-
cation, imagine now walking due north (in the “y”-direction). Perhaps walking
due north does not change your elevation at all. This is analogous to z, = 0: z
does not change with respect to y. We can see that z, and z, do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

Notes:



The following example helps us visualize this more.

Example 12.3.3 Evaluating partial derivatives
letz = f(x,y) = —x* — %yz + xy + 10. Find f(2,1) and f,(2, 1) and interpret
their meaning.

SOLUTION We begin by computing fy(x,y) = —2x + y and f,(x,y) =
—y + x. Thus

fx(2,1)=-3 and f,(2,1)=1.

It is also useful to note that f(2,1) = 7.5. What does each of these numbers
mean?

Consider f,(2,1) = —3, along with Figure 12.3.2(a). If one “stands” on the
surface at the point (2, 1,7.5) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is —3.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider f,(2,1) = 1, illustrated in Figure 12.3.2(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Since the magnitude of f, is greater than the magnitude of f, at (2, 1), itis
“steeper” in the x-direction than in the y-direction.

Second Partial Derivatives

Let z = f(x,y). We have learned to find the partial derivatives f,(x,y) and
f,(x,y), which are each functions of xand y. Therefore we can take partial deriva-
tives of them, each with respect to x and y. We define these “second partials”
along with the notation, give examples, then discuss their meaning.

Notes:

12.3 Partial Derivatives

Figure 12.3.2: lllustrating the meaning of
partial derivatives.
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Note: The terms in Definition 12.3.2
all depend on limits, so each definition
comes with the caveat “where the limit
exists.”
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Definition 12.3.2 Second Partial Derivative, Mixed Partial
Derivative

Let z = f(x, y) be continuous on a set S.

1. The second partial derivative of f with respect to x then x is

& (Of\ O B
& <8X> - w - (fx)xffxx

2. The second partial derivative of f with respect to x then y is
o (of 0*f

02 02
Similar definitions hold for #; = fyy and 8)(8fy = fyx-

The second partial derivatives f,, and f,, are mixed partial derivatives.

The notation of second partial derivatives gives some insight into the nota-
tion of the second derivative of a function of a single variable. If y = f(x), then
d2
f"(x) = d—)z/ The “d?y” portion means “take the derivative of y twice,” while

X
“dx®>” means “with respect to x both times.” When we only know of functions of
a single variable, this latter phrase seems silly: there is only one variable to take
the derivative with respect to. Now that we understand functions of multiple
variables, we see the importance of specifying which variables we are referring
to.

Example 12.3.4  Second partial derivatives
For each of the following, find all six first and second partial derivatives. That is,
find
T fyv frocs fyya fxy and fyx .
1. f(x,y) = x3y? + 2xy® + cosx
3
X
2. f(x,y) = y—z

3. f(x,y) = e*sin(x%y)

SOLUTION In each, we give f, and f, immediately and then spend time de-

Notes:




riving the second partial derivatives.
1. f(x,y) = y? + 2xy® + cos x
fx,y) = 3x%y% + 2y —sinx
f(xy) = 2x3y + 6xy2

f(X,y) = (X) = (3x y* +2y* —sinx) = 6xy’ — cosx

fwx,y) = (y) = (9 (2x y + 6xy ) =2 4 12xy

fyx(x y)
3
2. f(x,y) =xy?
3x?
fX(X7y) 7
2 3
on==T5
0 0 ,3x? 6x
fu(x,y) = a(x) = a(yfz) = F
0 0 23
fwbo) =5 (6) =5, (= 3) =&

0 ,3x? 6x>

fXV(X7 ) (X) ay(y )
3] 253

f(xy) = a(y) = 5(7 Xy =-

y
3. f(x,y) = €"sin(xy)

Because the following partial derivatives get rather long, we omit the extra
notation and just give the results. In several cases, multiple applications
of the Product and Chain Rules will be necessary, followed by some basic

combination of like terms.

fu(x,y) = €“sin(x’y) + 2xye* cos(x’y)

f,(x,y) = x*€* cos(x%y)

fx(x,y) = € sin(x’y) + 4xye”* cos(x’y) + 2ye* cos(x’y) —

—sinx) = 6x’y + 6y

5 8

fo(x,y) = 87( x) = y(3X2y +2y3
0 0
By (y)— (2xy+6xy):6x2y+6y2

y) — 2x°ye” sin(x
y) — 2x°ye” sin(x

)=
fwx,y) = — 49*5'”()( y)
fry (X, y) = x*€* cos(x%y) + 2xe* cos(x
Fx(x,y) = x*€* cos(x’y) + 2xe* cos(x
Notes:

12.3 Partial Derivatives

705



Chapter 12 Functions of Several Variables

706

Notice how in each of the three functions in Example 12.3.4, f,, = f,x. Due
to the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

Theorem 12.3.1 Mixed Partial Derivatives

Let f be defined such that f,, and f,, are continuous on a set S. Then for
each point (x,y) in S, fi,(x,¥) = fix(x,y).

Finding f,, and f,, independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second Partial Derivatives

Now that we know how to find second partials, we investigate what they tell
us.

Again we refer back to a function y = f(x) of a single variable. The second
derivative of fis “the derivative of the derivative,” or “the rate of change of the
rate of change.” The second derivative measures how much the derivative is
changing. If f”/ (x) < 0, then the derivative is getting smaller (so the graph of fis
concave down); if f”/(x) > 0, then the derivative is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about f, and f,,
as could be made about f”/(x) above. When taking derivatives with respect to
x twice, we measure how much f, changes with respect to x. If f(x,y) < 0,
it means that as x increases, f, decreases, and the graph of f will be concave
down in the x-direction. Using the analogy of standing in the rolling meadow
used earlier in this section, f,, measures whether one’s path is concave up/down
when walking due east.

Similarly, f,, measures the concavity in the y-direction. If f,,(x,y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direction. Appealing to the rolling meadow analogy again, f,, measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed partials f,, and f,x. The mixed partial f,, mea-
sures how much f, changes with respect to y. Once again using the rolling meadow
analogy, f, measures the slope if one walks due east. Looking east, begin walk-
ing north (side—stepping). Is the path towards the east getting steeper? If so,
fy > 0. Is the path towards the east not changing in steepness? If so, then
fry = 0. Asimilar thing can be said about f,,: consider the steepness of paths
heading north while side—stepping to the east.

The following example examines these ideas with concrete numbers and

Notes:



graphs.

Example 12.3.5 Understanding second partial derivatives
Let z = x> — y? + xy. Evaluate the 6 first and second partial derivatives at
(—=1/2,1/2) and interpret what each of these numbers mean.

SOLUTION We find that:

fX(Xa y) - 2X+y1 fy(Xa y) = 72y+xl .fXX(va) = 21 fyy(Xa y) =-2 and
fiy(x,¥) = fx(x,y) = 1. Thus at (—1/2,1/2) we have

£(=1/2,1/2) = -1/2,  £,(-1/2,1/2) = =3/2.

The slope of the tangent line at (—1/2,1/2, —1/4) in the direction of x is —1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be —1/2. The slope of the tangent line at this point in the direction
of yis —3/2: if one moves from this point parallel to the y-axis, the instantaneous
rate of change will be —3 /2. These tangents lines are graphed in Figure 12.3.3(a)
and (b), respectively, where the tangent lines are drawn in a solid line.

Now consider only Figure 12.3.3(a). Three directed tangent lines are drawn
(two are dashed), each in the direction of x; that is, each has a slope determined
by f,. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all negative, getting closer to 0 means the slopes are increasing. The
slopes given by f are increasing as y increases, meaning f,, must be positive.

Since f, = f,x, We also expect f, to increase as x increases. Consider Figure
12.3.3(b) where again three directed tangent lines are drawn, this time each
in the direction of y with slopes determined by f,. As x increases, the slopes
become less steep (closer to 0). Since these are negative slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of f,, f,, and f,, = fx. We now
interpret fi and f,,. In Figure 12.3.3(a), we see a curve drawn where x is held
constant at x = —1/2: only y varies. This curve is clearly concave down, corre-
sponding to the fact that f,, < 0. In part (b) of the figure, we see a similar curve
where y is constant and only x varies. This curve is concave up, corresponding
to the fact that f,, > 0.

Partial Derivatives and Functions of Three Variables

The concepts underlying partial derivatives can be easily extend to more
than two variables. We give some definitions and examples in the case of three
variables and trust the reader can extend these definitions to more variables if
needed.

Notes:

12.3 Partial Derivatives

(b)

Figure 12.3.3: Understanding the second
partial derivatives in Example 12.3.5.
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Definition 12.3.3 Partial Derivatives with Three Variables

Let w = f(x,y, z) be a continuous function on a set D in R3.
The partial derivative of f with respect to x is:
f(X+ h,y,Z) _f(Xayaz)

= lim .
h—0 h

fx(x7 Y, z)

Similar definitions hold for f,(x, y, z) and f,(x, y, z).

By taking partial derivatives of partial derivatives, we can find second partial
derivatives of f with respect to z then y, for instance, just as before.

Example 12.3.6  Partial derivatives of functions of three variables
For each of the following, find £, f,, f2, fxz fyzr @and fo.
1 f(X7 Y, Z) = X2y324 + X2y2 + x323 + y4Z4

2. f(x,y,2) = xsin(yz)

SOLUTION
1. fi = 2xy32% + 2xy? + 3x%2%;  f, = 3x%y?2* + 2%y + 4y32%;
f, = &Cy32 + 332 + 4y*B3;  f, = 8xy323 4 9x 2
frr = 123y°22 + 16y°2%;  f,, = 12x%y32% + 6x°z + 12y°22
2. fy=sin(yz); f, =xzcos(yz); f, = xycos(yz);
fie =ycos(yz); fy, = xcos(yz) — xyzsin(yz); fo, = —xy?sin(xy)

Higher Order Partial Derivatives

We can continue taking partial derivatives of partial derivatives of partial
derivatives of ...; we do not have to stop with second partial derivatives. These
higher order partial derivatives do not have a tidy graphical interpretation; nev-
ertheless they are not hard to compute and worthy of some practice.

We do not formally define each higher order derivative, but rather give just
a few examples of the notation.

a (0 (0
fxyx(X7 y) = a (ay <a£>> and

o (0 [0
fxyz(X7 yaz) = & (ay <8§:>) .

Notes:
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Example 12.3.7 Higher order partial derivatives

1. Letf(x,y) = x*y? + sin(xy). Find fyu, and fx.

2. Letf(x,y,z) = x*€¥ + cos(z). Find fy,.

SOLUTION

1. To find f,, we first find fy, then fy,, then fy,:

fio=2xy> +ycos(xy)  fx = 2y — y*sin(xy)
foy = 4y — 2ysin(xy) — xy* cos(xy).

To find f,x, we first find f,, then f,,, then f:

fy = 2x*y + xcos(xy) fyx = 4xy + cos(xy) — xy sin(xy)
fpx = 4y — ysin(xy) — (ysin(xy) + xy* cos(xy))
= 4y — 2ysin(xy) — xy? cos(xy).

Note how fy = fyxx-

2. To find fyy,, we find f,, then £y, then £y,

fi =372eY +x°yeY  f, =33eY + e + x'ye? = 4de? + x'ye”
fxyz =0.

In the previous example we saw that f,,, = f,x; this is not a coincidence.
While we do not state this as a formal theorem, as long as each partial derivative
is continuous, it does not matter the order in which the partial derivatives are
taken. For instance, fuy = fiyx = fyxx-

This can be useful at times. Had we known this, the second part of Example
12.3.7 would have been much simpler to compute. Instead of computing f,,
in the x, y then z orders, we could have applied the z, then x then y order (as
fryz = fay)- Itis easy to see that f, = —sinz; then f,, and f,, are clearly O as f,
does not contain an x or y.

Notes:
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A brief review of this section: partial derivatives measure the instantaneous
rate of change of a multivariable function with respect to one variable. With
z = f(x,y), the partial derivatives f, and f, measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respectively. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if we move in the direction given by the vector (2,1)? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of Section 12.6. First, we need to define what it means for a function
of two variables to be differentiable.

Notes:



Exercises 12.3

Terms and Concepts

1. What is the difference between a constant and a coeffi-
cient?

2. Givenafunction z = f(x, y), explain in your own words how
to compute fy.

3. In the mixed partial fraction f,,, which is computed first, f,
orf,?

82
4. Inthe mixed partial fraction —f, which is computed first,

ox0
frorf,? “

Problems

In Exercises 5 - 8, evaluate f,(x, y) and f, (x, y) at the indicated
point.

