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12: FçÄ�ã®ÊÄÝ Ê¥ S�ò�Ù�½
V�Ù®��½�Ý

A funcƟon of the form y = f(x) is a funcƟon of a single variable; given a value
of x, we can find a value y. Even the vector–valued funcƟons of Chapter 11 are
single–variable funcƟons; the input is a single variable though the output is a
vector.

There are many situaƟons where a desired quanƟty is a funcƟon of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s baƫng average, one
needs to know the number of hits and the number of at–bats.

This chapter studies mulƟvariable funcƟons, that is, funcƟons with more
than one input.

12.1 IntroducƟon to MulƟvariable FuncƟons

DefiniƟon 12.1.1 FuncƟon of Two Variables

LetD be a subset ofR2. A funcƟon f of two variables is a rule that assigns
each pair (x, y) in D a value z = f(x, y) in R. D is the domain of f; the set
of all outputs of f is the range.

Example 12.1.1 Understanding a funcƟon of two variables
Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find the domain
and range of f.

SÊ½çã®ÊÄ Using the definiƟon f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1
f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2 for which
f is defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is R2.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0,−r) = r.) So the range
R of f is R.
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Figure 12.1.1: IllustraƟng the domain of
f(x, y) in Example 12.1.2.
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Figure 12.1.2: Graphing a funcƟon of two
variables.

Chapter 12 FuncƟons of Several Variables

Example 12.1.2 Understanding a funcƟon of two variables

Let f(x, y) =
√

1− x2

9
− y2

4
. Find the domain and range of f.

SÊ½çã®ÊÄ The domain is all pairs (x, y) allowable as input in f. Because
of the square–root, we need (x, y) such that 0 ≤ 1− x2

9 − y2
4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equaƟondescribes an ellipse and its interior as shown in Figure 12.1.1.
We can represent the domain D graphically with the figure; in set notaƟon, we
can write D = {(x, y)| x2

9 + y2
4 ≤ 1}.

The range is the set of all possible output values. The square–root ensures
that all output is≥ 0. Since the x and y terms are squared, then subtracted, in-
side the square–root, the largest output value comes at x = 0, y = 0: f(0, 0) =
1. Thus the range R is the interval [0, 1].

Graphing FuncƟons of Two Variables

The graph of a funcƟon f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by ploƫng points, but this has limitaƟons.
Consider Figure 12.1.2(a)where 25points havebeenploƩedof f(x, y) =

1
x2 + y2 + 1

.
More points have been ploƩed than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the funcƟon looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 12.1.2b which does a far beƩer job of illustraƟng
the behavior of f.

While technology is readily available to help us graph funcƟons of two vari-
ables, there is sƟll a paper–and–pencil approach that is useful to understand and
master as it, combined with high–quality graphics, gives one great insight into
the behavior of a funcƟon. This technique is known as sketching level curves.

Level Curves

It may be surprising to find that the problem of represenƟng a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 12.1.3, represent the surface
of Earth by indicaƟng points with the same elevaƟon with contour lines. The

Notes:

684



Figure 12.1.3: A topographical map dis-
plays elevaƟon by drawing contour lines,
along with the elevaƟon is constant.
Sample taken from the public domain USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.

12.1 IntroducƟon to MulƟvariable FuncƟons

elevaƟons marked are equally spaced; in this example, each thin line indicates
an elevaƟon change in 50Ō increments and each thick line indicates a change
of 200Ō. When lines are drawn close together, elevaƟon changes rapidly (as
one does not have to travel far to rise 50Ō). When lines are far apart, such as
near “Aspen Campground,” elevaƟon changesmore gradually as one has to walk
farther to rise 50Ō.

Given a funcƟon z = f(x, y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = c is a curve in the
x-y plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevaƟon” is changing.
Examples will help one understand this concept.

Example 12.1.3 Drawing Level Curves

Let f(x, y) =
√

1− x2

9
− y2

4
. Find the level curves of f for c = 0, 0.2, 0.4, 0.6,

0.8 and 1.

SÊ½çã®ÊÄ Consider first c = 0. The level curve for c = 0 is the set of
all points (x, y) such that 0 =

√
1− x2

9 − y2
4 . Squaring both sides gives us

x2

9
+

y2

4
= 1,

an ellipse centered at (0, 0)with horizontal major axis of length 6 andminor axis
of length 4. Thus for any point (x, y) on this curve, f(x, y) = 0.

Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

Notes:

685
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Figure 12.1.4: Graphing the level curves
in Example 12.1.3.

Chapter 12 FuncƟons of Several Variables

In general, for z = c, the level curve is:

c =
√

1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when c = 1;
there the ellipse is just the point (0, 0).

The level curves are shown in Figure 12.1.4(a). Note how the level curves for
c = 0 and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 12.1.4(b), the curves are drawn on a graph of f in space. Note how
the elevaƟons are evenly spaced. Near the level curves of c = 0 and c = 0.2 we
can see that f indeed is growing quickly.

Example 12.1.4 Analyzing Level Curves
Let f(x, y) =

x+ y
x2 + y2 + 1

. Find the level curves for z = c.

SÊ½çã®ÊÄ We begin by seƫng f(x, y) = c for an arbitrary c and seeing
if algebraic manipulaƟon of the equaƟon reveals anything significant.

x+ y
x2 + y2 + 1

= c

x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet clear. By
compleƟng the square, we can obtain:(

x− 1
2c

)2

+

(
y− 1

2c

)2

=
1
2c2

− 1,

a circle centered at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where |c| <

1/
√
2. The level curves for c = ±0.2, ±0.4 and ±0.6 are sketched in Figure

12.1.5(a). To help illustrate “elevaƟon,” we use thicker lines for c values near 0,
and dashed lines indicate where c < 0.

There is one special level curve, when c = 0. The level curve in this situaƟon
is x+ y = 0, the line y = −x.

Notes:

686



...

..

−5

.

5

.

−4

.

−2

.

2

.

4

.

c = 0

.

c = 0.2

.

c = 0.4

.

x

.

y

(a)

(b)

Figure 12.1.5: Graphing the level curves
in Example 12.1.4.
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In Figure 12.1.5(b) we see a graph of the surface. Note how the y-axis is
poinƟng away from the viewer to more closely resemble the orientaƟon of the
level curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x without
elevaƟon change, though the level curve does.

FuncƟons of Three Variables

We extend our study of mulƟvariable funcƟons to funcƟons of three vari-
ables. (One can make a funcƟon of as many variables as one likes; we limit our
study to three variables.)

DefiniƟon 12.1.2 FuncƟon of Three Variables

Let D be a subset of R3. A funcƟon f of three variables is a rule that
assigns each triple (x, y, z) inD a valuew = f(x, y, z) inR. D is thedomain
of f; the set of all outputs of f is the range.

Note how this definiƟon closely resembles that of DefiniƟon 12.1.1.

Example 12.1.5 Understanding a funcƟon of three variables

Let f(x, y, z) =
x2 + z+ 3 sin y
x+ 2y− z

. Evaluate f at the point (3, 0, 2) and find the
domain and range of f.

SÊ½çã®ÊÄ f(3, 0, 2) =
32 + 2+ 3 sin 0
3+ 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples (x, y, z)
for which f(x, y, z) is defined. As we cannot divide by 0, we find the domain D is

D = {(x, y, z) | x+ 2y− z ̸= 0}.

We recognize that the set of all points in R3 that are not in D form a plane in
space that passes through the origin (with normal vector ⟨1, 2,−1⟩).

We determine the range R isR; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near 0 we
can let y = 0 and choose z ≈ −x2. To get numbers of arbitrarily large magni-
tude, we can let z ≈ x+ 2y.

Notes:

687



c r
16. 0.25
8. 0.35
4. 0.5
2. 0.71
1. 1.
0.5 1.41
0.25 2.
0.125 2.83
0.0625 4.

Figure 12.1.6: A table of c values and the
corresponding radius r of the spheres of
constant value in Example 12.1.6.

Chapter 12 FuncƟons of Several Variables

Level Surfaces

It is very difficult to produce a meaningful graph of a funcƟon of three vari-
ables. A funcƟon of one variable is a curve drawn in 2 dimensions; a funcƟon of
two variables is a surface drawn in 3 dimensions; a funcƟon of three variables is
a hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface at w = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example 12.1.6 Finding level surfaces
If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.
Let k = 1; find the level surfaces of I.

SÊ½çã®ÊÄ Wecan (mostly) answer this quesƟonusing “common sense.”
If energy (say, in the form of light) is emanaƟng from the origin, its intensity will
be the same at all points equidistant from the origin. That is, at any point on
the surface of a sphere centered at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathemaƟcally. The level surface at I = c is defined by

c =
1

x2 + y2 + z2
.

A small amount of algebra reveals

x2 + y2 + z2 =
1
c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c, centered

at the origin.
Figure 12.1.6 gives a table of the radii of the spheres for given c values. Nor-

mally onewould use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 – not much
at all. To again halve the intensity, one moves 0.15, a liƩle more than before.

Note how each Ɵme the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes.

In the next secƟon we apply the concepts of limits to funcƟons of two or
more variables.

Notes:
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Exercises 12.1
Terms and Concepts
1. Give two examples (other than those given in the text) of

“real world” funcƟons that require more than one input.

2. The graph of a funcƟon of two variables is a .

3. Most people are familiar with the concept of level curves in
the context of maps.

4. T/F: Along a level curve, the output of a funcƟon does not
change.

5. The analogue of a level curve for funcƟons of three vari-
ables is a level .

6. What does it mean when level curves are close together?
Far apart?

Problems
In Exercises 7 – 14, give the domain and range of the mulƟ-
variable funcƟon.