5. f(x,y) =Xy —x+2y+3at(1,2)
6. f(x,y) =x —3x+y* —6yat (—1,3)
7. f(x,y) = sinycosxat (w/3,7/3)
8. f(x,y) =In(xy) at (—2,—3)
In Exercises 9 — 26, find f, f,, fu, fiys fiy and fix.
9. fx,y) =x’y+ 3% +4y —5
10. f(x,y) = y* +3xy* + 3y + X°

11. flx,y) = ;
12 fixy) = o

13. f(x,y) = &
14. f(x,y) = et

15. f(x,y) = sinxcosy

16. f(x,y) = (x +y)?

17. f(x,y) = cos(5xy°)

18. f(x,y) = sin(5x* + 2°)
19. f(x,y) = Va2 +1

20. f(x,y) = (2x+ 5y)\/y

21. f(x,y) = )ﬁ
22. f(x,y) =5x— 17y
23. f(x,y) =3¢ +1

24. f(x,y) = In(x* +y)

Inx
25. f()(7 y) = Ty

26. f(x,y) = 5€"siny +9

In Exercises 27 — 30, form a function z = f(x, y) such that f,
and f, match those given.

27. fx=siny+1, f, =xcosy
28. fu=x+y, fy=x+y
29. fe=6xy —4y*, f,=3x* —8xy+2

2x 2y

30. = ) =
fx X2+ y2 fy X2+ y?

In Exercises 31 - 34, find f, f,, fz, fy. and foy.

31. f(x,y,2) = e ¥
32. f(x,y,2) =Xy + Xz +y’z

3x

33. fix,y,2) = m

34. f(x,y,2) = In(xyz)
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Note: From Definition 12.4.1, we can
write

dZ = <fX7fy> ) <dX7 dy>

While not explored in this section, the
vector (fy, f,) is seen again in the next sec-
tion and fully defined in Section 12.6.
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12.4 Differentiability and the Total Differential

We studied differentials in Section 4.4, where Definition 4.4.1 states that if y =
f(x) and fis differentiable, then dy = f’(x)dx. One important use of this differ-
ential is in Integration by Substitution. Another important application is approx-
imation. Let Ax = dx represent a change in x. When dx is small, dy =~ Ay, the
change in y resulting from the change in x. Fundamental in this understanding
is this: as dx gets small, the difference between Ay and dy goes to 0. Another
way of stating this: as dx goes to 0, the error in approximating Ay with dy goes
to 0.

We extend this idea to functions of two variables. Let z = f(x,y), and let
Ax = dx and Ay = dy represent changes in x and y, respectively. Let Az =
f(x+dx,y+dy) —f(x,y) be the change in z over the change in x and y. Recalling
that f, and f, give the instantaneous rates of z-change in the x- and y-directions,
respectively, we can approximate Az with dz = f,dx + f,dy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indication of whether or not this
approximation is any good. First we give a name to dz.

Definition 12.4.1 Total Differential

Let z = f(x, y) be continuous on a set S. Let dx and dy represent changes
in x and y, respectively. Where the partial derivatives f, and f, exist, the
total differential of z is

dz = f(x,y)dx + f,(x, y)dy.

Example 12.4.1 Finding the total differential
Let z = x*¢¥. Find dz.

SOLUTION We compute the partial derivatives: f, = 4x3¢¥ and f, =
3x*e¥. Following Definition 12.4.1, we have

dz = 4x*e¥dx + 3x*e¥dy.

We can approximate Az with dz, but as with all approximations, there is
error involved. A good approximation is one in which the error is small. At a
given point (xo, ¥o), let Ex and E, be functions of dx and dy such that E,dx + E,dy
describes this error. Then

Az = dz + Exdx + E,dy
= fx(xo, ¥o)dx + f,(xo, yo)dy + Exdx + E,dy.

Notes:
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If the approximation of Az by dz is good, then as dx and dy get small, so does
Exdx + E,dy. The approximation of Az by dz is even better if, as dx and dy go to
0, so do E, and E,. This leads us to our definition of differentiability.

Definition 12.4.2 Multivariable Differentiability

Let z = f(x,y) be defined on a set S containing (xo, yo) Where f,(Xo, o)
and f,(xo, Yo) exist. Let dz be the total differential of z at (xo, yo), let
Az = f(xo + dx, yo + dy) — f(Xo, ¥o0), and let E, and E, be functions of dx
and dy such that

Az = dz + Exdx + E,dy.

1. We say fis differentiable at (xo, yo ) if, given £ > 0, thereisaé > 0
such that if || (dx, dy) || < ¢, then || (Ex,E,) || < €. Thatis, as dx
and dy goto 0, so do Ex and E,.

2. We say fis differentiable on S if fis differentiable at every pointin
S. If fis differentiable on R?, we say that f is differentiable every-
where.

Example 12.4.2 Showing a function is differentiable
Show f(x,y) = xy + 3y? is differentiable using Definition 12.4.2.

SOLUTION We begin by finding f(x + dx,y + dy), Az, f, and f,,.

f(x 4 dx,y + dy) = (x + dx)(y + dy) + 3(y + dy)?
= xy + xdy + ydx + dxdy + 3y? + 6ydy + 3dy>.

Az = f(x + dx,y + dy) — f(x,y), so
Az = xdy + ydx + dxdy + 6ydy + 3dy?.
It is straightforward to compute fy, = y and f, = x+ 6y. Consider once more Az:
Az = xdy + ydx + dxdy + 6ydy + 3dy? (now reorder)

= ydx + xdy + 6ydy + dxdy + 3dy?

= (y) dx+ (x+ 6y)dy + (dy) dx + (3dy) dy
~— —— ~— ——
fx fy Ex E,

= fxdx + f,dy + Exdx + E,dy.

With E, = dy and E, = 3dy, itis clear that as dxand dy goto 0, £, and E, also go
to 0. Since this did not depend on a specific point (xo, ¥ ), we can say that f(x, y)

Notes:
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is differentiable for all pairs (x, y) in R?, or, equivalently, that f is differentiable
everywhere.

Our intuitive understanding of differentiability of functions y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuitive understand-
ing of functions z = f(x,y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differentiable functions are continuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of functions are differentiable or not.

Theorem 12.4.1 Continuity and Differentiability of Multivariable
Functions

Let z = f(x,y) be defined on a set S containing (xo, yo). If f is differen-
tiable at (xo, o), then fis continuous at (xo, ¥o)-

Theorem 12.4.2 Differentiability of Multivariable Functions

Let z = f(x,y) be defined on a set S. If f; and f, are both continuous on
S, then fis differentiable on S.

The theorems assure us that essentially all functions that we see in the course
of our studies here are differentiable (and hence continuous) on their natural
domains. There is a difference between Definition 12.4.2 and Theorem 12.4.2,
though: it is possible for a function f to be differentiable yet f, and/or f, is not
continuous. Such strange behavior of functions is a source of delight for many
mathematicians.

When f, and f, exist at a point but are not continuous at that point, we need
to use other methods to determine whether or not f is differentiable at that
point.

For instance, consider the function

7L (xy) #(0,0)
fx,y) = { J(S (x,y) = (0,0)

Notes:
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We can find f,(0, 0) and £, (0, 0) using Definition 12.3.1:

. f(0+h,0)—£(0,0)
=i 0 =0:
Tl T
=m0

Both f, and f, exist at (0, 0), but they are not continuous at (0, 0), as

x(x* —y?)
(XZ +y2)2

y(y> — %)

fxy) = (X2 +y2)2

and fx,y) =
are not continuous at (0,0). (Take the limit of f, as (x,y) — (0,0) along the
x- and y-axes; they give different results.) So even though f, and f, exist at ev-
ery point in the x-y plane, they are not continuous. Therefore it is possible, by
Theorem 12.4.2, for f to not be differentiable.

Indeed, it is not. One can show that fis not continuous at (0, 0) (see Exam-
ple 12.2.4), and by Theorem 12.4.1, this means f is not differentiable at (0, 0).

Approximating with the Total Differential

By the definition, when fis differentiable dz is a good approximation for Az
when dx and dy are small. We give some simple examples of how this is used
here.

Example 12.4.3  Approximating with the total differential
Let z = y/xsiny. Approximate f(4.1,0.8).

SOLUTION Recognizing that /4 ~ 0.785 =~ 0.8, we can approximate
f(4.1,0.8) using f(4, 7/4). We can easily compute f(4, 7/4) = \/4sin(r/4) =
2 (?) = /2 &~ 1.414. Without calculus, this is the best approximation we

could reasonably come up with. The total differential gives us a way of adjusting
this initial approximation to hopefully get a more accurate answer.

Welet Az = f(4.1,0.8) —f(4, 7/4). The total differential dz is approximately
equal to Az, so

f(4.1,08) —f(4,7/4) ~dz = f(4.1,0.8) ~ dz+f(4,7/4). (12.1)

To find dz, we need f, and f,,.

Notes:
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b y) = % N fu(8,7/8) = 5‘2%4
- @ = V2/8.

fy(x,y) = Vxcosy = fy(4,7/4) = ﬂ?
=2.

Approximating 4.1 with 4 gives dx = 0.1; approximating 0.8 with 7/4 gives
dy =~ 0.015. Thus

dz(4,7/4) = £,(4,7/4)(0.1) + ,(4, 7/4)(0.015)

= %(0.1) ++/2(0.015)

~ 0.039.
Returning to Equation (12.1), we have
f(4.1,0.8) ~ 0.039 + 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8) with a calculator; the
actual value, accurate to 5 places after the decimal, is 1.45254. Obviously our
approximation is quite good.

The point of the previous example was not to develop an approximation
method for known functions. After all, we can very easily compute f(4.1,0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approximation works, and to reinforce the following concept:

“New position = old position 4+ amount of change,” so
“New position = old position + approximate amount of change.”

In the previous example, we could easily compute f(4, 7/4) and could ap-
proximate the amount of z-change when computing f(4.1,0.8), letting us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of f,
fx and f, at a particular point without actually knowing the function f. The total
differential gives a good method of approximating f at nearby points.

Example 12.4.4  Approximating an unknown function
Given that f(2, —3) = 6, f,(2, —3) = 1.3 and f,(2, —3) = —0.6, approximate
f(2.1,-3.03).

Notes:
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SOLUTION The total differential approximates how much fchanges from
the point (2, —3) to the point (2.1, —3.03). With dx = 0.1 and dy = —0.03, we
have

dz = f,(2, —3)dx + f,(2, —3)dy
=1.3(0.1) + (—0.6)(—0.03)
=0.148.

The change in z is approximately 0.148, so we approximate f(2.1,—3.03) =
6.148.

Error/Sensitivity Analysis

The total differential gives an approximation of the change in z given small
changes in x and y. We can use this to approximate error propagation; that is,
if the input is a little off from what it should be, how far from correct will the
output be? We demonstrate this in an example.

Example 12.4.5 Sensitivity analysis

A cylindrical steel storage tank is to be built that is 10ft tall and 4ft across in diam-
eter. It is known that the steel will expand/contract with temperature changes;
is the overall volume of the tank more sensitive to changes in the diameter or in
the height of the tank?

SOLUTION A cylindrical solid with height h and radius r has volume V =
7r’h. We can view V as a function of two variables, r and h. We can compute
partial derivatives of V:

g—\: =V,(r,h) =27rh  and g—: = Vy(r,h) = 7P

The total differential is dV = (2rrh)dr + (wr*)dh. When h = 10 and r = 2, we
have dV = 40xdr + 4mwdh. Note that the coefficient of dris 40w ~ 125.7; the
coefficient of dh is a tenth of that, approximately 12.57. A small change in radius
will be multiplied by 125.7, whereas a small change in height will be multiplied
by 12.57. Thus the volume of the tank is more sensitive to changes in radius
than in height.

The previous example showed that the volume of a particular tank was more
sensitive to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1ft and radius of
5ft would be more sensitive to changes in height than in radius.

Notes:
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One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differential.

Differentiability of Functions of Three Variables

The definition of differentiability for functions of three variables is very simi-
lar to that of functions of two variables. We again start with the total differential.

Definition 12.4.3 Total Differential

Let w = f(x,y, z) be continuous on a set D. Let dx, dy and dz represent
changes in x, y and z, respectively. Where the partial derivatives f,, f,
and f, exist, the total differential of w is

dw = fu(x,y, 2)dx + f,(x, ¥, 2)dy + f;(x,y, 2)dz.