7. f(x, y) = x2 + y2 + 2

8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y

10. f(x, y) = 1
x+ 2y

11. f(x, y) = 1
x2 + y2 + 1

12. f(x, y) = sin x cos y

13. f(x, y) =
√

9− x2 − y2

14. f(x, y) = 1√
x2 + y2 − 9

In Exercises 15 – 22, describe in words and sketch the level
curves for the funcƟon and given c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2

16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2

18. f(x, y) = 1− x2 − y2

2y− 2x
; c = −2, 0, 2

19. f(x, y) = 2x− 2y
x2 + y2 + 1

; c = −1, 0, 1

20. f(x, y) = y− x3 − 1
x

; c = −3,−1, 0, 1, 3

21. f(x, y) =
√

x2 + 4y2; c = 1, 2, 3, 4

22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

In Exercises 23 – 26, give the domain and range of the func-
Ɵons of three variables.

23. f(x, y, z) = x
x+ 2y− 4z

24. f(x, y, z) = 1
1− x2 − y2 − z2

25. f(x, y, z) =
√

z− x2 + y2

26. f(x, y, z) = z2 sin x cos y

In Exercises 27 – 30, describe the level surfaces of the given
funcƟons of three variables.

27. f(x, y, z) = x2 + y2 + z2

28. f(x, y, z) = z− x2 + y2

29. f(x, y, z) = x2 + y2

z

30. f(x, y, z) = z
x− y

31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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Figure 12.2.1: IllustraƟng open and
closed sets in the x-y plane.

Chapter 12 FuncƟons of Several Variables

12.2 Limits andConƟnuity ofMulƟvariable FuncƟons
We conƟnue with the paƩern we have established in this text: aŌer defining a
new kind of funcƟon, we apply calculus ideas to it. The previous secƟon defined
funcƟons of two and three variables; this secƟon invesƟgates what it means for
these funcƟons to be “conƟnuous.”

We begin with a series of definiƟons. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definiƟons for open and closed sets in the x-y plane.

DefiniƟon 12.2.1 Open Disk, Boundary and Interior Points,
Open and Closed Sets, Bounded Sets

An open disk B in R2 centered at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y− y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of S
if all open disks centered at P contain both points in S and points not in S.

A point P in S is an interior point of S if there is an open disk centered at
P that contains only points in S.

A set S is open if every point in S is an interior point.

A set S is closed if it contains all of its boundary points.

A set S is bounded if there is an M > 0 such that the open disk, cen-
tered at the origin with radius M, contains S. A set that is not bounded
is unbounded.

Figure 12.2.1 shows several sets in the x-y plane. In each set, point P1 lies on
the boundary of the set as all open disks centered there contain both points in,
and not in, the set. In contrast, point P2 is an interior point for there is an open
disk centered there that lies enƟrely within the set.

The set depicted in Figure 12.2.1(a) is a closed set as it contains all of its
boundary points. The set in (b) is open, for all of its points are interior points
(or, equivalently, it does not contain any of its boundary points). The set in (c)
is neither open nor closed as it contains some of its boundary points.

Notes:
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Figure 12.2.2: Sketching the domain of
the funcƟon in Example 12.2.2.

Note: While our first limit definiƟon was
defined over an open interval, we now
define limits over a set S in the plane
(where S does not have to be open). As
planar sets can be far more complicated
than intervals, our definiƟon adds the re-
stricƟon “. . . where every open disk cen-
tered at P contains points in S other than
P.” In this text, all sets we’ll consider will
saƟsfy this condiƟon andwewon’t bother
to check; it is included in the definiƟon for
completeness.

12.2 Limits and ConƟnuity of MulƟvariable FuncƟons

Example 12.2.1 Determining open/closed, bounded/unbounded
Determine if the domain of the funcƟon f(x, y) =

√
1− x2/9− y2/4 is open,

closed, or neither, and if it is bounded.

SÊ½çã®ÊÄ This domain of this funcƟon was found in Example 12.1.2 to
be D = {(x, y) | x2

9 + y2
4 ≤ 1}, the region bounded by the ellipse x2

9 + y2
4 = 1.

Since the region includes the boundary (indicated by the use of “≤”), the set
contains all of its boundary points and hence is closed. The region is bounded
as a disk of radius 4, centered at the origin, contains D.

Example 12.2.2 Determining open/closed, bounded/unbounded
Determine if the domain of f(x, y) = 1

x−y is open, closed, or neither.

SÊ½çã®ÊÄ As we cannot divide by 0, we find the domain to be D =
{(x, y) | x− y ̸= 0}. In other words, the domain is the set of all points (x, y) not
on the line y = x.

The domain is sketched in Figure 12.2.2. Note how we can draw an open
disk around any point in the domain that lies enƟrely inside the domain, and
also note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded.

Limits

Recall a pseudo–definiƟonof the limit of a funcƟonof one variable: “lim
x→c

f(x) =
L” means that if x is “really close” to c, then f(x) is “really close” to L. A similar
pseudo–definiƟon holds for funcƟons of two variables. We’ll say that

“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is really
close to L.” The formal definiƟon is given below.

DefiniƟon 12.2.2 Limit of a FuncƟon of Two Variables

Let S be a set containing P = (x0, y0) where every open disk centered at
P contains points in S other than P, let f be a funcƟon of two variables
defined on S, except possibly at P, and let L be a real number. The limit
of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

means that given any ε > 0, there exists δ > 0 such that for all (x, y) in
S, where (x, y) ̸= (x0, y0), if (x, y) is in the open disk centered at (x0, y0)
with radius δ, then |f(x, y)− L| < ε.

Notes:
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Figure 12.2.3: IllustraƟng the definiƟon
of a limit. The open disk in the x-y plane
has radius δ. Let (x, y) be any point in this
disk; f(x, y) is within ε of L.

Chapter 12 FuncƟons of Several Variables

The concept behind DefiniƟon 12.2.2 is sketched in Figure 12.2.3. Given ε >
0, find δ > 0 such that if (x, y) is any point in the open disk centered at (x0, y0)
in the x-y plane with radius δ, then f(x, y) should be within ε of L.

CompuƟng limits using this definiƟon is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Theorem 12.2.1 Basic Limit ProperƟes of FuncƟons of Two
Variables

Let b, x0, y0, L and K be real numbers, let n be a posiƟve integer, and let
f and g be funcƟons with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. IdenƟty lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L± K

4. Scalar MulƟples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. QuoƟents: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combined with Theorems 1.3.2 and 1.3.3 of SecƟon 1.3, al-
lows us to evaluate many limits.

Example 12.2.3 EvaluaƟng a limit
Evaluate the following limits:

1. lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
2. lim

(x,y)→(0,0)

3xy
x2 + y2

Notes:
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SÊ½çã®ÊÄ

1. The aforemenƟoned theorems allow us to simply evaluate y/x+ cos(xy)
when x = 1 and y = π. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
=

π

1
+ cos π

= π − 1.

2. We aƩempt to evaluate the limit by subsƟtuƟng 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit.

When dealing with funcƟons of a single variable we also considered one–
sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direcƟon, the leŌ or the right.

In the plane, there are infinitely many direcƟons from which (x, y) might
approach (x0, y0). In fact, we do not have to restrict ourselves to approaching
(x0, y0) from a parƟcular direcƟon, but rather we can approach that point along
a path that is not a straight line. It is possible to arrive at different limiƟng val-
ues by approaching (x0, y0) along different paths. If this happens, we say that

lim
(x,y)→(x0,y0)

f(x, y) does not exist (this is analogous to the leŌ and right hand limits

of single variable funcƟons not being equal).
Our theorems tell us that we can evaluate most limits quite simply, without

worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiƟng value is obtained regardless of the path chosen. The case where
the limit does not exist is oŌen easier to deal with, for we can oŌen pick two
paths along which the limit is different.

Example 12.2.4 Showing limits do not exist

1. Show lim
(x,y)→(0,0)

3xy
x2 + y2

does not exist by finding the limits along the lines
y = mx.

Notes:
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2. Show lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist by finding the limit along the path

y = − sin x.

SÊ½çã®ÊÄ

1. EvaluaƟng lim
(x,y)→(0,0)

3xy
x2 + y2

along the lines y = mxmeans replace all y’s

withmx and evaluaƟng the resulƟng limit:

lim
(x,mx)→(0,0)

3x(mx)
x2 + (mx)2

= lim
x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m
m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit for each
choice of m. That is, along different lines we get differing limiƟng values,
meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does not exist

by finding the limit along the path y = − sin x. First, however, consider
the limits found along the lines y = mx as done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)
x(m+ 1)

= lim
x→0

sin(mx2)
x

· 1
m+ 1

.

By applying L’Hôpital’s Rule, we can show this limit is 0 except whenm =
−1, that is, along the line y = −x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, lim

(x,y)→(0,0)
f(x, y) = 0.

Now consider the limit along the path y = − sin x:

lim
(x,− sin x)→(0,0)

sin
(
− x sin x

)
x− sin x

= lim
x→0

sin
(
− x sin x

)
x− sin x

Now apply L’Hôpital’s Rule twice:

= lim
x→0

cos
(
− x sin x

)
(− sin x− x cos x)

1− cos x
(“ = 0/0”)

= lim
x→0

− sin
(
− x sin x

)
(− sin x− x cos x)2 + cos

(
− x sin x

)
(−2 cos x+ x sin x)

sin x
= “−2/0” ⇒ the limit does not exist.

Notes:
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Step back and consider what we have just discovered. Along any line y =
mx in the domain of the f(x, y), the limit is 0. However, along the path
y = − sin x, which lies in the domain of f(x, y) for all x ̸= 0, the limit does
not exist. Since the limit is not the same along every path to (0, 0), we say

lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist.

Example 12.2.5 Finding a limit

Let f(x, y) =
5x2y2

x2 + y2
. Find lim

(x,y)→(0,0)
f(x, y).