This differential can be a good approximation of the change in w when w =
f(x,y, z) is differentiable.

Definition 12.4.4 Multivariable Differentiability

Let w = f(x,y,z) be defined on a set D containing (xo, yo,20) where
fx(xo0, Y0, 20), f, (X0, Y0, 20) and f,(xo, Yo, Zo) exist. Let dw be the total dif-
ferential of w at (xo, yo, 20), let Aw = f(xo + dx,yo + dy, 2o + dz) —
f(xo,Y0,20), and let Ey, E, and E, be functions of dx, dy and dz such that

Aw = dw + Exdx + E,dy + E,dz.

1. We say f is differentiable at (xo, yo, 20) if, given £ > 0, there is a
d > Osuch thatif || (dx, dy, dz) || < J, then || (Ex, E,, E;) || < e.

2. We say f is differentiable on B if f is differentiable at every point
in B. If fis differentiable on R3, we say that f is differentiable ev-
erywhere.

Just as before, this definition gives a rigorous statement about what it means
to be differentiable that is not very intuitive. We follow it with a theorem similar
to Theorem 12.4.2.

Notes:



12.4 Differentiability and the Total Differential

Theorem12.4.3 Continuity and Differentiability of Functions of Three
Variables

Let w = f(x, y, z) be defined on a set D containing (xo, Yo, Z0)-
1. Iffis differentiable at (xo, yo, Z0), then fis continuous at (xo, Vo, 2o)-

2. Iff, fy and f, are continuous on B, then f is differentiable on B.

This set of definition and theorem extends to functions of any number of
variables. The theorem again gives us a simple way of verifying that most func-
tions that we encounter are differentiable on their natural domains.

This section has given us a formal definition of what it means for a functions
to be “differentiable,” along with a theorem that gives a more accessible un-
derstanding. The following sections return to notions prompted by our study of
partial derivatives that make use of the fact that most functions we encounter
are differentiable.

Notes:
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Exercises 12.4

Terms and Concepts

1.

2.

T/F: If f(x, y) is differentiable on S, the fis continuous on S.

T/F: If fx and f, are continuous on S, then fis differentiable
onS.

. T/F:1f z = f(x, y) is differentiable, then the change in z over

small changes dx and dy in x and y is approximately dz.

. Finish the sentence: “The new z-value is approximately the

»”

old z-value plus the approximate

Problems

In Exercises 5 — 8, find the total differential dz.

5.

6.

7.

8.

z=xsiny 4+ x*
z=(2x* + 3y)?
z=5x—17y

z = xe*Vy

In Exercises 9 — 12, a function z = f(x, y) is given. Give the
indicated approximation using the total differential.

9.

10.

11.

12.

f(x,y) = +/x*+y. Approximate f(2.95,7.1) knowing
f(3, 7) = 4.

f(x,y) = sinxcosy. Approximate f(0.1, —0.1) knowing
£(0,0) = 0.

f(x,y) = x*y — xy*. Approximate f(2.04,3.06) knowing
f(27 ) = —6.
f(x,y) = In(x — y). Approximate f(5.1,3.98) knowing

f(5,4) = 0.

Exercises 13 — 16 ask a variety of questions dealing with ap-
proximating error and sensitivity analysis.

13.

14.

A cylindrical storage tank is to be 2ft tall with a radius of 1ft.
Is the volume of the tank more sensitive to changes in the
radius or the height?

Projectile Motion: The x-value of an object moving un-
der the principles of projectile motion is x(0,vo,t) =
(vo cos 0)t. A particular projectile is fired with an initial ve-
locity of vo = 250ft/s and an angle of elevation of § = 60°.
It travels a distance of 375ft in 3 seconds.

15.

16.

Is the projectile more sensitive to errors in initial speed or
angle of elevation?

The length £ of a long wall is to be approximated. The angle
@, as shown in the diagram (not to scale), is measured to
be 85°, and the distance x is measured to be 30". Assume
that the triangle formed is a right triangle.

Is the measurement of the length of £ more sensitive to er-
rors in the measurement of x or in 6?

It is “common sense” that it is far better to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the prod-
uct of the length £ of a measuring tape times the number
n of times it was used. For instance, using a 3’ tape 10
times gives a length of 30’. To measure the same distance
with a 12’ tape, we would use the tape 2.5 times. (l.e.,
30 =12 x 2.5.) Thus D = n/.

Suppose each time a measurement is taken with the tape,
the recorded distance is within 1/16” of the actual distance.
(e, d¢ = 1/16” =~ 0.005ft). Using differentials, show
why common sense proves correct in that it is better to use
a long tape to measure long distances.

In Exercises 17 — 18, find the total differential dw.

17.

18.

w = xyz

w=¢e"sinylnz

In Exercises 19 — 22, use the information provided and the
total differential to make the given approximation.

19.

20.

21.

22.

f(3,1) =7, f(3,1) =9, f,(3,1) = —2. Approximate
£(3.05,0.9).

f(74, 2) = 13, fx(747 2) = 2.6, _)‘,/(747 2) = 5.1. Ap-
proximate f(—4.12,2.07).

f(2>4>5) = _1; fX(27475) = 21 fy(27475) - _3/
f2(2,4,5) = 3.7. Approximate f(2.5,4.1,4.8).

f(37 37 3) = 5! fX(37 37 3) = 2! f)’(37 37 3) = Or fl(37 37 3) =
—2. Approximate f(3.1,3.1,3.1).



12.5 The Multivariable Chain Rule

Consider driving an off-road vehicle along a dirt road. As you drive, your eleva-
tion likely changes. What factors determine how quickly your elevation rises and
falls? After some thought, generally one recognizes that one’s velocity (speed
and direction) and the terrain influence your rise and fall.

One can represent the terrain as the surface defined by a multivariable func-
tion z = f(x, y); one can represent the path of the off-road vehicle, as seen from
above, with a vector-valued function 7(t) = (x(t), y(t)); the velocity of the ve-
hicle is thus 7/(t) = (x'(t),y'(t)).

Consider Figure 12.5.1 in which a surface z = f(x, y) is drawn, along with a
dashed curve in the x-y plane. Restricting f to just the points on this circle gives
the curve shown on the surface (i.e., “the path of the off-road vehicle.”) The

derivative % gives the instantaneous rate of change of f with respect to t. If we
consider an object traveling along this path, % = % gives the rate at which the
object rises/falls (i.e., “the rate of elevation change” of the vehicle.) Concep-
tually, the Multivariable Chain Rule combines terrain and velocity information
properly to compute this rate of elevation change.

Abstractly, let z be a function of x and y; that is, z = f(x, y) for some function
f, and let x and y each be functions of t. By choosing a t-value, x- and y-values
are determined, which in turn determine z: this defines z as a function of t. The

Multivariable Chain Rule gives a method of computing %.

Theorem 12.5.1 Multivariable Chain Rule, Part |

Letz = f(x,y), x = g(t) and y = h(t), where f, g and h are differentiable
functions. Then z = f(x, y) = f(g(t), h(t)) is a function of t, and

dz  df dx dy
ar  dt *fx(xay> dt Jrfy(X;y) dt
_opo ordy
T Oxdt  Oydt

= <fx;fy> : <X/ay/>'

The Chain Rule of Section 2.5 states that % (f(g(x))) =f'(g(x))g’ (x). If

t = g(x), we can express the Chain Rule as
df  dfdt

dx  dtdx’

recall that the derivative notation is deliberately chosen to reflect their fraction—

Notes:

12.5 The Multivariable Chain Rule

Figure 12.5.1: Understanding the applica-
tion of the Multivariable Chain Rule.
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like properties. A similar effect is seen in Theorem 12.5.1. In the second line of
equations, one can think of the dx and Ox as “sort of” canceling out, and likewise
with dy and Jy.

Notice, too, the third line of equations in Theorem 12.5.1. The vector { f;, f,)
contains information about the surface (terrain); the vector (x’, y’) can represent
velocity. In the context measuring the rate of elevation change of the off-road
vehicle, the Multivariable Chain Rule states it can be found through a product of
terrain and velocity information.

We now practice applying the Multivariable Chain Rule.

Example 12.5.1 Using the Multivariable Chain Rule

dz
Let z = x%y + x, where x = sintand y = e°'. Find p using the Chain Rule.

SOLUTION Following Theorem 12.5.1, we find
dx d
f(x,y) = 2xy + 1, f(x,y) = x*, - = cost, d—); = 5e°t

Applying the theorem, we have

dz

— = (2xy + 1) cost + 5x%€”".

dt

This may look odd, as it seems that % is a function of x, y and t. Since x and y
are functions of ¢, % is really just a function of t, and we can replace x with sin t
and y with e°:

d.
d—i = (2xy + 1) cost + 5x°e>" = (2sin(t)e> + 1) cos t + 5e°'sin’ t.

The previous example can make us wonder: if we substituted for x and y at
the end to show that % is really just a function of t, why not substitute before
differentiating, showing clearly that z is a function of t?

Thatis, z = x*y + x = (sint)%e> + sint. Applying the Chain and Product
Rules, we have

% = 2sintcoste™ + 5sin’te> + cost,
which matches the result from the example.

This may now make one wonder “What’s the point? If we could already find
the derivative, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x,y), x = g(t) and y = h(t), the Chain Rule is

Notes:



extremely powerful when we do not know what f, g and/or h are. 1t may be hard
to believe, but often in “the real world” we know rate—of-—change information
(i.e., information about derivatives) without explicitly knowing the underlying
functions. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also has theoretic use, giving us insight
into the behavior of certain constructions (as we’ll see in the next section).

We demonstrate this in the next example.

Example 12.5.2 Applying the Multivarible Chain Rule
An object travels along a path on a surface. The exact path and surface are not
known, but at time t = ty it is known that :

0z 0z dx dy

2 -~ = — =13 d =
Ox ’ Oy ’ dt an dt

7.

Find & at time to.

SOLUTION The Multivariable Chain Rule states that

dr _dzdx  ozdy

dt  Oxdt  Oydt
=5(3) +(=2)(7)
=1.

By knowing certain rates—of—change information about the surface and about
the path of the particle in the x-y plane, we can determine how quickly the ob-
ject is rising/falling.

We next apply the Chain Rule to solve a max/min problem.

Example 12.5.3 Applying the Multivariable Chain Rule

Consider the surface z = x? + y?> — xy, a paraboloid, on which a particle moves
with x and y coordinates given by x = cost and y = sint. Find % whent =0,
and find where the particle reaches its maximum/minimum z-values.

SOLUTION It is straightforward to compute
dx d
filx,y) =2x—y, fy(x,y) =2y —x, i sint, d—); = cost.

Combining these according to the Chain Rule gives:

dz

i —(2x —y)sint+ (2y — x) cost.

Notes:

12.5 The Multivariable Chain Rule

Figure 12.5.2: Plotting the path of a par-
ticle on a surface in Example 12.5.3.
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d
Whent =0, x = 1and y = 0. Thus d—i = —(2)(0) + (~1)(1) = —1. When

t = 0, the particle is moving down, as shown in Figure 12.5.2.

dz

dt

To find where z-value is maximized/minimized on the particle’s path, we set
= 0 and solve for t:

dz :
p =0=—(2x—y)sint+ (2y — x) cost
0= —(2cost—sint)sint + (2sint — cost) cost
0 =sin’t — cos’ t
cos’t =sin’t

t= n% (for odd n)

We can use the First Derivative Test to find that on [0, 27], z has reaches its
absolute minimum at t = 7/4 and 57/4; it reaches its absolute maximum at
t = 37/4 and 77 /4, as shown in Figure 12.5.2.

We can extend the Chain Rule to include the situation where z is a function

of more than one variable, and each of these variables is also a function of more
than one variable. The basic case of this is where z = f(x,y), and x and y are
functions of two variables, say s and t.

Theorem 12.5.2 Multivariable Chain Rule, Part Il

1. Letz = f(x,y), x = g(s,t) and y = h(s,t), where f, g and h are
differentiable functions. Then z is a function of s and t, and

. 0z 8f@ of dy

= _ A = d
Os OxJds OyO0Os an
L0z _ 0 0x  ofdy
ot oxot  dyot
2. Letz = f(x1, X2, - . ., Xm) be a differentiable function of mvariables,
where each of the x; is a differentiable function of the variables
t;,t,...,t,. Then zis a function of the t;, and
0z gﬁxl ﬁ@xz ﬁaxm

ot o ot oot T T ox, ot

Notes:




Example 12.5.4 Using the Multivarible Chain Rule, Part Il
letz = x’y +x,x = s> +3tand y = 25 — t. Find % and %, and evaluate each
whens=1andt = 2.