SÊ½çã®ÊÄ It is relaƟvely easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply DefiniƟon 12.2.2. Let ε > 0 be given. We
want to find δ > 0 such that if

√
(x− 0)2 + (y− 0)2 < δ, then |f(x, y)−0| < ε.

Set δ <
√

ε/5. Note that
∣∣∣∣ 5y2

x2 + y2

∣∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.
Let
√
(x− 0)2 + (y− 0)2 =

√
x2 + y2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2x2 + y2

− 0
∣∣∣∣

=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√
(x− 0)2 + (y− 0)2 < δ then |f(x, y) − 0| < ε, which is what we

wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2 + y2
= 0.

ConƟnuity

DefiniƟon 1.5.1 defines what it means for a funcƟon of one variable to be
conƟnuous. In brief, it meant that the graph of the funcƟon did not have breaks,
holes, jumps, etc. We define conƟnuity for funcƟons of two variables in a similar
way as we did for funcƟons of one variable.

Notes:
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DefiniƟon 12.2.3 ConƟnuous

Let a funcƟon f(x, y) be defined on a set S containing the point (x0, y0).

1. f is conƟnuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is conƟnuous on S if f is conƟnuous at all points in S. If f is conƟn-
uous at all points in R2, we say that f is conƟnuous everywhere.

Example 12.2.6 ConƟnuity of a funcƟon of two variables

Let f(x, y) =

{ cos y sin x
x x ̸= 0
cos y x = 0 . Is f conƟnuous at (0, 0)? Is f conƟnuous

everywhere?

SÊ½çã®ÊÄ To determine if f is conƟnuous at (0, 0), we need to compare
lim

(x,y)→(0,0)
f(x, y) to f(0, 0).

Applying the definiƟon of f, we see that f(0, 0) = cos 0 = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). SubsƟtuƟng 0 for x and y in

(cos y sin x)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit.

Consider two related limits: lim
(x,y)→(0,0)

cos y and lim
(x,y)→(0,0)

sin x
x

. The first

limit does not contain x, and since cos y is conƟnuous,

lim
(x,y)→(0,0)

cos y = lim
y→0

cos y = cos 0 = 1.

The second limit does not contain y. By Theorem 1.3.5 we can say

lim
(x,y)→(0,0)

sin x
x

= lim
x→0

sin x
x

= 1.

Finally, Theorem 12.2.1 of this secƟon states that we can combine these two
limits as follows:

lim
(x,y)→(0,0)

cos y sin x
x

= lim
(x,y)→(0,0)

(cos y)
(
sin x
x

)
=

(
lim

(x,y)→(0,0)
cos y

)(
lim

(x,y)→(0,0)

sin x
x

)
= (1)(1)
= 1.

Notes:
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Figure 12.2.4: A graph of f(x, y) in Exam-
ple 12.2.6.

12.2 Limits and ConƟnuity of MulƟvariable FuncƟons

We have found that lim
(x,y)→(0,0)

cos y sin x
x

= f(0, 0), so f is conƟnuous at

(0, 0).
A similar analysis shows that f is conƟnuous at all points in R2. As long as

x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is conƟnuous everywhere. A graph
of f is given in Figure 12.2.4. NoƟce how it has no breaks, jumps, etc.

The following theorem is very similar to Theorem 1.5.1, giving us ways to
combine conƟnuous funcƟons to create other conƟnuous funcƟons.

Theorem 12.2.2 ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous on a set S, let c be a real number, and let n be
a posiƟve integer. The following funcƟons are conƟnuous on S.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as longs as g ̸= 0 on S)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on S; if n is odd,

then true for all values of f on S.)

7. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on S, where the range of f on S is
J, and let g be a single variable funcƟon that is
conƟnuous on J. Then g ◦ f, i.e., g(f(x, y)), is
conƟnuous on S.

Example 12.2.7 Establishing conƟnuity of a funcƟon
Let f(x, y) = sin(x2 cos y). Show f is conƟnuous everywhere.

SÊ½çã®ÊÄ Wewill apply both Theorems 1.5.1 and 12.2.2. Let f1(x, y) =
x2. Since y is not actually used in the funcƟon, and polynomials are conƟnuous
(by Theorem 1.5.1), we conclude f1 is conƟnuous everywhere. A similar state-
ment can be made about f2(x, y) = cos y. Part 3 of Theorem 12.2.2 states that
f3 = f1 · f2 is conƟnuous everywhere, and Part 7 of the theorem states the
composiƟon of sine with f3 is conƟnuous: that is, sin(f3) = sin(x2 cos y) is con-
Ɵnuous everywhere.

Notes:
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FuncƟons of Three Variables

The definiƟons and theorems given in this secƟon can be extended in a natu-
ral way to definiƟons and theorems about funcƟons of three (ormore) variables.
We cover the key concepts here; some terms from DefiniƟons 12.2.1 and 12.2.3
are not redefined but their analogous meanings should be clear to the reader.

DefiniƟon 12.2.4 Open Balls, Limit, ConƟnuous

1. An open ball in R3 centered at (x0, y0, z0) with radius r is the set of all
points (x, y, z) such that

√
(x− x0)2 + (y− y0)2 + (z− z0)2 = r.

2. Let D be a set in R3 containing (x0, y0, z0) where every open ball cen-
tered at (x0, y0, z0) contains points of D other than (x0, y0, z0), and let
f(x, y, z) be a funcƟon of three variables defined on D, except possibly
at (x0, y0, z0). The limit of f(x, y, z) as (x, y, z) approaches (x0, y0, z0) is
L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

means that given any ε > 0, there is a δ > 0 such that for all (x, y, z)
in D, (x, y, z) ̸= (x0, y0, z0), if (x, y, z) is in the open ball centered at
(x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on a set D containing (x0, y0, z0). f is conƟnuous
at (x0, y0, z0) if lim

(x,y,z)→(x0,y0,z0)
f(x, y, z) = f(x0, y0, z0); if f is conƟnuous

at all points in D, we say f is conƟnuous on D.

These definiƟons can also be extended naturally to apply to funcƟons of four
or more variables. Theorem 12.2.2 also applies to funcƟon of three or more
variables, allowing us to say that the funcƟon

f(x, y, z) =
ex

2+y
√

y2 + z2 + 3
sin(xyz) + 5

is conƟnuous everywhere.
When considering single variable funcƟons, we studied limits, then conƟnu-

ity, then the derivaƟve. In our current study of mulƟvariable funcƟons, we have
studied limits and conƟnuity. In the next secƟon we study derivaƟon, which
takes on a slight twist as we are in a mulƟvarible context.

Notes:
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Exercises 12.2
Terms and Concepts
1. Describe in your ownwords the difference between bound-

ary and interior points of a set.

2. Use your own words to describe (informally) what
lim

(x,y)→(1,2)
f(x, y) = 17 means.

3. Give an example of a closed, bounded set.

4. Give an example of a closed, unbounded set.

5. Give an example of a open, bounded set.

6. Give an example of a open, unbounded set.

Problems
In Exercises 7 – 10, a set S is given.

(a) Give one boundary point and one interior point, when
possible, of S.

(b) State whether S is open, closed, or neither.
(c) State whether S is bounded or unbounded.

7. S =
{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y− 3)2

9
≤ 1

}

8. S =
{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) | x2 + y2 = 1

}
10. S = {(x, y)|y > sin x}

In Exercises 11 – 14:
(a) Find the domain D of the given funcƟon.
(b) State whether D is an open or closed set.
(c) State whether D is bounded or unbounded.

11. f(x, y) =
√

9− x2 − y2

12. f(x, y) =
√

y− x2

13. f(x, y) = 1√
y− x2

14. f(x, y) = x2 − y2

x2 + y2

In Exercises 15 – 20, a limit is given. Evaluate the limit along
the paths given, then state why these results show the given
limit does not exist.

15. lim
(x,y)→(0,0)

x2 − y2

x2 + y2

(a) Along the path y = 0.
(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+ y
x− y

(a) Along the path y = mx.

17. lim
(x,y)→(0,0)

xy− y2

y2 + x

(a) Along the path y = mx.
(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.
(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

(a) Along the path y = 2.
(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin x
cos y

(a) Along the path x = π.
(b) Along the path y = x− π/2.
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(a)

(b)

Figure 12.3.1: By fixing y = 2, the surface
f(x, y) = x2 + 2y2 is a curve in space.

Alternate notaƟons for fx(x, y) include:

∂

∂x
f(x, y), ∂f

∂x
,

∂z
∂x

, and zx,

with similar notaƟons for fy(x, y). For
ease of notaƟon, fx(x, y) is oŌen abbre-
viated fx.

Chapter 12 FuncƟons of Several Variables

12.3 ParƟal DerivaƟves

Let y be a funcƟon of x. We have studied in great detail the derivaƟve of y with
respect to x, that is, dy

dx , whichmeasures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This secƟon begins our invesƟgaƟon into these rates
of change.

Consider the funcƟon z = f(x, y) = x2 + 2y2, as graphed in Figure 12.3.1(a).
By fixing y = 2, we focus our aƩenƟon to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x, 2) = x2 + 8 which is a funcƟon of just one variable. We
can take the derivaƟve of zwith respect to x along this curve and find equaƟons
of tangent lines, etc.

The key noƟon to extract from this example is: by treaƟng y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of parƟal derivaƟves. We state the formal,
limit–based definiƟon first, then show how to compute these parƟal derivaƟves
without directly taking limits.

DefiniƟon 12.3.1 ParƟal DerivaƟve

Let z = f(x, y) be a conƟnuous funcƟon on a set S in R2.

1. The parƟal derivaƟve of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

.

2. The parƟal derivaƟve of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y+ h)− f(x, y)
h

.

Example 12.3.1 CompuƟng parƟal derivaƟves with the limit definiƟon
Let f(x, y) = x2y+ 2x+ y3. Find fx(x, y) using the limit definiƟon.

Notes:
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12.3 ParƟal DerivaƟves

SÊ½çã®ÊÄ Using DefiniƟon 12.3.1, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)2y+ 2(x+ h) + y3 − (x2y+ 2x+ y3)
h

= lim
h→0

x2y+ 2xhy+ h2y+ 2x+ 2h+ y3 − (x2y+ 2x+ y3)
h

= lim
h→0

2xhy+ h2y+ 2h
h

= lim
h→0

2xy+ hy+ 2

= 2xy+ 2.

We have found fx(x, y) = 2xy+ 2.

Example 12.3.1 found a parƟal derivaƟve using the formal, limit–based def-
iniƟon. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivaƟves to compute parƟal derivaƟves easily. When comput-
ing fx(x, y), we hold y fixed – it does not vary. Therefore we can compute the
derivaƟve with respect to x by treaƟng y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treaƟng y

as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treaƟng y as a

constant. More examples will help make this clear.

Example 12.3.2 Finding parƟal derivaƟves
Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin x

3. f(x, y) = ex
2y3
√
x2 + 1

SÊ½çã®ÊÄ

1. We have f(x, y) = x3y2 + 5y2 − x+ 7.
Begin with fx(x, y). Keep y fixed, treaƟng it as a constant or coefficient, as
appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero.

Notes:
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To compute fy(x, y), we hold x fixed:

fy(x, y) = 2x3y+ 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin x.
Begin with fx(x, y). We need to apply the Chain Rule with the cosine term;
y2 is the coefficient of the x-term inside the cosine funcƟon.

fx(x, y) = − sin(xy2)(y2) + cos x = −y2 sin(xy2) + cos x.

To find fy(x, y), note that x is the coefficient of the y2 term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3
√
x2 + 1.

Beginning with fx(x, y), note how we need to apply the Product Rule.

fx(x, y) = ex
2y3(2xy3)

√
x2 + 1+ ex

2y3 1
2
(
x2 + 1

)−1/2
(2x)

= 2xy3ex
2y3
√

x2 + 1+
xex

2y3

√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Product Rule;
since

√
x2 + 1 does not contain y, we treat it as fixed and hence becomes

a coefficient of the ex2y3 term.

fy(x, y) = ex
2y3(3x2y2)

√
x2 + 1 = 3x2y2ex

2y3
√

x2 + 1.

We have shown how to compute a parƟal derivaƟve, but it may sƟll not be
clear what a parƟal derivaƟve means. Given z = f(x, y), fx(x, y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your locaƟon, you might walk up, sharply down, or perhaps not
change elevaƟon at all. This is similar to measuring zx: you are moving only east
(in the “x”-direcƟon) and not north/south at all. Going back to your original lo-
caƟon, imagine now walking due north (in the “y”-direcƟon). Perhaps walking
due north does not change your elevaƟon at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

Notes:
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(a)

(b)

Figure 12.3.2: IllustraƟng the meaning of
parƟal derivaƟves.

12.3 ParƟal DerivaƟves

The following example helps us visualize this more.

Example 12.3.3 EvaluaƟng parƟal derivaƟves
Let z = f(x, y) = −x2 − 1

2y
2 + xy + 10. Find fx(2, 1) and fy(2, 1) and interpret

their meaning.

SÊ½çã®ÊÄ We begin by compuƟng fx(x, y) = −2x + y and fy(x, y) =
−y+ x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these numbers
mean?

Consider fx(2, 1) = −3, along with Figure 12.3.2(a). If one “stands” on the
surface at the point (2, 1, 7.5) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is −3.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider fy(2, 1) = 1, illustrated in Figure 12.3.2(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Since the magnitude of fx is greater than the magnitude of fy at (2, 1), it is
“steeper” in the x-direcƟon than in the y-direcƟon.

Second ParƟal DerivaƟves

Let z = f(x, y). We have learned to find the parƟal derivaƟves fx(x, y) and
fy(x, y), which are each funcƟons of x and y. Thereforewe can take parƟal deriva-
Ɵves of them, each with respect to x and y. We define these “second parƟals”
along with the notaƟon, give examples, then discuss their meaning.

Notes:
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Note: The terms in DefiniƟon 12.3.2
all depend on limits, so each definiƟon
comes with the caveat “where the limit
exists.”

Chapter 12 FuncƟons of Several Variables

DefiniƟon 12.3.2 Second ParƟal DerivaƟve, Mixed ParƟal
DerivaƟve

Let z = f(x, y) be conƟnuous on a set S.

1. The second parƟal derivaƟve of f with respect to x then x is

∂

∂x

(
∂f
∂x

)
=

∂2f
∂x2

=
(
fx
)
x = fxx

2. The second parƟal derivaƟve of f with respect to x then y is

∂

∂y

(
∂f
∂x

)
=

∂2f
∂y∂x

=
(
fx
)
y = fxy

Similar definiƟons hold for
∂2f
∂y2

= fyy and
∂2f
∂x∂y

= fyx.

The second parƟal derivaƟves fxy and fyx aremixed parƟal derivaƟves.

The notaƟon of second parƟal derivaƟves gives some insight into the nota-
Ɵon of the second derivaƟve of a funcƟon of a single variable. If y = f(x), then

f ′′(x) =
d2y
dx2

. The “d2y” porƟon means “take the derivaƟve of y twice,” while
“dx2” means “with respect to x both Ɵmes.” When we only know of funcƟons of
a single variable, this laƩer phrase seems silly: there is only one variable to take
the derivaƟve with respect to. Now that we understand funcƟons of mulƟple
variables, we see the importance of specifying which variables we are referring
to.

Example 12.3.4 Second parƟal derivaƟves
For each of the following, find all six first and second parƟal derivaƟves. That is,
find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos x

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

SÊ½çã®ÊÄ In each, we give fx and fy immediately and then spend Ɵme de-
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12.3 ParƟal DerivaƟves

riving the second parƟal derivaƟves.

1. f(x, y) = x3y2 + 2xy3 + cos x
fx(x, y) = 3x2y2 + 2y3 − sin x
fy(x, y) = 2x3y+ 6xy2

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
3x2y2 + 2y3 − sin x

)
= 6xy2 − cos x

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
2x3y+ 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(
3x2y2 + 2y3 − sin x

)
= 6x2y+ 6y2

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
2x3y+ 6xy2

)
= 6x2y+ 6y2

2. f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(3x2
y2
)
=

6x
y2

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
− 2x3

y3
)
=

6x3

y4

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(3x2
y2
)
= −6x2

y3

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
− 2x3

y3
)
= −6x2

y3

3. f(x, y) = ex sin(x2y)
Because the following parƟal derivaƟves get rather long, weomit the extra
notaƟon and just give the results. In several cases, mulƟple applicaƟons
of the Product and Chain Rules will be necessary, followed by some basic
combinaƟon of like terms.
fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)
fy(x, y) = x2ex cos(x2y)
fxx(x, y) = ex sin(x2y)+ 4xyex cos(x2y)+ 2yex cos(x2y)− 4x2y2ex sin(x2y)
fyy(x, y) = −x4ex sin(x2y)
fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)
fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)

Notes:
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Chapter 12 FuncƟons of Several Variables

NoƟce how in each of the three funcƟons in Example 12.3.4, fxy = fyx. Due
to the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

Theorem 12.3.1 Mixed ParƟal DerivaƟves

Let f be defined such that fxy and fyx are conƟnuous on a set S. Then for
each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second ParƟal DerivaƟves

Now that we know how to find second parƟals, we invesƟgatewhat they tell
us.

Again we refer back to a funcƟon y = f(x) of a single variable. The second
derivaƟve of f is “the derivaƟve of the derivaƟve,” or “the rate of change of the
rate of change.” The second derivaƟve measures how much the derivaƟve is
changing. If f ′′(x) < 0, then the derivaƟve is geƫng smaller (so the graph of f is
concave down); if f ′′(x) > 0, then the derivaƟve is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and fyy
as could be made about f ′′(x) above. When taking derivaƟves with respect to
x twice, we measure how much fx changes with respect to x. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direcƟon. Using the analogy of standing in the rolling meadow
used earlier in this secƟon, fxx measures whether one’s path is concave up/down
when walking due east.

Similarly, fyy measures the concavity in the y-direcƟon. If fyy(x, y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direcƟon. Appealing to the rollingmeadow analogy again, fyy measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed parƟals fxy and fyx. The mixed parƟal fxy mea-
sures howmuch fx changeswith respect to y. Once again using the rollingmeadow
analogy, fx measures the slope if one walks due east. Looking east, begin walk-
ing north (side–stepping). Is the path towards the east geƫng steeper? If so,
fxy > 0. Is the path towards the east not changing in steepness? If so, then
fxy = 0. A similar thing can be said about fyx: consider the steepness of paths
heading north while side–stepping to the east.

The following example examines these ideas with concrete numbers and

Notes:
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(a)

(b)

Figure 12.3.3: Understanding the second
parƟal derivaƟves in Example 12.3.5.

12.3 ParƟal DerivaƟves

graphs.

Example 12.3.5 Understanding second parƟal derivaƟves
Let z = x2 − y2 + xy. Evaluate the 6 first and second parƟal derivaƟves at
(−1/2, 1/2) and interpret what each of these numbers mean.

SÊ½çã®ÊÄ We find that:
fx(x, y) = 2x+ y, fy(x, y) = −2y+ x, fxx(x, y) = 2, fyy(x, y) = −2 and

fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direcƟon of x is−1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be−1/2. The slope of the tangent line at this point in the direcƟon
of y is−3/2: if onemoves from this point parallel to the y-axis, the instantaneous
rate of changewill be−3/2. These tangents lines are graphed in Figure 12.3.3(a)
and (b), respecƟvely, where the tangent lines are drawn in a solid line.