SOLUTION Following Theorem 12.5.2, we compute the following partial
derivatives: of of
—=2y+1 — =x
Ox X+ Oy X
Ix Ox dy dy
= =2 — =3 = =2 = =1
os ot ds ot
Thus 9
a—z = (2xy +1)(2s) + (x*)(2) = 4xys + 2s +2x*, and
s
0z , 2
e = 20+ 1)(3) + () (1) = 6y +3,
Whens=1andt=2,x=7andy =0, so
92 _ 100 a4
— = an — = —46.
Os ot

Example 12.5.5 Using the Multivarible Chain Rule, Part Il
Let w = xy+ 22, where x = t?e®, y = tcos s, and z = ssin t. Find % whens =0
and t = 7.

SOLUTION Following Theorem 12.5.2, we compute the following partial
derivatives:
of of of
a - y aiy =X E = 227
§:2tes @:coss %:scost.
ot ot ot
Thus

%’: = y(2te*) + x(cos s) + 2z(scos t).

Whens = 0and t = 7, we have x = 72, y = wand z = 0. Thus

%—V: = w(27) + 7 = 372
Implicit Differentiation

We studied finding % when y is given as an implicit function of x in detail
in Section 2.6. We find here that the Multivariable Chain Rule gives a simpler
method of finding %.

Notes:

12.5 The Multivariable Chain Rule
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For instance, consider the implicit function x2y — xy® = 3. We learned to use
the following steps to find %:

=) = 53

dy dy
Wy +x*ZL -y — 3y L =0
v dx v y dx
dy 2xy — y°
e S (12.2)

Instead of using this method, consider z = x?y — xy3. The implicit function
above describes the level curve z = 3. Considering x and y as functions of x, the
Multivariable Chain Rule states that

dz 0zdx Ozdy

—_— = —— 4+ ——. 12.3
dx  Oxdx + Oy dx ( )
Since z is constant (in our example, z = 3), % = 0. We also know % = 1.
Equation (12.3) becomes
0z 0z dy
0= - — =
8)(( )+ Oy dx
dy 0z )0z
dx  Ox/ dy
_ &
5y

Note how our solution for % in Equation (12.2) is just the partial derivative
of z with respect to x, divided by the partial derivative of z with respect to y, all
multiplied by (—1).

We state the above as a theorem.

Theorem 12.5.3 Implicit Differentiation

Let f be a differentiable function of x and y, where f(x,y) = ¢ defines y
as an implicit function of x, for some constant c. Then

ﬂ _ 7fX(X> y)
dx fy(va).

We practice using Theorem 12.5.3 by applying it to a problem from Section
2.6.

Notes:



Example 12.5.6 Implicit Differentiation

Given the implicitly defined function sin(x?y?) +y* = x+y, find y’. Note: this is
the same problem as given in Example 2.6.4 of Section 2.6, where the solution
took about a full page to find.

SOLUTION Let f(x,y) = sin(x*y?) + y> — x — y; the implicitly defined
function above is equivalent to f(x,y) = 0. We find % by applying Theorem
12.5.3. We find

f(x,y) = 2xy? cos(x*y?) — 1 and  f,(x,y) = 2%y cos(x*y*) + 3y* — 1,
50

dy 2xy? cos(x2y?) — 1
dx  2x%ycos(x®y?) +3y2 — 1’

which matches our solution from Example 2.6.4.

In Section 12.3 we learned how partial derivatives give certain instantaneous
rate of change information about a function z = f(x, y). In that section, we mea-
sured the rate of change of f by holding one variable constant and letting the
other vary (such as, holding y constant and letting x vary gives f,). We can visu-
alize this change by considering the surface defined by f at a point and moving
parallel to the x-axis.

What if we want to move in a direction that is not parallel to a coordinate
axis? Can we still measure instantaneous rates of change? Yes; we find out
how in the next section. In doing so, we'll see how the Multivariable Chain Rule
informs our understanding of these directional derivatives.

Notes:

12.5 The Multivariable Chain Rule
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Exercises 12.5

Terms and Concepts

1. Let a level curve of z = f(x,y) be described by x = g(t),
y = h(t). Explain why £ = 0.

2. Fill in the blank: The single variable Chain Rule states

d%(f(g(x))) =f'(g0))

3. Fill in the blank: The Multivariable Chain Rule states

o _of . dy
dt~ Ox dt’

4. If z = f(x,y), where x = g(t) and y = h(t), we can substi-
tute and write z as an explicit function of t.
T/F: Using the Multivariable Chain Rule to find % is some-
times easier than first substituting and then taking the
derivative.

5. T/F: The Multivariable Chain Rule is only useful when all the
related functions are known explicitly.

6. The Multivariable Chain Rule allows us to compute implicit

derivatives easily by just computing two deriva-
tives.

Problems

In Exercises 7 — 12, functions z = f(x,y), x = g(t) and

y = h(t) are given.

- . dz
(a) Use the Multivariable Chain Rule to compute —.

dt
dz -

(b) Evaluate p at the indicated t-value.
7. z=3x+4y, x =t y =2t t=1
8.z:xz—y2, X=t, y:tz—l; t=1
9. z=5x+2y, x=2cost+1, y=sint—3; t=m7/4
10. z X X = cost, sint t /2

. Z= ) = A = ; =T

y+1 g

11. z = x* + 2y, X =sint, y = 3sint; t=mn/4
12. z = cosxsiny, X = Tt, y=2nt+7/2; t=3

In Exercises 13 — 18, functions z = f(x,y), x = g(t) and
y = h(t) are given. Find the values of t where % = 0. Note:
these are the same surfaces/curves as found in Exercises 7 —
12.

13. z=3x+4y, x =t

14.z:xz—y2, xX=t,

15. z=5x+ 2y, x=2cost+1, y=sint—3
X .
16. z = , X = cost, y =sint
y:+1
17. z:x2—|—2y2, X =sint, y =3sint
18. z = cosxsiny, X = 7t, y=2nt+ /2

In Exercises 19 — 22, functions z = f(x,y), x = g(s,t) and
y = h(s, t) are given.

0.
(a) Use the Multivariable Chain Rule to compute 8—§ and
@
ot’

(b) Evaluate % and % at the indicated s and t values.

19.z:x2y, XxX=s5—t, y = 25 + 4t; s=1,t=0
20.z:cos(7rx+§y), x=st?, y=st s=1t=1
21.z:x2+y2, x=scost, y=ssint; s=2,t=mn/4
—(+y?) 2
22. z=e , x=t y=st;; s=1t=1
dy

In Exercises 23 — 26, find P

— using Implicit Differentiation and
X
Theorem 12.5.3.

23. x*tany = 50

24, (3 +2y°)' =2

X4y

25.
x+y?

17

26. In(xX* +xy+y’) =1

. ., dz 0z 0z .
In Exercises 27 - 30, find 5t or 7 and 5 using the supplied
information.
0z 0z ax dy
27. 5 =2, 87_1' G g
0z 0z dx dy
28. — =1, —=-3, —=6, —=2
Ox " 9y "odt "odt
0z 0z
29. = =—-4, —=09,
ox ady
ox _ Ox __ oy oy _
s~ ot s Y o
0z 0z
300 — =2, — =1,
ox ay
ox ox oy dy
Ty X Z ) ZX_-_1
Os "ot 3 Os "ot



12.6 Directional Derivatives

Partial derivatives give us an understanding of how a surface changes when we
move in the x and y directions. We made the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fx. Likewise, the rise/fall in moving due north is comparable to f,. The steeper
the slope, the greater in magnitude f,.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? Partial derivatives
alone cannot measure this. This section investigates directional derivatives,
which do measure this rate of change.

We begin with a definition.

Definition 12.6.1 Directional Derivatives

Let z = f(x,y) be continuous on a set S and let & = (uj,u,) be a unit
vector. For all points (x, y), the directional derivative of f at (x, y) in the
direction of i is

f(x+ huy,y + huy) — f(x,y)

Dzf(x,y) = Jim p .

The partial derivatives f, and f, are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a particular unit vector i. This may look a bit intimidating but in reality it is
not too difficult to deal with; it often just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem 12.6.1 Directional Derivatives

Let z = f(x,y) be differentiable on a set S containing (xo, ¥o), and let
U = (u1, u,) be a unit vector. The directional derivative of f at (xo, yo) in
the direction of i is

Dif(Xo, ¥o) = fx(Xo, Yo)u1 + f, (X0, Yo)u2.

Example 12.6.1  Computing directional derivatives
Letz = 14 — x* — y? and let P = (1, 2). Find the directional derivative of f, at P,
in the following directions:

1. toward the point Q = (3,4),

2. in the direction of (2, —1), and

Notes:

12.6 Directional Derivatives
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Figure 12.6.1: Understanding the direc-
tional derivative in Example 12.6.1.
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3. toward the origin.

SOLUTION The surface is plotted in Figure 12.6.1, where the point P =
(1,2) is indicated in the x, y-plane as well as the point (1,2,9) which lies on the
surface of f. We find that f,(x,y) = —2x and f,(1,2) = —2; f,(x,y) = —2y and
£,(1,2) = —4.

1. Let Gy be the unit vector that points from the point (1,2) to the point
Q = (3,4), as shown in the figure. The vector PQ = (2, 2); the unit vector
in this direction is &y = (1/v/2,1/V/2). Thus the directional derivative of
fat (1,2) in the direction of dj is

Dy f(1,2) = —2(1/v2) + (-4)(1/V2) = —6/V2 ~ —4.24.

Thus the instantaneous rate of change in moving from the point (1,2, 9)
on the surface in the direction of 4; (which points toward the point Q) is
about —4.24. Moving in this direction moves one steeply downward.

2. We seek the directional derivative in the direction of (2, —1). The unit
vector in this direction is 4, = (2/4/5,—1/v/5). Thus the directional
derivative of fat (1, 2) in the direction of i, is

D3,f(1,2) = —2(2/V/5) + (=4)(~1/v/5) = 0.

Starting on the surface of fat (1, 2) and moving in the direction of (2, —1)
(or uy) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direction to walk that does not
change the elevation. One neither walks up nor down, rather just “along
the side” of the hill.

Finding these directions of “no elevation change” is important.

3. At P = (1,2), the direction towards the origin is given by the vector
(—1,—2); the unit vector in this direction is i3 = (—1/v/5,-2//5).
The directional derivative of f at P in the direction of the origin is

Dy.f(1,2) = —2(—1/V/5) + (—4)(—2/+/5) = 10//5 ~ 4.47.

Moving towards the origin means “walking uphill” quite steeply, with an
initial slope of about 4.47.

As we study directional derivatives, it will help to make an important con-
nection between the unit vector & = (uy, u,) that describes the direction and
the partial derivatives f, and f,. We start with a definition and follow this with a
Key ldea.

Notes:



Definition 12.6.2 Gradient

Letz = f(x, y) be differentiable on a set S that contains the point (xo, o).

1. The gradient of fis Vf(x,y) = {fi(x,y),f,(x,¥)).

2. The gradient of fat (xo, o) is Vf(Xo,y0) = (f«(Xo, o), fy (X0, ¥0))-

To simplify notation, we often express the gradient as Vf = (f,f,). The
gradient allows us to compute directional derivatives in terms of a dot product.

Key Idea 12.6.1 The Gradient and Directional Derivatives

The directional derivative of z = f(x, y) in the direction of i is

Dy f = Vf- .

The properties of the dot product previously studied allow us to investigate
the properties of the directional derivative. Given that the directional derivative
gives the instantaneous rate of change of z when moving in the direction of 4,
three questions naturally arise:

1. In what direction(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direction(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direction(s) is there no change in z?
Using the key property of the dot product, we have
Vf-i=|| V||| d|lcos6 = || Vf | cos b, (12.4)

where 6 is the angle between the gradient and d. (Since dis a unit vector, || T || =
1.) This equation allows us to answer the three questions stated previously.

1. Equation 12.4 is maximized when cos 6 = 1, i.e., when the gradient and &/
have the same direction. We conclude the gradient points in the direction
of greatest z change.

Notes:

12.6 Directional Derivatives

Note: The symbol “V” is named “nabla,”
derived from the Greek name of a Jewish
harp. Oddly enough, in mathematics the
expression Vfis pronounced “del f.”
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2. Equation 12.4 is minimized when cos § = —1, i.e., when the gradient and
U have opposite directions. We conclude the gradient points in the oppo-
site direction of the least z change.