Now consider only Figure 12.3.3(a). Three directed tangent lines are drawn
(two are dashed), each in the direcƟon of x; that is, each has a slope determined
by fx. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all negaƟve, geƫng closer to 0 means the slopes are increasing. The
slopes given by fx are increasing as y increases, meaning fxy must be posiƟve.

Since fxy = fyx, we also expect fy to increase as x increases. Consider Figure
12.3.3(b) where again three directed tangent lines are drawn, this Ɵme each
in the direcƟon of y with slopes determined by fy. As x increases, the slopes
become less steep (closer to 0). Since these are negaƟve slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of fx, fy, and fxy = fyx. We now
interpret fxx and fyy. In Figure 12.3.3(a), we see a curve drawn where x is held
constant at x = −1/2: only y varies. This curve is clearly concave down, corre-
sponding to the fact that fyy < 0. In part (b) of the figure, we see a similar curve
where y is constant and only x varies. This curve is concave up, corresponding
to the fact that fxx > 0.

ParƟal DerivaƟves and FuncƟons of Three Variables

The concepts underlying parƟal derivaƟves can be easily extend to more
than two variables. We give some definiƟons and examples in the case of three
variables and trust the reader can extend these definiƟons to more variables if
needed.

Notes:
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DefiniƟon 12.3.3 ParƟal DerivaƟves with Three Variables

Let w = f(x, y, z) be a conƟnuous funcƟon on a set D in R3.
The parƟal derivaƟve of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)
h

.

Similar definiƟons hold for fy(x, y, z) and fz(x, y, z).

By taking parƟal derivaƟves of parƟal derivaƟves, we can find second parƟal
derivaƟves of f with respect to z then y, for instance, just as before.

Example 12.3.6 ParƟal derivaƟves of funcƟons of three variables
For each of the following, find fx, fy, fz, fxz, fyz, and fzz.

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

SÊ½çã®ÊÄ

1. fx = 2xy3z4 + 2xy2 + 3x2z3; fy = 3x2y2z4 + 2x2y+ 4y3z4;
fz = 4x2y3z3 + 3x3z2 + 4y4z3; fxz = 8xy3z3 + 9x2z2;
fyz = 12x2y2z3 + 16y3z3; fzz = 12x2y3z2 + 6x3z+ 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz);
fxz = y cos(yz); fyz = x cos(yz)− xyz sin(yz); fzz = −xy2 sin(xy)

Higher Order ParƟal DerivaƟves

We can conƟnue taking parƟal derivaƟves of parƟal derivaƟves of parƟal
derivaƟves of …; we do not have to stop with second parƟal derivaƟves. These
higher order parƟal derivaƟves do not have a Ɵdy graphical interpretaƟon; nev-
ertheless they are not hard to compute and worthy of some pracƟce.

We do not formally define each higher order derivaƟve, but rather give just
a few examples of the notaƟon.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f
∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f
∂x

))
.
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Example 12.3.7 Higher order parƟal derivaƟves

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz.

SÊ½çã®ÊÄ

1. To find fxxy, we first find fx, then fxx, then fxxy:

fx = 2xy2 + y cos(xy) fxx = 2y2 − y2 sin(xy)
fxxy = 4y− 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy, then fyx, then fyxx:

fy = 2x2y+ x cos(xy) fyx = 4xy+ cos(xy)− xy sin(xy)
fyxx = 4y− y sin(xy)−

(
y sin(xy) + xy2 cos(xy)

)
= 4y− 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz, we find fx, then fxy, then fxyz:

fx = 3x2exy + x3yexy fxy = 3x3exy + x3exy + x4yexy = 4x3exy + x4yexy

fxyz = 0.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each parƟal derivaƟve
is conƟnuous, it does not maƩer the order in which the parƟal derivaƟves are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at Ɵmes. Had we known this, the second part of Example
12.3.7 would have been much simpler to compute. Instead of compuƟng fxyz
in the x, y then z orders, we could have applied the z, then x then y order (as
fxyz = fzxy). It is easy to see that fz = − sin z; then fzx and fzxy are clearly 0 as fz
does not contain an x or y.
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A brief review of this secƟon: parƟal derivaƟves measure the instantaneous
rate of change of a mulƟvariable funcƟon with respect to one variable. With
z = f(x, y), the parƟal derivaƟves fx and fy measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respecƟvely. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if we move in the direcƟon given by the vector ⟨2, 1⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of SecƟon 12.6. First, we need to define what it means for a funcƟon
of two variables to be differenƟable.

Notes:
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Exercises 12.3
Terms and Concepts
1. What is the difference between a constant and a coeffi-

cient?

2. Given a funcƟon z = f(x, y), explain in your ownwords how
to compute fx.

3. In the mixed parƟal fracƟon fxy, which is computed first, fx
or fy?

4. In the mixed parƟal fracƟon ∂2f
∂x∂y

, which is computed first,
fx or fy?

Problems
In Exercises 5 – 8, evaluate fx(x, y) and fy(x, y) at the indicated
point.

5. f(x, y) = x2y− x+ 2y+ 3 at (1, 2)

6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3)

7. f(x, y) = sin y cos x at (π/3, π/3)

8. f(x, y) = ln(xy) at (−2,−3)

In Exercises 9 – 26, find fx, fy, fxx, fyy, fxy and fyx.

9. f(x, y) = x2y+ 3x2 + 4y− 5

10. f(x, y) = y3 + 3xy2 + 3x2y+ x3

11. f(x, y) = x
y

12. f(x, y) = 4
xy

13. f(x, y) = ex
2+y2

14. f(x, y) = ex+2y

15. f(x, y) = sin x cos y

16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3)

18. f(x, y) = sin(5x2 + 2y3)

19. f(x, y) =
√

4xy2 + 1

20. f(x, y) = (2x+ 5y)
√
y

21. f(x, y) = 1
x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1

24. f(x, y) = ln(x2 + y)

25. f(x, y) = ln x
4y

26. f(x, y) = 5ex sin y+ 9

In Exercises 27 – 30, form a funcƟon z = f(x, y) such that fx
and fy match those given.

27. fx = sin y+ 1, fy = x cos y

28. fx = x+ y, fy = x+ y

29. fx = 6xy− 4y2, fy = 3x2 − 8xy+ 2

30. fx =
2x

x2 + y2
, fy =

2y
x2 + y2

In Exercises 31 – 34, find fx, fy, fz, fyz and fzy.

31. f(x, y, z) = x2e2y−3z

32. f(x, y, z) = x3y2 + x3z+ y2z

33. f(x, y, z) = 3x
7y2z

34. f(x, y, z) = ln(xyz)
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Note: From DefiniƟon 12.4.1, we can
write

dz = ⟨ fx, fy⟩ · ⟨dx, dy⟩.

While not explored in this secƟon, the
vector ⟨fx, fy⟩ is seen again in the next sec-
Ɵon and fully defined in SecƟon 12.6.

Chapter 12 FuncƟons of Several Variables

12.4 DifferenƟability and the Total DifferenƟal
We studied differenƟals in SecƟon 4.4, where DefiniƟon 4.4.1 states that if y =
f(x) and f is differenƟable, then dy = f ′(x)dx. One important use of this differ-
enƟal is in IntegraƟon by SubsƟtuƟon. Another important applicaƟon is approx-
imaƟon. Let∆x = dx represent a change in x. When dx is small, dy ≈ ∆y, the
change in y resulƟng from the change in x. Fundamental in this understanding
is this: as dx gets small, the difference between ∆y and dy goes to 0. Another
way of staƟng this: as dx goes to 0, the error in approximaƟng∆y with dy goes
to 0.

We extend this idea to funcƟons of two variables. Let z = f(x, y), and let
∆x = dx and ∆y = dy represent changes in x and y, respecƟvely. Let ∆z =
f(x+dx, y+dy)− f(x, y) be the change in z over the change in x and y. Recalling
that fx and fy give the instantaneous rates of z-change in the x- and y-direcƟons,
respecƟvely, we can approximate∆z with dz = fxdx + fydy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indicaƟon of whether or not this
approximaƟon is any good. First we give a name to dz.

DefiniƟon 12.4.1 Total DifferenƟal

Let z = f(x, y) be conƟnuous on a set S. Let dx and dy represent changes
in x and y, respecƟvely. Where the parƟal derivaƟves fx and fy exist, the
total differenƟal of z is

dz = fx(x, y)dx+ fy(x, y)dy.

Example 12.4.1 Finding the total differenƟal
Let z = x4e3y. Find dz.

SÊ½çã®ÊÄ We compute the parƟal derivaƟves: fx = 4x3e3y and fy =
3x4e3y. Following DefiniƟon 12.4.1, we have

dz = 4x3e3ydx+ 3x4e3ydy.

We can approximate ∆z with dz, but as with all approximaƟons, there is
error involved. A good approximaƟon is one in which the error is small. At a
given point (x0, y0), let Ex and Ey be funcƟons of dx and dy such that Exdx+Eydy
describes this error. Then

∆z = dz+ Exdx+ Eydy
= fx(x0, y0)dx+ fy(x0, y0)dy+ Exdx+ Eydy.

Notes:
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12.4 DifferenƟability and the Total DifferenƟal

If the approximaƟon of ∆z by dz is good, then as dx and dy get small, so does
Exdx+ Eydy. The approximaƟon of∆z by dz is even beƩer if, as dx and dy go to
0, so do Ex and Ey. This leads us to our definiƟon of differenƟability.

DefiniƟon 12.4.2 MulƟvariable DifferenƟability

Let z = f(x, y) be defined on a set S containing (x0, y0) where fx(x0, y0)
and fy(x0, y0) exist. Let dz be the total differenƟal of z at (x0, y0), let
∆z = f(x0 + dx, y0 + dy)− f(x0, y0), and let Ex and Ey be funcƟons of dx
and dy such that

∆z = dz+ Exdx+ Eydy.

1. We say f is differenƟable at (x0, y0) if, given ε > 0, there is a δ > 0
such that if || ⟨dx, dy⟩ || < δ, then || ⟨Ex, Ey⟩ || < ε. That is, as dx
and dy go to 0, so do Ex and Ey.

2. We say f is differenƟable on S if f is differenƟable at every point in
S. If f is differenƟable on R2, we say that f is differenƟable every-
where.

Example 12.4.2 Showing a funcƟon is differenƟable
Show f(x, y) = xy+ 3y2 is differenƟable using DefiniƟon 12.4.2.

SÊ½çã®ÊÄ We begin by finding f(x+ dx, y+ dy),∆z, fx and fy.

f(x+ dx, y+ dy) = (x+ dx)(y+ dy) + 3(y+ dy)2

= xy+ xdy+ ydx+ dxdy+ 3y2 + 6ydy+ 3dy2.

∆z = f(x+ dx, y+ dy)− f(x, y), so

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2.

It is straighƞorward to compute fx = y and fy = x+6y. Consider once more∆z:

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2 (now reorder)
= ydx+ xdy+ 6ydy+ dxdy+ 3dy2

= (y)︸︷︷︸
fx

dx+ (x+ 6y)︸ ︷︷ ︸
fy

dy+ (dy)︸︷︷︸
Ex

dx+ (3dy)︸ ︷︷ ︸
Ey

dy

= fxdx+ fydy+ Exdx+ Eydy.

With Ex = dy and Ey = 3dy, it is clear that as dx and dy go to 0, Ex and Ey also go
to 0. Since this did not depend on a specific point (x0, y0), we can say that f(x, y)

Notes:
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Chapter 12 FuncƟons of Several Variables

is differenƟable for all pairs (x, y) in R2, or, equivalently, that f is differenƟable
everywhere.

Our intuiƟve understanding of differenƟability of funcƟons y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuiƟve understand-
ing of funcƟons z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differenƟable funcƟons are conƟnuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of funcƟons are differenƟable or not.

Theorem 12.4.1 ConƟnuity and DifferenƟability of MulƟvariable
FuncƟons

Let z = f(x, y) be defined on a set S containing (x0, y0). If f is differen-
Ɵable at (x0, y0), then f is conƟnuous at (x0, y0).

Theorem 12.4.2 DifferenƟability of MulƟvariable FuncƟons

Let z = f(x, y) be defined on a set S. If fx and fy are both conƟnuous on
S, then f is differenƟable on S.

The theorems assure us that essenƟally all funcƟons thatwe see in the course
of our studies here are differenƟable (and hence conƟnuous) on their natural
domains. There is a difference between DefiniƟon 12.4.2 and Theorem 12.4.2,
though: it is possible for a funcƟon f to be differenƟable yet fx and/or fy is not
conƟnuous. Such strange behavior of funcƟons is a source of delight for many
mathemaƟcians.

When fx and fy exist at a point but are not conƟnuous at that point, we need
to use other methods to determine whether or not f is differenƟable at that
point.

For instance, consider the funcƟon

f(x, y) =
{ xy

x2+y2 (x, y) ̸= (0, 0)
0 (x, y) = (0, 0)

Notes:
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12.4 DifferenƟability and the Total DifferenƟal

We can find fx(0, 0) and fy(0, 0) using DefiniƟon 12.3.1:

fx(0, 0) = lim
h→0

f(0+ h, 0)− f(0, 0)
h

= lim
h→0

0
h2

= 0;

fy(0, 0) = lim
h→0

f(0, 0+ h)− f(0, 0)
h

= lim
h→0

0
h2

= 0.

Both fx and fy exist at (0, 0), but they are not conƟnuous at (0, 0), as

fx(x, y) =
y(y2 − x2)
(x2 + y2)2

and fy(x, y) =
x(x2 − y2)
(x2 + y2)2

are not conƟnuous at (0, 0). (Take the limit of fx as (x, y) → (0, 0) along the
x- and y-axes; they give different results.) So even though fx and fy exist at ev-
ery point in the x-y plane, they are not conƟnuous. Therefore it is possible, by
Theorem 12.4.2, for f to not be differenƟable.

Indeed, it is not. One can show that f is not conƟnuous at (0, 0) (see Exam-
ple 12.2.4), and by Theorem 12.4.1, this means f is not differenƟable at (0, 0).

ApproximaƟng with the Total DifferenƟal

By the definiƟon, when f is differenƟable dz is a good approximaƟon for∆z
when dx and dy are small. We give some simple examples of how this is used
here.

Example 12.4.3 ApproximaƟng with the total differenƟal
Let z =

√
x sin y. Approximate f(4.1, 0.8).

SÊ½çã®ÊÄ Recognizing that π/4 ≈ 0.785 ≈ 0.8, we can approximate
f(4.1, 0.8) using f(4, π/4). We can easily compute f(4, π/4) =

√
4 sin(π/4) =

2
(√

2
2

)
=

√
2 ≈ 1.414. Without calculus, this is the best approximaƟon we

could reasonably come up with. The total differenƟal gives us a way of adjusƟng
this iniƟal approximaƟon to hopefully get a more accurate answer.

We let∆z = f(4.1, 0.8)−f(4, π/4). The total differenƟal dz is approximately
equal to∆z, so

f(4.1, 0.8)− f(4, π/4) ≈ dz ⇒ f(4.1, 0.8) ≈ dz+ f(4, π/4). (12.1)

To find dz, we need fx and fy.

Notes:
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fx(x, y) =
sin y
2
√
x

⇒ fx(4, π/4) =
sin π/4
2
√
4

=

√
2/2
4

=
√
2/8.

fy(x, y) =
√
x cos y ⇒ fy(4, π/4) =

√
4
√
2
2

=
√
2.

ApproximaƟng 4.1 with 4 gives dx = 0.1; approximaƟng 0.8 with π/4 gives
dy ≈ 0.015. Thus

dz(4, π/4) = fx(4, π/4)(0.1) + fy(4, π/4)(0.015)

=

√
2
8

(0.1) +
√
2(0.015)

≈ 0.039.

Returning to EquaƟon (12.1), we have

f(4.1, 0.8) ≈ 0.039+ 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8)with a calculator; the
actual value, accurate to 5 places aŌer the decimal, is 1.45254. Obviously our
approximaƟon is quite good.

The point of the previous example was not to develop an approximaƟon
method for known funcƟons. AŌer all, we can very easily compute f(4.1, 0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approximaƟon works, and to reinforce the following concept:

“New posiƟon = old posiƟon+ amount of change,” so
“New posiƟon≈ old posiƟon + approximate amount of change.”

In the previous example, we could easily compute f(4, π/4) and could ap-
proximate the amount of z-change when compuƟng f(4.1, 0.8), leƫng us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of f,
fx and fy at a parƟcular point without actually knowing the funcƟon f. The total
differenƟal gives a good method of approximaƟng f at nearby points.

Example 12.4.4 ApproximaƟng an unknown funcƟon
Given that f(2,−3) = 6, fx(2,−3) = 1.3 and fy(2,−3) = −0.6, approximate
f(2.1,−3.03).

Notes:
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SÊ½çã®ÊÄ The total differenƟal approximates howmuch f changes from
the point (2,−3) to the point (2.1,−3.03). With dx = 0.1 and dy = −0.03, we
have

dz = fx(2,−3)dx+ fy(2,−3)dy
= 1.3(0.1) + (−0.6)(−0.03)
= 0.148.

The change in z is approximately 0.148, so we approximate f(2.1,−3.03) ≈
6.148.

Error/SensiƟvity Analysis

The total differenƟal gives an approximaƟon of the change in z given small
changes in x and y. We can use this to approximate error propagaƟon; that is,
if the input is a liƩle off from what it should be, how far from correct will the
output be? We demonstrate this in an example.

Example 12.4.5 SensiƟvity analysis
A cylindrical steel storage tank is to be built that is 10Ō tall and 4Ō across in diam-
eter. It is known that the steel will expand/contract with temperature changes;
is the overall volume of the tank more sensiƟve to changes in the diameter or in
the height of the tank?

SÊ½çã®ÊÄ A cylindrical solid with height h and radius r has volume V =
πr2h. We can view V as a funcƟon of two variables, r and h. We can compute
parƟal derivaƟves of V:

∂V
∂r

= Vr(r, h) = 2πrh and
∂V
∂h

= Vh(r, h) = πr2.

The total differenƟal is dV = (2πrh)dr + (πr2)dh.When h = 10 and r = 2, we
have dV = 40πdr + 4πdh. Note that the coefficient of dr is 40π ≈ 125.7; the
coefficient of dh is a tenth of that, approximately 12.57. A small change in radius
will be mulƟplied by 125.7, whereas a small change in height will be mulƟplied
by 12.57. Thus the volume of the tank is more sensiƟve to changes in radius
than in height.

The previous example showed that the volume of a parƟcular tankwasmore
sensiƟve to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1Ō and radius of
5Ō would be more sensiƟve to changes in height than in radius.

Notes:
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One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differenƟal.

DifferenƟability of FuncƟons of Three Variables
The definiƟon of differenƟability for funcƟons of three variables is very simi-

lar to that of funcƟons of two variables. We again start with the total differenƟal.

DefiniƟon 12.4.3 Total DifferenƟal

Let w = f(x, y, z) be conƟnuous on a set D. Let dx, dy and dz represent
changes in x, y and z, respecƟvely. Where the parƟal derivaƟves fx, fy
and fz exist, the total differenƟal of w is

dw = fx(x, y, z)dx+ fy(x, y, z)dy+ fz(x, y, z)dz.

This differenƟal can be a good approximaƟon of the change in w when w =
f(x, y, z) is differenƟable.