3. Equation 12.4 is 0 when cos @ = 0, i.e., when the gradient and & are or-
thogonal to each other. We conclude the gradient is orthogonal to direc-
tions of no z change.

This result is rather amazing. Once againimagine standingin a rolling meadow
and face the direction that leads you steepest uphill. Then the direction that
leads steepest downbhill is directly behind you, and side—stepping either left or
right (i.e., moving perpendicularly to the direction you face) does not change
your elevation at all.

Recall that a level curve is defined as a curve in the x-y plane along which the
z-values of a function do not change. Let a surface z = f(x, y) be given, and let’s
represent one such level curve as a vector—valued function, r(t) = (x(t), y(t)).
As the output of f does not change along this curve,f(x(t), y(t)) = cforall t, for
some constant c.

Since fis constant for all t, % = 0. By the Multivariable Chain Rule, we also
know
df
at = ful(x, V)Xl(t) "‘fy(xa y)y/(t)
= (i), £y (6, y)) - (X' (8),¥' (1))
= Vf-7'(t)
=0.

This last equality states Vf - r/(t) = 0: the gradient is orthogonal to the
derivative of ¥, meaning the gradient is orthogonal to the graph of 7. Our con-
clusion: at any point on a surface, the gradient at that point is orthogonal to the
level curve that passes through that point.

We restate these ideas in a theorem, then use them in an example.

Theorem 12.6.2 The Gradient and Directional Derivatives

Let z = f(x,y) be differentiable on a set S with gradient Vf, let P =
(Xo0,Y0) be a point in S and let & be a unit vector.

1. The maximum value of Dz f(xo, Vo) is || Vf(xo, ¥o) ||; the direction
of maximal z increase is Vf(xo, ¥o)-

2. The minimum value of Dz f(xo, ¥o) is —|| V/f(X0, ¥o) ||; the direction
of minimal z increase is —Vf(xo, yo).

3. At P, Vf(xo, yo) is orthogonal to the level curve passing through
(X07 yOv.f(X07 yO)) .

Notes:



Example 12.6.2 Finding directions of maximal and minimal increase

Let f(x,y) = sinxcosy and let P = (w/3,7/3). Find the directions of max-
imal/minimal increase, and find a direction where the instantaneous rate of z
change is 0.

SOLUTION We begin by finding the gradient. fy = cosxcosy and f, =

—sinxsiny, thus
T T 1 3

Vf = (cosxcosy, —sinxsiny) and,atP, Vf(s7 3) = <47 4> .
Thus the direction of maximal increase is (1/4, —3/4). In this direction, the
instantaneous rate of z change is || (1/4, —3/4) || = v/10/4 ~ 0.79.

Figure 12.6.2 shows the surface plotted from two different perspectives. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let & = (uy,u,) be the
unit vector in the direction of Vf at P. Each graph of the figure also contains
the vector (uq, Uy, || Vf||). This vector has a “run” of 1 (because in the x-y plane
it moves 1 unit) and a “rise” of ||Vf||, hence we can think of it as a vector with
slope of || Vf|| in the direction of Vf, helping us visualize how “steep” the surface
is in its steepest direction.

The direction of minimal increase is (—1/4, 3/4); in this direction the instan-
taneous rate of z change is —/10/4 ~ —0.79.

Any direction orthogonal to Vfis a direction of no z change. We have two
choices: the direction of (3, 1) and the direction of (—3, —1). The unit vector
in the direction of (3,1) is shown in each graph of the figure as well. The level
curve at z = 4/3/4 is drawn: recall that along this curve the z-values do not
change. Since (3, 1) is a direction of no z-change, this vector is tangent to the
level curve at P.

Example 12.6.3 Understanding when Vf = 0
Let f(x,y) = —x® + 2x — y? + 2y + 1. Find the directional derivative of fin any
directionat P = (1,1).

SOLUTION Wefind Vf = (—2x + 2, —2y + 2). AtP,we have Vf(1,1) =
(0,0). According to Theorem 12.6.2, this is the direction of maximal increase.
However, (0, 0) is directionless; it has no displacement. And regardless of the
unit vector d chosen, D;f = 0.

Figure 12.6.3 helps us understand what this means. We can see that P lies
at the top of a paraboloid. In all directions, the instantaneous rate of change is
0.

So what is the direction of maximal increase? It is fine to give an answer of
0 = (0,0), as this indicates that all directional derivatives are 0.

Notes:

12.6 Directional Derivatives

V4

A

1
W

(b)

Figure 12.6.2: Graphing the surface and
important directions in Example 12.6.2.

Figure 12.6.3: At the top of a paraboloid,
all directional derivatives are 0.
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The fact that the gradient of a surface always points in the direction of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example 12.6.4  The flow of water downbhill
Consider the surface given by f(x,y) = 20 — x> — 2y?. Water is poured on the
surface at (1,1/4). What path does it take as it flows downhill?

SOLUTION Let F(t) = (x(t),y(t)) be the vector-valued function de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
that water will always flow downhill in the steepest direction; therefore, at any
point on its path, it will be moving in the direction of —Vf. (We ignore the phys-
ical effects of momentum on the water.) Thus r/(t) will be parallel to Vf, and
there is some constant ¢ such that cVf =7/(t) = (x'(t),y’(t)).

We find Vf = (—2x, —4y) and write x’(t) as % and y/(t) as %. Then

x'(t),y' (1)
Ix dy
2cx, —4cy)
= y) <dt dt>
This implies
dx dy
—2cx=— and —dcy = ie.,
dt TS
e 1 dx and ¢ — 1 dy
T 2xdt T 4y dt’
As ¢ equals both expressions, we have
ldx 1dy
2xdt  dydt’

To find an explicit relationship between x and y, we can integrate both sides with

dx
respect to t. Recall from our study of differentials that Edt = dx. Thus:
1 dx d 1dy
2x dt 4y dt
1
4y
1In|x|— 1In| | +C
g =g iR

2Inix] =Inly| + ¢
In|x*| =Inly| + G

Notes:



Now raise both sides as a power of e:

X2 = eln\yH—Cl

x> = e lleh (Note that e is just a constant.)
X =yG,
1, .
C—x =y (Note that 1/C, is just a constant.)
2
Xt =y.

As the water started at the point (1,1/4), we can solve for C:

Thus the water follows the curve y = x?/4 in the x-y plane. The surface and
the path of the water is graphed in Figure 12.6.4(a). In part (b) of the figure,
the level curves of the surface are plotted in the x-y plane, along with the curve
y = x* /4. Notice how the path intersects the level curves at right angles. As the
path follows the gradient downbhill, this reinforces the fact that the gradient is
orthogonal to level curves.

Functions of Three Variables

The concepts of directional derivatives and the gradient are easily extended
to three (and more) variables. We combine the concepts behind Definitions
12.6.1 and 12.6.2 and Theorem 12.6.1 into one set of definitions.

Definition 12.6.3 Directional Derivatives and Gradient with Three
Variables

Let w = F(x,y, z) be differentiable on a set D and let & be a unit vector
in R3.

1. The gradient of Fis VF = (F,, F,, F,).

2. The directional derivative of F in the direction of i/ is

D;F = VF- .

The same properties of the gradient given in Theorem 12.6.2, when fis a

Notes:

12.6 Directional Derivatives

L8]

(b)
Figure 12.6.4: A graph of the surface de-

scribed in Example 12.6.4 along with the
path in the x-y plane with the level curves.
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function of two variables, hold for F, a function of three variables.

Theorem 12.6.3 The Gradient and Directional Derivatives with
Three Variables

Let w = F(x,y, z) be differentiable on a set D, let VF be the gradient of
F, and let &/ be a unit vector.

1. The maximum value of Dz F is || VF ||, obtained when the angle

between VF and i is 0, i.e., the direction of maximal increase is
VF.

2. The minimum value of Dz F is —|| VF ||, obtained when the angle

between VF and i is m, i.e., the direction of minimal increase is
—VF.

3. D;F = 0 when VF and i are orthogonal.

We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three—variable analogue to level curves.

Example 12.6.5 Finding directional derivatives with functions of three
variables
If a point source S is radiating energy, the intensity / at a given point P in space
is inversely proportional to the square of the distance between S and P. That is,
when S = (0,0,0), I(x,y,z) = % for some constant k.
X +y - +z

Letk = 1,letd = (2/3,2/3,1/3) be a unit vector, and let P = (2,5, 3).
Measure distances in inches. Find the directional derivative of / at P in the di-
rection of 4, and find the direction of greatest intensity increase at P.

SOLUTION We need the gradient V/, meaning we need Iy, I, and /,. Each
partial derivative requires a simple application of the Quotient Rule, giving

v/ — —2x —2y -2z
- (R +y2+22)2 (X +y2+22)2 (2 +y? + 22)?

—4 -10 -6
VI(2,5,3) = , , ~ (—0.003, —0.007, —0.004)
1444’ 1444° 1444
Dzl = VI(2,5,3) - U
17
=" ~ —0.0078.
2166

The directional derivative tells us that moving in the direction of i from P re-
sults in a decrease in intensity of about —0.008 units per inch. (The intensity is
decreasing as i moves one farther from the origin than P.)

Notes:
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The gradient gives the direction of greatest intensity increase. Notice that

VI(2,5’3)_< 4 10 -6 >

1444’ 1444° 1444
2
= (=2,-5,-3).
1444
That is, the gradient at (2, 5, 3) is pointing in the direction of (—2, —5, —3), that
is, towards the origin. That should make intuitive sense: the greatest increase
in intensity is found by moving towards to source of the energy.

The directional derivative allows us to find the instantaneous rate of zchange
in any direction at a point. We can use these instantaneous rates of change to
define lines and planes that are tangent to a surface at a point, which is the topic
of the next section.

Notes:
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Exercises 12.6

Terms and Concepts

1. Whatis the difference between a directional derivative and
a partial derivative?

2. Forwhat &is Dz f = f,?
3. Forwhat dis Dzf = f,?

4. The gradient is to level curves.

5. The gradient points in the direction of increase.

6. It is generally more informative to view the directional
derivative not as the result of a limit, but rather as the result
of a product.

Problems

In Exercises 7 — 12, a function z = f(x, y) is given. Find Vf.
7. f(x,y) = =Xy +xy* + xy

8. f(x,y) = sinxcosy

1

9. flx,y) = i1yt

10. f(x,y) = —4x+ 3y
11. f(x,y) = X 42y — xy — 7x
12. f(x,y) = Ly — 2x

In Exercises 13 — 18, a function z = f(x, y) and a point P are
given. Find the directional derivative of f in the indicated di-
rections. Note: these are the same functions as in Exercises
7 through 12.

13. f(x,y) = =X’y +xy* +xy, P = (2,1)
(a) In the direction of V = (3, 4)
(b) In the direction toward the point Q = (1, —1).

m™ T
14. f(x,y) = si ,P:(f,f)
f(x,y) = sinxcosy, 23
(a) In the direction of v = (1, 1).
(b) In the direction toward the point Q = (0, 0).

1
x2+y2+17
(a) In the direction of v = (1, —1).

(b) In the direction toward the point Q = (-2, —2).

15. f(x,y) = P=(1,1).

16. f(x,y) = —4x+ 3y, P = (5,2)
(a) In the direction of V= (3,1) .
(b) In the direction toward the point Q = (2, 7).

17. fix,y) =X +2y° —xy — 7x, P = (4,1)
(a) In the direction of V = (—2,5)
(b) In the direction toward the point Q = (4, 0).

18. f(x,y) =Xxy* —2x, P = (1,1)
(a) In the direction of vV = (3, 3)

(b) In the direction toward the point Q = (1, 2).

In Exercises 19 — 24, a function z = f(x, y) and a point P are
given.

(a) Find the direction of maximal increase of f at P.
(b) What is the maximal value of D; f at P?

(c) Find the direction of minimal increase of f at P.
(d) Give a direction i such that D;f = 0 at P.

Note: these are the same functions and points as in Exercises
13 through 18.

19. f(x,y) = =Py +xy* +xy, P = (2,1)

T

20. f(x,y) = si ,P:(f,f)
f(x,y) =sinxcosy, 23
21 fxy) = — = p=(1,1)
IR CS IR I LA

22. f(x,y) = —4x+ 3y, P = (5,4).
23. f(x,y) = 42 —xy—7x, P = (4,1)
24. f(x,y) = xy* —2x, P = (1,1)

In Exercises 25 — 28, a function w = F(x, y, z), a vector V and
a point P are given.