DefiniƟon 12.4.4 MulƟvariable DifferenƟability

Let w = f(x, y, z) be defined on a set D containing (x0, y0, z0) where
fx(x0, y0, z0), fy(x0, y0, z0) and fz(x0, y0, z0) exist. Let dw be the total dif-
ferenƟal of w at (x0, y0, z0), let ∆w = f(x0 + dx, y0 + dy, z0 + dz) −
f(x0, y0, z0), and let Ex, Ey and Ez be funcƟons of dx, dy and dz such that

∆w = dw+ Exdx+ Eydy+ Ezdz.

1. We say f is differenƟable at (x0, y0, z0) if, given ε > 0, there is a
δ > 0 such that if || ⟨dx, dy, dz⟩ || < δ, then || ⟨Ex, Ey, Ez⟩ || < ε.

2. We say f is differenƟable on B if f is differenƟable at every point
in B. If f is differenƟable on R3, we say that f is differenƟable ev-
erywhere.

Just as before, this definiƟon gives a rigorous statement about what it means
to be differenƟable that is not very intuiƟve. We follow it with a theorem similar
to Theorem 12.4.2.

Notes:
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Theorem12.4.3 ConƟnuity andDifferenƟability of FuncƟons of Three
Variables

Let w = f(x, y, z) be defined on a set D containing (x0, y0, z0).

1. If f is differenƟable at (x0, y0, z0), then f is conƟnuous at (x0, y0, z0).

2. If fx, fy and fz are conƟnuous on B, then f is differenƟable on B.

This set of definiƟon and theorem extends to funcƟons of any number of
variables. The theorem again gives us a simple way of verifying that most func-
Ɵons that we encounter are differenƟable on their natural domains.

This secƟon has given us a formal definiƟon of what it means for a funcƟons
to be “differenƟable,” along with a theorem that gives a more accessible un-
derstanding. The following secƟons return to noƟons prompted by our study of
parƟal derivaƟves that make use of the fact that most funcƟons we encounter
are differenƟable.

Notes:

719



Exercises 12.4
Terms and Concepts
1. T/F: If f(x, y) is differenƟable on S, the f is conƟnuous on S.

2. T/F: If fx and fy are conƟnuous on S, then f is differenƟable
on S.

3. T/F: If z = f(x, y) is differenƟable, then the change in z over
small changes dx and dy in x and y is approximately dz.

4. Finish the sentence: “The new z-value is approximately the
old z-value plus the approximate .”

Problems
In Exercises 5 – 8, find the total differenƟal dz.

5. z = x sin y+ x2

6. z = (2x2 + 3y)2

7. z = 5x− 7y

8. z = xex+y

In Exercises 9 – 12, a funcƟon z = f(x, y) is given. Give the
indicated approximaƟon using the total differenƟal.

9. f(x, y) =
√
x2 + y. Approximate f(2.95, 7.1) knowing

f(3, 7) = 4.

10. f(x, y) = sin x cos y. Approximate f(0.1,−0.1) knowing
f(0, 0) = 0.

11. f(x, y) = x2y − xy2. Approximate f(2.04, 3.06) knowing
f(2, 3) = −6.

12. f(x, y) = ln(x − y). Approximate f(5.1, 3.98) knowing
f(5, 4) = 0.

Exercises 13 – 16 ask a variety of quesƟons dealing with ap-
proximaƟng error and sensiƟvity analysis.

13. A cylindrical storage tank is to be 2Ō tall with a radius of 1Ō.
Is the volume of the tank more sensiƟve to changes in the
radius or the height?

14. ProjecƟle MoƟon: The x-value of an object moving un-
der the principles of projecƟle moƟon is x(θ, v0, t) =
(v0 cos θ)t. A parƟcular projecƟle is fired with an iniƟal ve-
locity of v0 = 250Ō/s and an angle of elevaƟon of θ = 60◦.
It travels a distance of 375Ō in 3 seconds.

Is the projecƟle more sensiƟve to errors in iniƟal speed or
angle of elevaƟon?

15. The length ℓ of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be 85◦, and the distance x is measured to be 30’. Assume
that the triangle formed is a right triangle.

Is the measurement of the length of ℓmore sensiƟve to er-
rors in the measurement of x or in θ?

ℓ =?

θ

x

16. It is “common sense” that it is far beƩer to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the prod-
uct of the length ℓ of a measuring tape Ɵmes the number
n of Ɵmes it was used. For instance, using a 3’ tape 10
Ɵmes gives a length of 30’. To measure the same distance
with a 12’ tape, we would use the tape 2.5 Ɵmes. (I.e.,
30 = 12× 2.5.) Thus D = nℓ.

Suppose each Ɵme a measurement is taken with the tape,
the recorded distance is within 1/16” of the actual distance.
(I.e., dℓ = 1/16′′ ≈ 0.005Ō). Using differenƟals, show
why common sense proves correct in that it is beƩer to use
a long tape to measure long distances.

In Exercises 17 – 18, find the total differenƟal dw.

17. w = x2yz3

18. w = ex sin y ln z

In Exercises 19 – 22, use the informaƟon provided and the
total differenƟal to make the given approximaƟon.

19. f(3, 1) = 7, fx(3, 1) = 9, fy(3, 1) = −2. Approximate
f(3.05, 0.9).

20. f(−4, 2) = 13, fx(−4, 2) = 2.6, fy(−4, 2) = 5.1. Ap-
proximate f(−4.12, 2.07).

21. f(2, 4, 5) = −1, fx(2, 4, 5) = 2, fy(2, 4, 5) = −3,
fz(2, 4, 5) = 3.7. Approximate f(2.5, 4.1, 4.8).

22. f(3, 3, 3) = 5, fx(3, 3, 3) = 2, fy(3, 3, 3) = 0, fz(3, 3, 3) =
−2. Approximate f(3.1, 3.1, 3.1).
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Figure 12.5.1: Understanding the applica-
Ɵon of the MulƟvariable Chain Rule.

12.5 The MulƟvariable Chain Rule

12.5 The MulƟvariable Chain Rule
Consider driving an off-road vehicle along a dirt road. As you drive, your eleva-
Ɵon likely changes. What factors determine howquickly your elevaƟon rises and
falls? AŌer some thought, generally one recognizes that one’s velocity (speed
and direcƟon) and the terrain influence your rise and fall.

One can represent the terrain as the surface defined by amulƟvariable func-
Ɵon z = f(x, y); one can represent the path of the off-road vehicle, as seen from
above, with a vector–valued funcƟon r⃗(t) = ⟨x(t), y(t)⟩; the velocity of the ve-
hicle is thus r⃗ ′(t) = ⟨x′(t), y′(t)⟩.

Consider Figure 12.5.1 in which a surface z = f(x, y) is drawn, along with a
dashed curve in the x-y plane. RestricƟng f to just the points on this circle gives
the curve shown on the surface (i.e., “the path of the off-road vehicle.”) The
derivaƟve df

dt gives the instantaneous rate of change of f with respect to t. If we
consider an object traveling along this path, df

dt =
dz
dt gives the rate at which the

object rises/falls (i.e., “the rate of elevaƟon change” of the vehicle.) Concep-
tually, the MulƟvariable Chain Rule combines terrain and velocity informaƟon
properly to compute this rate of elevaƟon change.

Abstractly, let z be a funcƟon of x and y; that is, z = f(x, y) for some funcƟon
f, and let x and y each be funcƟons of t. By choosing a t-value, x- and y-values
are determined, which in turn determine z: this defines z as a funcƟon of t. The
MulƟvariable Chain Rule gives a method of compuƟng dz

dt .

Theorem 12.5.1 MulƟvariable Chain Rule, Part I

Let z = f(x, y), x = g(t) and y = h(t), where f, g and h are differenƟable
funcƟons. Then z = f(x, y) = f

(
g(t), h(t)

)
is a funcƟon of t, and

dz
dt

=
df
dt

= fx(x, y)
dx
dt

+ fy(x, y)
dy
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

= ⟨ fx, fy⟩ · ⟨x′, y′⟩.

The Chain Rule of SecƟon 2.5 states that
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
g ′(x). If

t = g(x), we can express the Chain Rule as
df
dx

=
df
dt

dt
dx

;

recall that the derivaƟve notaƟon is deliberately chosen to reflect their fracƟon–

Notes:
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Chapter 12 FuncƟons of Several Variables

like properƟes. A similar effect is seen in Theorem 12.5.1. In the second line of
equaƟons, one can think of the dx and ∂x as “sort of” canceling out, and likewise
with dy and ∂y.

NoƟce, too, the third line of equaƟons in Theorem 12.5.1. The vector ⟨ fx, fy⟩
contains informaƟon about the surface (terrain); the vector ⟨x′, y′⟩ can represent
velocity. In the context measuring the rate of elevaƟon change of the off-road
vehicle, theMulƟvariable Chain Rule states it can be found through a product of
terrain and velocity informaƟon.

We now pracƟce applying the MulƟvariable Chain Rule.

Example 12.5.1 Using the MulƟvariable Chain Rule
Let z = x2y+ x, where x = sin t and y = e5t. Find

dz
dt

using the Chain Rule.

SÊ½çã®ÊÄ Following Theorem 12.5.1, we find

fx(x, y) = 2xy+ 1, fy(x, y) = x2,
dx
dt

= cos t,
dy
dt

= 5e5t.

Applying the theorem, we have

dz
dt

= (2xy+ 1) cos t+ 5x2e5t.

This may look odd, as it seems that dz
dt is a funcƟon of x, y and t. Since x and y

are funcƟons of t, dz
dt is really just a funcƟon of t, and we can replace x with sin t

and y with e5t:

dz
dt

= (2xy+ 1) cos t+ 5x2e5t = (2 sin(t)e5t + 1) cos t+ 5e5t sin2 t.

The previous example can make us wonder: if we subsƟtuted for x and y at
the end to show that dz

dt is really just a funcƟon of t, why not subsƟtute before
differenƟaƟng, showing clearly that z is a funcƟon of t?