(a) Find VF(x,y,z).
(b) Find D; F at P, where i/ is the unit vector in the direction
of V.
25. F(x,y,2) = 382> + 4xy — 37,V = (1,1,1), P = (3,2,1)
26. F(x,y,z) = sin(x) cos(y)e’, vV = (2,2,1), P = (0,0,0)
27. F(x,y,2) =Xy’ —y’2*, V= (-1,7,3),P = (1,0, 1)

2 -

28. F(X,y,z) = m, V= <17 17

-2),P=(1,1,1)
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12.7 TangentLines, NormalLines, and Tangent Planes

Derivatives and tangent lines go hand—in—hand. Given y = f(x), the line tangent
to the graph of fat x = xg is the line through (xo,f(xo)) with slope f'(xp); that
is, the slope of the tangent line is the instantaneous rate of change of f at x,.

When dealing with functions of two variables, the graph is no longer a curve
but a surface. At a given point on the surface, it seems there are many lines that
fit our intuition of being “tangent” to the surface.

In Figure 12.7.1 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definition formally defines what it means to be “tangent
to a surface.”

Definition 12.7.1 Directional Tangent Line

Let z = f(x,y) be differentiable on a set S containing (xo, ¥o) and let & =
(u1, uy) be a unit vector.

1. The line ¢ through (XO7 Yo, f(xo, yo)) parallel to (1,0, f(xo, yo)) is the
tangent line to f in the direction of x at (xo, yo)-

2. Theline ¢, through (xo, yo, f(Xo, ¥o)) parallel to (0, 1, f,(xo, yo)) is the
tangent line to f in the direction of y at (xo, yo).

3. The line {5 through (Xo, Yo, f(Xo, o)) parallel to (uy, ua, Dzf(xo, ¥o))
is the tangent line to f in the direction of & at (xo, yo).

It is instructive to consider each of three directions given in the definition in
terms of “slope.” The direction of ¢, is (1,0, fx(xo, ¥0)); that is, the “run” is one
unit in the x-direction and the “rise” is f,(xo, ¥o) units in the z-direction. Note
how the slope is just the partial derivative with respect to x. A similar statement
can be made for ¢,. The direction of ¢; is (u1, U2, Dz f(Xo,Y0)); the “run” is one
unit in the & direction (where 4 is a unit vector) and the “rise” is the directional
derivative of z in that direction.

Definition 12.7.1 leads to the following parametric equations of directional
tangent lines:

X=X+t X = Xo
L(t)=< y=yYo , Lt)=< y=yo+t
z = 29 + fi(Xo, Vo)t z =29+ f,(Xo, Yo)t

and (3(t)

Notes:

N\
- == j4 Rl S S OSSN
7 i e,
7
Wy

L
74
A

y

Figure 12.7.1: Showing various lines tan-
gent to a surface.

X = Xo + ust
Yy =Yyo+ ust
z = 2o + Dyf(xo0, yo)t
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Figure 12.7.2: A surface and directional
tangent lines in Example 12.7.1.
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Example 12.7.1 Finding directional tangent lines
Find the lines tangent to the surface z = sinxcosy at (7/2,7/2) in the x and y
directions and also in the direction of V = (—1,1) .

SOLUTION The partial derivatives with respect to x and y are:
fx(x,y) =cosxcosy = fi(m/2,7/2)=0
fy(x,y) = —sinxsiny = f,(n/2,7/2)=—1.

At (m/2,7/2), the z-value is 0.
Thus the parametric equations of the line tangent to fat (7/2,7/2) in the
directions of x and y are:

X=7/2+t x=m/2
&(t)—{ y=m/2 and Ey(t)—{ y=m/2+t .
z=0 z=—t

The two lines are shown with the surface in Figure 12.7.2(a). To find the equa-
tion of the tangent line in the direction of v, we first find the unit vector in the
direction of v: i = (—1/v/2,1/V/2). The directional derivative at (7/2, 7, 2) in
the direction of i/ is

Daf(r/2,m,2) = (0,-1) - (~1/v/2,1/V2) = ~1/V2.

Thus the directional tangent line is

X=1/2—t/\2
lg(t) = { y=7/2+t/\V2 .
z=—t/\V2

The curve through (7/2, /2, 0) in the direction of Vis shown in Figure 12.7.2(b)
along with ¢z(t).

Example 12.7.2 Finding directional tangent lines
Let f(x,y) = 4xy — x* — y*. Find the equations of all directional tangent lines to

fat(1,1).

SOLUTION First note that f(1, 1) = 2. We need to compute directional
derivatives, so we need Vf. We begin by computing partial derivatives.

fi=4y—43=£(1,1)=0; f,=4x—4>=F(1,1)=0.

Thus Vf(1,1) = (0,0). Let & = (uy, u>) be any unit vector. The directional
derivative of fat (1, 1) willbe Dz f(1,1) = (0,0)-{uy, u,) = 0. It does not matter

Notes:
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what direction we choose; the directional derivative is always 0. Therefore

X:1+U1t
L) ={ y=1+ut
z=2

Figure 12.7.3 shows a graph of f and the point (1,1,2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relative maximum at this point, hence its tangent line will have
a slope of 0. The following section investigates the points on surfaces where all
tangent lines have a slope of 0.

Normal Lines

When dealing with a function y = f(x) of one variable, we stated that a line
through (c, f(c)) was tangent to f if the line had a slope of f'(c) and was normal
(or, perpendicular, orthogonal) to fif it had a slope of —1/f’(c). We extend the
concept of normal, or orthogonal, to functions of two variables.

Let z = f(x,y) be a differentiable function of two variables. By Definition
12.7.1, at (Xo, Yo), /(t) is a line parallel to the vector dy = (1,0, f,(Xo, yo)) and
¢,(t) is a line parallel to d, = (0,1,,(xo,¥o)). Since lines in these directions
through (xo,yo,f(xo,yo)) are tangent to the surface, a line through this point
and orthogonal to these directions would be orthogonal, or normal, to the sur-
face. We can use this direction to create a normal line.

The direction of the normal line is orthogonal to 3,( and Hy, hence the direc-
tion is parallel to d, = dy X d,. It turns out this cross product has a very simple
form:

a‘X X ay = <1707fX> X <Oa 17fy> = <_fX7 _fy7 1> .

It is often more convenient to refer to the opposite of this direction, namely
(fx,fy, —1). This leads to a definition.

Notes:

Figure 12.7.3: Graphing f in Example
12.7.2.
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Definition 12.7.2 Normal Line
Let z = f(x, y) be differentiable on a set S containing (xo, yo) where
a = fy(xo,¥%0) and b= f,(xo,Y0)

are defined.

1. A nonzero vector parallel to i = (a, b, —1) is orthogonal to f at
P = (X07 yva(X07 yO)) .

2. The line £, through P with direction parallel to i is the normal line
tofath.

Thus the parametric equations of the normal line to a surface fat (xo, Yo, f(xo, yo))
is:

X =Xp + at
lo(t) = y=yo+bt
z:f(XanO) —t

Example 12.7.3 Finding a normal line
Find the equation of the normal linetoz = —x? — y? + 2 at (0, 1).

SOLUTION We find z4(x,y) = —2x and z,(x,y) = —2y; at (0,1), we
have z, = 0 and z, = —2. We take the direction of the normal line, follow-
ing Definition 12.7.2, to be i = (0, —2, —1). The line with this direction going
through the point (0,1, 1) is

x=0
l(t)y=¢ y=—-2t+1 or {,(t)=(0,-2,-1)t+(0,1,1).
z=-t+1
Figure 12.7.4: Graphing a surface with a The surface z = —x? — y? + 2, along with the found normal line, is graphed

normal line from Example 12.7.3. in Figure 12.7.4.

The direction of the normal line has many uses, one of which is the defini-
tion of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is a general
geometric concept to define the distance from Q to the surface as being the
length of the shortest line segment PQ over all points P on the surface. This, in
turn, implies that PQ will be orthogonal to the surface at P. Therefore we can
measure the distance from Q to the surface f by finding a point P on the surface
such that P_Q’ is parallel to the normal line to f at P.

Notes:

742



12.7 Tangent Lines, Normal Lines, and Tangent Planes

Example 12.7.4 Finding the distance from a point to a surface
Let f(x,y) = 2 —x* — y?> and let Q = (2,2, 2). Find the distance from Q to the
surface defined by f.

SOLUTION This surface is used in Example 12.7.2, so we know that at
(x,y), the direction of the normal line will be d, = (—2x,—2y,—1). Apoint Pon
the surface will have coordinates (x, y, 2—x>—y?), s0PQ = (2=x,2—y,x*+y?).
To find where F’_d is parallel to 3,,, we need to find x, y and ¢ such that cP_Cf = an.

cPQ = dj
c(2=x2—y,xX +y*) = (=2x,~2y,-1).

This implies
(2 —x) = —2x
c2-y)=-2
c(x*+y*)=-1

In each equation, we can solve for c:

—2x -2y @ -1
2—-x 2—y x4y

The first two fractions imply x = y, and so the last fraction can be rewritten as
c=—1/(2x?). Then
—2x -1
2—x 22
—2x(2¢*) = —1(2 — x)
4 =2—x

4 +x—2=0.

This last equation is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689,0.689, 1.051). We find the distance
from Q to the surface of fis

|1PQ || = /(2 —0.689)2 + (2 — 0.689)? + (2 — 1.051) = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a particular distance from a surface at a given point P on the
surface.

Notes:
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Figure 12.7.5: Graphing the surface in Ex-
ample 12.7.5 along with points 4 units
from the surface.
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Example 12.7.5 Finding a point a set distance from a surface

Letf(x,y) = x—y*+3. LetP = (2,1,£(2,1)) = (2,1,4). Find points Qin space
that are 4 units from the surface of fat P. That is, find Q such that || PQ || = 4
and PQis orthogonal to fat P.

SOLUTION We begin by finding partial derivatives:

fx(X7 y) =1 = fx(2, 1) =1
filxy) =2y =  f£(2,1)=-2

The vector i = (1, —2, —1) is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direction of 7

= <1/x@, —2//6, —1/\/6> ~ (0.408, —0.816, —0.408) .

Thus a the normal line to f at P can be written as
L,(t) = (2,1,4) 4+t (0.408,—0.816, —0.408) .

An advantage of this parametrization of the line is that letting t = ty gives a
point on the line that is |to| units from P. (This is because the direction of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Ql = gn (4) QZ = En(*4)
~ (3.63,—2.27,2.37) ~ (0.37,4.27,5.63)

width=150pt The surface is graphed along with points P, Q;, Q, and a portion of
the normal line to f at P.

Tangent Planes

We can use the direction of the normal line to define a plane. With a =
f«(X0,¥0), b = f,(xo0,¥0) and P = (xo,yo,f(Xo, ¥0)), the vector i = (a, b, —1)
is orthogonal to f at P. The plane through P with normal vector 7 is therefore
tangent to f at P.

Notes:



12.7 Tangent Lines, Normal Lines, and Tangent Planes

Definition 12.7.3 Tangent Plane

Let z = f(x,y) be differentiable on a set S containing (xo, yo), where
a = f(xo0,¥0), b = fy (X0, ¥0), i = (a,b, —1) and P = (xo, yo, f(Xo, ¥0)).

The plane through P with normal vector 1 is the tangent plane to f at P.
The standard form of this plane is

a(x —xo) + b(y — yo) — (z— f(x0,¥0)) = 0.

Example 12.7.6 Finding tangent planes
Find the equation of the tangent planeto z = —x* — y? + 2 at (0, 1).

SOLUTION Note that this is the same surface and point used in Exam-
ple 12.7.3. There we found i = (0, —2,—1) and P = (0,1, 1). Therefore the
equation of the tangent plane is

—2(y—-1)—(z—1)=0.

The surface z = —x?> —y?+2 and tangent plane are graphed in Figure 12.7.6.

Example 12.7.7 Using the tangent plane to approximate function values
The point (3, —1, 4) lies on the surface of an unknown differentiable function f
where f;(3,—1) = 2 and f,(3, —1) = —1/2. Find the equation of the tangent
plane to f at P, and use this to approximate the value of f(2.9, —0.8).

SOLUTION Knowing the partial derivatives at (3, —1) allows us to form
the normal vector to the tangent plane, i = (2, —1/2, —1). Thus the equation
of the tangent line to fat P is:

2(x—3)—1/2(y+1)—(z—4) =0 = z=2(x—3)—1/2(y+1)+4. (12.5)

Just as tangent lines provide excellent approximations of curves near their point
of intersection, tangent planes provide excellent approximations of surfaces near
their point of intersection. So f(2.9, —0.8) ~ z(2.9, —0.8) = 3.7.

This is not a new method of approximation. Compare the right hand expres-
sion for z in Equation (12.5) to the total differential:

dz=fudx+f,dy and z=_2 (x—3)+-1/2(y+1)+4.
N N e —

fx dx 5 dy

dz

Notes:

Figure 12.7.6: Graphing a surface with
tangent plane from Example 12.7.6.
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Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). As mentioned when studying the total differential, it is not uncommon
to know partial derivative information about a unknown function, and tangent
planes are used to give accurate approximations of the function.

The Gradient and Normal Lines, Tangent Planes

The methods developed in this section so far give a straightforward method
of finding equations of normal lines and tangent planes for surfaces with explicit
equations of the form z = f(x, y). However, they do not handle implicit equa-
tions well, such as x> + y? + z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

Definition 12.7.4 Gradient

Let w = F(x,y,z) be differentiable on a set D that contains the point
(X07y0; ZO)-

1. The gradient of Fis VF(x,y,z) = (fi(x,y,2),f,(x,¥,2),f:(x,¥,2)).

2. The gradient of F at (xo, yo, 2) is

v"'-()(07}/0720) = <fX(X05yOaZO)vfy(XOayO7ZO)7fZ(Xan0aZO)> .

Recall that when z = f(x, y), the gradient Vf = (f,, f,) is orthogonal to level
curves of f. An analogous statement can be made about the gradient VF, where
w = F(x,y,z). Given a point (xo, Yo, 2), let ¢ = F(xo, yo,20). Then F(x,y,z) =
c is a level surface that contains the point (xo, ¥, ). The following theorem
states that VF(xo, Yo, 20) is orthogonal to this level surface.

Theorem 12.7.1 The Gradient and Level Surfaces
Let w = F(x, y, ) be differentiable on a set D containing (xo, Yo, Zo) with

gradient VF, where F(xo, Yo, 20) = c.

The vector VF(xo, Yo, Zo) is orthogonal to the level surface F(x,y,z) = ¢
at (xo, Y0, 20)-

The gradient at a point gives a vector orthogonal to the surface at that point.
This direction can be used to find tangent planes and normal lines.

Notes:



12.7 Tangent Lines, Normal Lines, and Tangent Planes

Example 12.7.8 Using the gradient to find a tangent plane
X2 2
Find the equation of the plane tangent to the ellipsoid 5 + v + i 1 at

6
P=(1,2,1).

SOLUTION We consider the equation of the ellipsoid as a level surface

of a function F of three variables, where F(x,y, z) = 1‘—; + % + %. The gradient
is:

VF(x,y,2) = (Fx, Fy, Fz)
_ <x y z>
S \6’372/°
At P, the gradient is VF(1,2,1) = (1/6,2/3,1/2). Thus the equation of the
plane tangent to the ellipsoid at P is

1(x— 1)+

c 2(y—2)-i—%(z—1):0.

3
The ellipsoid and tangent plane are graphed in Figure 12.7.7.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximations. Normal lines also
have many uses. In this section we focused on using them to measure distances
from a surface. Another interesting application is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next section investigates another use of partial derivatives: determining
relative extrema. When dealing with functions of the form y = f(x), we found
relative extrema by finding x where f/(x) = 0. We can start finding relative
extrema of z = f(x, y) by setting f, and f, to 0, but it turns out that there is more
to consider.

Notes:

Figure 12.7.7: An ellipsoid and its tangent
plane at a point.
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Exercises 12.7

Terms and Concepts

1. Explain how the vector v = (1,0, 3) can be thought of as
having a “slope” of 3.

2. Explain how the vector V = (0.6,0.8, —2) can be thought
of as having a “slope” of —2.

3. T/F: Let z = f(x, y) be differentiable at P. If /i is a normal
vector to the tangent plane of f at P, then i is orthogonal
to 4y and ¢, at P.

4. Explain in your own words why we do not refer to the tan-

gent line to a surface at a point, but rather to directional
tangent lines to a surface at a point.

Problems
In Exercises 5 —8, a function z = f(x, y), a vector V and a point

P are given. Give the parametric equations of the following
directional tangent lines to f at P:

(a) &(t)
(b) £4,(1)

(c) ¢z (t), where U is the unit vector in the direction of V.
5. f(x,y) = 2Xy — 4xy*,V = (1,3), P = (2,3).
6. f(x,y) = 3cosxsiny, V= (1,2),P = (n/3,7/6).
7. f(x,y) =3x—5y,vV=(1,1),P = (4,2).
8. flx,y) =X — 22—y’ +4y,v=(1,1),P = (1,2).

In Exercises 9 — 12, a function z = f(x,y) and a point P are
given. Find the equation of the normal line to f at P. Note:
these are the same functions as in Exercises 5 — 8.
9. f(x,y) = 2%y — 4xy?, P = (2,3).

10. f(x,y) = 3cosxsiny, P = (7/3,7/6).

11. f(x,y) = 3x — 5y, P = (4,2).

12. f(x,y) =x* —2x—y* + 4y, P = (1,2).

In Exercises 13 — 16, a function z = f(x, y) and a point P are
given. Find the two points that are 2 units from the surface
fat P. Note: these are the same functions as in Exercises 5 —
8.

13. f(x,y) = 2%y — 4xy?, P = (2,3).

14. f(x,y) = 3cosxsiny, P = (7/3,7/6).

15. f(x,y) =3x — 5y, P = (4,2).

16. f(x,y) =x* —2x—y* + 4y, P = (1,2).

In Exercises 17 — 20, a function z = f(x, y) and a point P are
given. Find the equation of the tangent plane to f at P. Note:
these are the same functions as in Exercises 5 — 8.

17. f(x,y) = 28y — 4xy%, P = (2,3).

18. f(x,y) = 3cosxsiny, P = (n/3,7/6).

19. f(x,y) = 3x — 5y, P = (4,2).

20. f(x,y) =x* —2x — y* + 4y, P = (1,2).

In Exercises 21 — 24, an implicitly defined function of x, y and

z is given along with a point P that lies on the surface. Use
the gradient VF to:

(a) find the equation of the normal line to the surface at

P, and
(b) find the equation of the plane tangent to the surface
atP.
2 2 2
X y z
21. 4+ 4+ 2 —1,atP=(1,v2,V/6
R IRET: (1,v2,V6)
. Xy
22. 7 —Z—gzo,atP:(4,—3,ﬁ)

23. xy* — x> =0,atP = (2,1,-1)

24. sin(xy) + cos(yz) =0,atP = (2,7/12,4)



12.8 Extreme Values

Given a function z = f(x, y), we are often interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost function, we
would likely want to know what (x, y) values minimize the cost. If z represents
the ratio of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following definition.

Definition 12.8.1 Relative and Absolute Extrema

Let z = f(x,y) be defined on a set S containing the point P = (xo, yo).

1. If f(xo,¥0) > f(x,y) forall (x,y) in S, then f has an absolute maxi-
mum at P

If f(x0,¥0) < f(x,y) for all (x,y) in S, then f has an absolute mini-
mum at P.

2. If there is an open disk D containing P such that f(xo, yo) > f(x,y)
for all points (x,y) that are in both D and S, then f has a relative
maximum at P.

If there is an open disk D containing P such that f(xo, ¥o) < f(x,y)
for all points (x,y) that are in both D and S, then f has a relative
minimum at P.

3. If f has an absolute maximum or minimum at P, then f has an ab-
solute extrema at P.

If f has a relative maximum or minimum at P, then f has a relative
extrema at P.

If f has a relative or absolute maximum at P = (X, yo), it means every curve
on the surface of f through P will also have a relative or absolute maximum at P.
Recalling what we learned in Section 3.1, the slopes of the tangent lines to these
curves at P must be 0 or undefined. Since directional derivatives are computed
using f, and f,,, we are led to the following definition and theorem.

Definition 12.8.2 Critical Point

Let z = f(x, y) be continuous on a set S. A critical point P = (xo, yo) of f
is a point in S such that, at P,

* fx(x0,¥0) =0 andfy(XanO) =0,o0r

* fi(xo, ¥o) and/or f,(xo, ¥o) is undefined.

Notes:

12.8 Extreme Values
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Figure 12.8.1: The surface in Example
12.8.1 with its absolute minimum indi-
cated.
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Figure 12.8.2: The surface in Example
12.8.2 with its absolute maximum indi-
cated.
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Theorem 12.8.1 Critical Points and Relative Extrema

Let z = f(x,y) be defined on an open set S containing P = (xo, yo). If f
has a relative extrema at P, then P is a critical point of f.

Therefore, to find relative extrema, we find the critical points of f and de-
termine which correspond to relative maxima, relative minima, or neither. The
following examples demonstrate this process.

Example 12.8.1 Finding critical points and relative extrema
Let f(x,y) = x* + y*> — xy — x — 2. Find the relative extrema of f.

SOLUTION We start by computing the partial derivatives of f:

fily)=2x—y—1 and fy(x,y) =2y —x.
Each is never undefined. A critical point occurs when f, and f, are simultaneously
0, leading us to solve the following system of linear equations:
2x—y—1=0 and —x+2y=0.

This solution to this systemis x = 2/3,y = 1/3. (Check that at (2/3,1/3), both
fxandf, are0.)

The graph in Figure 12.8.1 shows f along with this critical point. It is clear
from the graph that this is a relative minimum; further consideration of the func-
tion shows that this is actually the absolute minimum.

Example 12.8.2 Finding critical points and relative extrema
Let f(x,y) = —v/x* + y? + 2. Find the relative extrema of f.

SOLUTION We start by computing the partial derivatives of f:

—X _y

S y) = \/TT)/Z and Hxy) = \/Tiyz

Itis clear that fy = Owhenx =0 &y # 0, and that f, = Owheny = 0 & x # 0.
At (0,0), both f, and f, are not 0, but rather undefined. The point (0, 0) is still a
critical point, though, because the partial derivatives are undefined. This is the
only critical point of f.

The surface of fis graphed in Figure 12.8.2 along with the point (0, 0, 2). The
graph shows that this point is the absolute maximum of f.

Notes:




In each of the previous two examples, we found a critical point of fand then
determined whether or not it was a relative (or absolute) maximum or minimum
by graphing. It would be nice to be able to determine whether a critical point
corresponded to a max or a min without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example 12.8.3 Finding critical points and relative extrema
Let f(x,y) = x> — 3x — y? + 4y. Find the relative extrema of f.

SOLUTION Once again we start by finding the partial derivatives of f:
f(x,y) =38 —3 and  f,(x,y) = -2y + 4.
Each is always defined. Setting each equal to 0 and solving for x and y, we find

filx,y) =0 =x==1
f,V(Xay):O :>y:2

We have two critical points: (—1,2) and (1, 2). To determine if they correspond
to a relative maximum or minimum, we consider the graph of fin Figure 12.8.3.

The critical point (—1, 2) clearly corresponds to a relative maximum. How-
ever, the critical point at (1, 2) is neither a maximum nor a minimum, displaying
a different, interesting characteristic.

If one walks parallel to the y-axis towards this critical point, then this point
becomes a relative maximum along this path. But if one walks towards this point
parallel to the x-axis, this point becomes a relative minimum along this path. A
point that seems to act as both a max and a min is a saddle point. A formal
definition follows.

Definition 12.8.3 Saddle Point

Let P = (X0, Yo) be in the domain of fwhere f, = 0 and f, = O at P. We
say P is a saddle point of f if, for every open disk D containing P, there
are points (x1,y1) and (xa,y) in D such that f(xo, yo) > f(x1,y1) and
f(x0,¥0) < f(x2,¥2)-

At a saddle point, the instantaneous rate of change in all directions is 0 and
there are points nearby with z-values both less than and greater than the z-value
of the saddle point.

Notes:

12.8 Extreme Values

Figure 12.8.3: The surface in Example
12.8.3 with both critical points marked.
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Before Example 12.8.3 we mentioned the need for a test to differentiate be-
tween relative maxima and minima. We now recognize that our test also needs
to account for saddle points. To do so, we consider the second partial derivatives
of f.

Recall that with single variable functions, such as y = f(x), if f”(c) > 0,
then if f is concave up at ¢, and if f'(c) = 0, then f has a relative minimum at
x = c. (We called this the Second Derivative Test.) Note that at a saddle point, it
seems the graph is “both” concave up and concave down, depending on which
direction you are considering.

It would be nice if the following were true:

fwandf,, >0 = relative minimum
fwandf,, <0 = relative maximum
fx and f,, have opposite signs = saddle point.

However, this is not the case. Functions f exist where f,, and f,, are both
positive but a saddle point still exists. In such a case, while the concavity in the
x-direction is up (i.e., fix > 0) and the concavity in the y-direction is also up (i.e.,
fyy > 0), the concavity switches somewhere in between the x- and y-directions.

To account for this, consider D = f,f,, — fyfyx- Since f,, and f,x are equal
when continuous (refer back to Theorem 12.3.1), we can rewrite this as D =
fufyy — fZ. D can be used to test whether the concavity at a point changes
depending on direction. If D > 0, the concavity does not switch (i.e., at that
point, the graph is concave up or down in all directions). If D < 0, the concavity
does switch. If D = 0, our test fails to determine whether concavity switches or
not. We state the use of D in the following theorem.

Theorem 12.8.2 Second Derivative Test

Let R be an open set on which a function z = f(x, y) and all its first and
second partial derivatives are defined, let P = (xo, yo) be a critical point
of fin R, and let

D = fu(X0, Yo)fyy (X0, Yo) — £2 (X0, Yo)-
1. If D > 0and fi(xo, ¥0) > 0, then f has a relative minimum at P.
2. If D > 0 and fi(xo, ¥0) < 0, then f has a relative maximum at P.
3. If D < 0, then f has a saddle point at P.

4. If D = 0, the test is inconclusive.

Notes:



We first practice using this test with the function in the previous example,
where we visually determined we had a relative maximum and a saddle point.

Example 12.8.4 Using the Second Derivative Test
Letf(x,y) = x3 —3x—y? +4y as in Example 12.8.3. Determine whether the func-
tion has a relative minimum, maximum, or saddle point at each critical point.

SOLUTION We determined previously that the critical points of f are
(—1,2) and (1,2). To use the Second Derivative Test, we must find the second
partial derivatives of f:

fx = 6X; fyy = =2 fxy =0.

Thus D(x,y) = —12x.

At (—1,2): D(—1,2) = 12 > 0,and fx(—1,2) = —6. By the Second Deriva-
tive Test, f has a relative maximum at (—1, 2).

At (1,2): D(1,2) = —12 < 0. The Second Derivative Test states that f has a
saddle point at (1, 2).

The Second Derivative Test confirmed what we determined visually.

Example 12.8.5 Using the Second Derivative Test
Find the relative extrema of f(x,y) = X%y + y? + xy.

SOLUTION We start by finding the first and second partial derivatives of
f:
f=2y+y  fy=x+2y+x
fo =2y fyy =2
fy=2x+1 fyx = 2x+ 1.

We find the critical points by finding where f, and f, are simultaneously 0 (they
are both never undefined). Setting f, = 0, we have:

=0 = 2xy+y=0 = y(2x+1)=0.

This implies that for f, = 0, eithery =0or2x+ 1 = 0.
Assume y = 0 then consider f, = O:

fy:0

X +2y+x= 0, and since y = 0, we have
X +x=0
x(x+1)=0.

Thus if y = 0, we have either x = 0 or x = —1, giving two critical points: (—1,0)
and (0,0).

Notes:

12.8 Extreme Values
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Figure 12.8.4: Graphing f from Example
12.8.5 and its relative extrema.
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Going back to fy, now assume 2x+ 1 = 0, i.e., that x = —1/2, then consider
fy=0:

fy =0
X +2y+x=0, and since x = —1/2, we have
1/4+2y—1/2=0
y=1/8.

Thus if x = —1/2, y = 1/8 giving the critical point (—1/2,1/8).

With D = 4y — (2x+1)?, we apply the Second Derivative Test to each critical
point.

At (—1,0),D < 0,s0 (—1,0) is a saddle point.

At (0,0), D < 0, so (0,0) is also a saddle point.

At(—1/2,1/8),D > Oand f,x > 0,s0 (—1/2,1/8) is a relative minimum.

Figure 12.8.4 shows a graph of f and the three critical points. Note how this
function does not vary much near the critical points — that is, visually it is diffi-
cult to determine whether a point is a saddle point or relative minimum (or even
a critical point at all!). This is one reason why the Second Derivative Test is so
important to have.

Constrained Optimization

When optimizing functions of one variable such as y = f(x), we made use of
Theorem 3.1.1, the Extreme Value Theorem, that said that over a closed inter-
val /, a continuous function has both a maximum and minimum value. To find
these maximum and minimum values, we evaluated f at all critical points in the
interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to functions of two variables. A
continuous function over a closed set also attains a maximum and minimum
value (see the following theorem). We can find these values by evaluating the
function at the critical values in the set and over the boundary of the set. After
formally stating this extreme value theorem, we give examples.

Theorem 12.8.3 Extreme Value Theorem

Letz = f(x, y) be a continuous function on a closed, bounded set S. Then
fhas a maximum and minimum value on S.

Example 12.8.6 Finding extrema on a closed set
Let f(x,y) = x* — y*> + 5 and let S be the triangle with vertices (—1, —2), (0, 1)
and (2, —2). Find the maximum and minimum values of fon S.

Notes:



SOLUTION It can help to see a graph of f along with the set S. In Figure
12.8.5(a) the triangle defining S is shown in the x-y plane in a dashed line. Above
it is the surface of f; we are only concerned with the portion of f enclosed by the
“triangle” on its surface.

We begin by finding the critical points of f. With fy = 2x and f, = —2y, we
find only one critical point, at (0, 0).

We now find the maximum and minimum values that f attains along the
boundary of S, that is, along the edges of the triangle. In Figure 12.8.5(b) we
see the triangle sketched in the plane with the equations of the lines forming its
edges labeled.

Start with the bottom edge, along the liney = —2. If yis —2, then on
the surface, we are considering points f(x, —2); that is, our function reduces to
flx,=2) = x* = (=2)* + 5 = x> + 1 = fy(x). We want to maximize/minimize
fi(x) = x> + 1 on the interval [—1, 2]. To do so, we evaluate f;(x) at its critical
points and at the endpoints.

The critical points of f; are found by setting its derivative equal to 0:

filx)=0 =x=0.
Evaluating f; at this critical point, and at the endpoints of [—1, 2] gives:
fi(-1)=2 = f(-1,-2)=2

f1(0)=1 = flo,—-2)=1

fi(2)=5 = f(2,-2) =5.
Notice how evaluating f; at a point is the same as evaluating f at its correspond-
ing point.

We need to do this process twice more, for the other two edges of the tri-

angle.
Along the left edge, along the line y = 3x 4 1, we substitute 3x + 1 in for y

in f(x,y):

fx,y) =fx,3x+1) =x* — 3x+1)> + 5= —8x" — bx + 4 = fr(x).
We want the maximum and minimum values of f, on the interval [—1, 0], so we
evaluate f, at its critical points and the endpoints of the interval. We find the
critical points:

fo(x)=—-16x—6=0 = x = —3/8.
Evaluate f, at its critical point and the endpoints of [—1,0]:
fa(-1)=2 = f(-1,-2)=2
fr(—3/8) = 41/8 = 5.125 =  f(—3/8,-0.125) = 5.125
f(0) =4 = f(0,1) = 4.

Notes:

12.8 Extreme Values

Figure 12.8.5: Plotting the surface of f
along with the restricted domain S in Ex-
ample 12.8.6.
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Figure 12.8.6: The surface of f along with
important points along the boundary of S
and the interior in Example 12.8.6.
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Finally, we evaluate f along the right edge of the triangle, wherey = —3/2x+
1.

Fx,y) = fx,—3/2x+ 1) = % — (=3/2x+ 1)> 45 = —;xz +3x 44 =),
The critical points of f3(x) are:

fix)=0 = x=6/5=12.
We evaluate f; at this critical point and at the endpoints of the interval [0, 2]:

f3(0) =4 = f(0,1)=4
f3(12)=58 =  f(1.2,-0.8) =538
f3(2) =5 =  f(2,-2)=5.

One last point to test: the critical point of £, (0,0). We find f(0,0) = 5.

We have evaluated f at a total of 7 different places, all shown in Figure 12.8.6.
We checked each vertex of the triangle twice, as each showed up as the end-
point of an interval twice. Of all the z-values found, the maximum is 5.8, found
at (1.2, —0.8); the minimum is 1, found at (0, —2).

This portion of the text is entitled “Constrained Optimization” because we
want to optimize a function (i.e., find its maximum and/or minimum values)
subject to a constraint — some limit to what values the function can attain. In
the previous example, we constrained ourselves by considering a function only
within the boundary of a triangle. This was largely arbitrary; the function and
the boundary were chosen just as an example, with no real “meaning” behind
the function or the chosen constraint.

However, solving constrained optimization problems is a very important topic
in applied mathematics. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

Example 12.8.7 Constrained Optimization
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed 130”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

SOLUTION Let w, h and ¢ denote the width, height and length of a rect-
angular box; we assume here that w = h. The girth is then 2(w + h) = 4w. The

Notes:
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volume of the box is V(w, ) = wh{ = w?{. We wish to maximize this volume
subject to the constraint 4w + ¢ < 130, or £ < 130 — 4w. (Common sense also
indicates that £ > 0, w > 0.)

We begin by finding the critical values of V. We find that V,, = 2w/ and

Vi, = w?; these are simultaneously 0 only at (0, 0). This gives a volume of 0, so 1%

we can ignore this critical point. (in thousands)
We now consider the volume along the constraint £ = 130 — 4w. Along this

line, we have: 80 -
V(w, £) = V(w, 130 — 4w) = w?(130 — 4w) = 130w* — 4w® = V;(w). 60

40

The constraint is applicable on the w-interval [0, 32.5] as indicated in the figure.

Thus we want to maximize V3 on [0, 32.5]. 203
Finding the critical values of V3, we take the derivative and set it equal to O: _—

20

v/ _ ' _ 260 -

1(w) =260w—12w" =0 = w(260—12w)=0 = w=0,— ~21.67.
12 Figure 12.8.7: Graphing the volume of a

box with girth 4w and length £, subject to

We found two critical values: when w = 0 and when w = 21.67. We again A )
a size constraint.

ignore the w = 0 solution; the maximum volume, subject to the constraint,
comes at w = h = 21.67, ¢ = 130 — 4(21.6) = 43.33. This gives a volume of
V(21.67,43.33) ~ 19, 408in>.

The volume function V(w, £) is shown in Figure 12.8.7 along with the con-
straint / = 130 — 4w. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the function. The point where the
volume is maximized is indicated.

It is hard to overemphasize the importance of optimization. In “the real
world,” we routinely seek to make something better. By expressing the some-
thing as a mathematical function, “making something better” means “optimize
some function.”

The techniques shown here are only the beginning of an incredibly important
field. Many functions that we seek to optimize are incredibly complex, making
the step of “find the gradient and set it equal to 0” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.

Notes:
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Exercises 12.8

Terms and Concepts

1. T/F: Theorem 12.8.1 states that if f has a critical point at P,
then f has a relative extrema at P.

2. T/F: A point Pis a critical point of fif f, and f, are both 0 at
P.

3. T/F: A point P is a critical point of fif f or f, are undefined
atP.

4. Explain what it means to “solve a constrained optimization”
problem.

Problems

In Exercises 5 — 14, find the critical points of the given func-
tion. Use the Second Derivative Test to determine if each crit-
ical point corresponds to a relative maximum, minimum, or
saddle point.

5. f(x,y) = X + 2" — 8y + 4x
6. f(x,y) = x* + 4x+y* — 9y + 3xy

7. f(x,y) = x* +3y* — 6y + 4xy

1

8. flx,y) = oyl

9. flx,y) =X +y =3y +1

1 1
10. f(x,y) = §x3 —x+ gy?’ — 4y

11. f(x,y) = X'y’

4 2 3
12. f(x,y) =x —2x"+y —27y—15
13. f(x,y) =

14. f(x.y) = Vo 12

16 — (x — 3)2 — y?

In Exercises 15 — 18, find the absolute maximum and mini-
mum of the function subject to the given constraint.

15. f(x,y) = X +y* + y + 1, constrained to the triangle with
vertices (0, 1), (—1,—1) and (1, —1).

16. f(x,y) = 5x — 7y, constrained to the region bounded by
y=x*andy=1.

17. f(x,y) = x> + 2x + y* + 2y, constrained to the region
bounded by the circle x> + y* = 4.

18. f(x,y) = 3y — 2x%, constrained to the region bounded by
the parabolay = x* + x — 1 and the liney = x.