That is, z = x2y + x = (sin t)2e5t + sin t. Applying the Chain and Product
Rules, we have

dz
dt

= 2 sin t cos t e5t + 5 sin2 t e5t + cos t,

which matches the result from the example.
This may nowmake one wonder “What’s the point? If we could already find

the derivaƟve, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is

Notes:
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Figure 12.5.2: Ploƫng the path of a par-
Ɵcle on a surface in Example 12.5.3.

12.5 The MulƟvariable Chain Rule

extremely powerful whenwe do not knowwhat f, g and/or h are. It may be hard
to believe, but oŌen in “the real world” we know rate–of–change informaƟon
(i.e., informaƟon about derivaƟves) without explicitly knowing the underlying
funcƟons. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also has theoreƟc use, giving us insight
into the behavior of certain construcƟons (as we’ll see in the next secƟon).

We demonstrate this in the next example.

Example 12.5.2 Applying the MulƟvarible Chain Rule
An object travels along a path on a surface. The exact path and surface are not
known, but at Ɵme t = t0 it is known that :

∂z
∂x

= 5,
∂z
∂y

= −2,
dx
dt

= 3 and
dy
dt

= 7.

Find dz
dt at Ɵme t0.

SÊ½çã®ÊÄ The MulƟvariable Chain Rule states that

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy
dt

= 5(3) + (−2)(7)
= 1.

By knowing certain rates–of–change informaƟon about the surface and about
the path of the parƟcle in the x-y plane, we can determine how quickly the ob-
ject is rising/falling.

We next apply the Chain Rule to solve a max/min problem.

Example 12.5.3 Applying the MulƟvariable Chain Rule
Consider the surface z = x2 + y2 − xy, a paraboloid, on which a parƟcle moves
with x and y coordinates given by x = cos t and y = sin t. Find dz

dt when t = 0,
and find where the parƟcle reaches its maximum/minimum z-values.

SÊ½çã®ÊÄ It is straighƞorward to compute

fx(x, y) = 2x− y, fy(x, y) = 2y− x,
dx
dt

= − sin t,
dy
dt

= cos t.

Combining these according to the Chain Rule gives:

dz
dt

= −(2x− y) sin t+ (2y− x) cos t.

Notes:
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When t = 0, x = 1 and y = 0. Thus
dz
dt

= −(2)(0) + (−1)(1) = −1. When
t = 0, the parƟcle is moving down, as shown in Figure 12.5.2.

To find where z-value is maximized/minimized on the parƟcle’s path, we set
dz
dt = 0 and solve for t:

dz
dt

= 0 = −(2x− y) sin t+ (2y− x) cos t

0 = −(2 cos t− sin t) sin t+ (2 sin t− cos t) cos t
0 = sin2 t− cos2 t

cos2 t = sin2 t

t = n
π

4
(for odd n)

We can use the First DerivaƟve Test to find that on [0, 2π], z has reaches its
absolute minimum at t = π/4 and 5π/4; it reaches its absolute maximum at
t = 3π/4 and 7π/4, as shown in Figure 12.5.2.

We can extend the Chain Rule to include the situaƟon where z is a funcƟon
of more than one variable, and each of these variables is also a funcƟon of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
funcƟons of two variables, say s and t.

Theorem 12.5.2 MulƟvariable Chain Rule, Part II

1. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f, g and h are
differenƟable funcƟons. Then z is a funcƟon of s and t, and

•
∂z
∂s

=
∂f
∂x

∂x
∂s

+
∂f
∂y

∂y
∂s

, and

•
∂z
∂t

=
∂f
∂x

∂x
∂t

+
∂f
∂y

∂y
∂t

.

2. Let z = f(x1, x2, . . . , xm)be a differenƟable funcƟonofm variables,
where each of the xi is a differenƟable funcƟon of the variables
t1, t2, . . . , tn. Then z is a funcƟon of the ti, and

∂z
∂ti

=
∂f
∂x1

∂x1
∂ti

+
∂f
∂x2

∂x2
∂ti

+ · · ·+ ∂f
∂xm

∂xm
∂ti

.

Notes:
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Example 12.5.4 Using the MulƟvarible Chain Rule, Part II
Let z = x2y+ x, x = s2 + 3t and y = 2s− t. Find ∂z

∂s and
∂z
∂t , and evaluate each

when s = 1 and t = 2.

SÊ½çã®ÊÄ Following Theorem12.5.2, we compute the following parƟal
derivaƟves:

∂f
∂x

= 2xy+ 1
∂f
∂y

= x2,

∂x
∂s

= 2s
∂x
∂t

= 3
∂y
∂s

= 2
∂y
∂t

= −1.

Thus
∂z
∂s

= (2xy+ 1)(2s) + (x2)(2) = 4xys+ 2s+ 2x2, and

∂z
∂t

= (2xy+ 1)(3) + (x2)(−1) = 6xy− x2 + 3.

When s = 1 and t = 2, x = 7 and y = 0, so

∂z
∂s

= 100 and
∂z
∂t

= −46.

Example 12.5.5 Using the MulƟvarible Chain Rule, Part II
Letw = xy+ z2, where x = t2es, y = t cos s, and z = s sin t. Find ∂w

∂t when s = 0
and t = π.

SÊ½çã®ÊÄ Following Theorem12.5.2, we compute the following parƟal
derivaƟves:

∂f
∂x

= y
∂f
∂y

= x
∂f
∂z

= 2z,

∂x
∂t

= 2tes
∂y
∂t

= cos s
∂z
∂t

= s cos t.

Thus
∂w
∂t

= y(2tes) + x(cos s) + 2z(s cos t).

When s = 0 and t = π, we have x = π2, y = π and z = 0. Thus

∂w
∂t

= π(2π) + π2 = 3π2.

Implicit DifferenƟaƟon

We studied finding dy
dx when y is given as an implicit funcƟon of x in detail

in SecƟon 2.6. We find here that the MulƟvariable Chain Rule gives a simpler
method of finding dy

dx .

Notes:
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For instance, consider the implicit funcƟon x2y−xy3 = 3.We learned to use
the following steps to find dy

dx :

d
dx

(
x2y− xy3

)
=

d
dx

(
3
)

2xy+ x2
dy
dx

− y3 − 3xy2
dy
dx

= 0

dy
dx

= − 2xy− y3

x2 − 3xy2
. (12.2)

Instead of using this method, consider z = x2y − xy3. The implicit funcƟon
above describes the level curve z = 3. Considering x and y as funcƟons of x, the
MulƟvariable Chain Rule states that

dz
dx

=
∂z
∂x

dx
dx

+
∂z
∂y

dy
dx

. (12.3)

Since z is constant (in our example, z = 3), dz
dx = 0. We also know dx

dx = 1.
EquaƟon (12.3) becomes

0 =
∂z
∂x

(1) +
∂z
∂y

dy
dx

⇒

dy
dx

= −∂z
∂x

/∂z
∂y

= − fx
fy
.

Note how our soluƟon for dy
dx in EquaƟon (12.2) is just the parƟal derivaƟve

of z with respect to x, divided by the parƟal derivaƟve of z with respect to y, all
mulƟplied by (−1).

We state the above as a theorem.

Theorem 12.5.3 Implicit DifferenƟaƟon

Let f be a differenƟable funcƟon of x and y, where f(x, y) = c defines y
as an implicit funcƟon of x, for some constant c. Then

dy
dx

= − fx(x, y)
fy(x, y)

.

We pracƟce using Theorem 12.5.3 by applying it to a problem from SecƟon
2.6.

Notes:
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Example 12.5.6 Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(x2y2)+y3 = x+y, find y ′. Note: this is
the same problem as given in Example 2.6.4 of SecƟon 2.6, where the soluƟon
took about a full page to find.

SÊ½çã®ÊÄ Let f(x, y) = sin(x2y2) + y3 − x − y; the implicitly defined
funcƟon above is equivalent to f(x, y) = 0. We find dy

dx by applying Theorem
12.5.3. We find

fx(x, y) = 2xy2 cos(x2y2)− 1 and fy(x, y) = 2x2y cos(x2y2) + 3y2 − 1,

so
dy
dx

= − 2xy2 cos(x2y2)− 1
2x2y cos(x2y2) + 3y2 − 1

,

which matches our soluƟon from Example 2.6.4.

In SecƟon 12.3we learned howparƟal derivaƟves give certain instantaneous
rate of change informaƟon about a funcƟon z = f(x, y). In that secƟon, wemea-
sured the rate of change of f by holding one variable constant and leƫng the
other vary (such as, holding y constant and leƫng x vary gives fx). We can visu-
alize this change by considering the surface defined by f at a point and moving
parallel to the x-axis.

What if we want to move in a direcƟon that is not parallel to a coordinate
axis? Can we sƟll measure instantaneous rates of change? Yes; we find out
how in the next secƟon. In doing so, we’ll see how the MulƟvariable Chain Rule
informs our understanding of these direcƟonal derivaƟves.

Notes:
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Exercises 12.5
Terms and Concepts
1. Let a level curve of z = f(x, y) be described by x = g(t),

y = h(t). Explain why dz
dt = 0.

2. Fill in the blank: The single variable Chain Rule states
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
· .

3. Fill in the blank: The MulƟvariable Chain Rule states
df
dt

=
∂f
∂x

· + · dy
dt

.

4. If z = f(x, y), where x = g(t) and y = h(t), we can subsƟ-
tute and write z as an explicit funcƟon of t.
T/F: Using the MulƟvariable Chain Rule to find dz

dt is some-
Ɵmes easier than first subsƟtuƟng and then taking the
derivaƟve.

5. T/F: TheMulƟvariable Chain Rule is only useful when all the
related funcƟons are known explicitly.

6. The MulƟvariable Chain Rule allows us to compute implicit
derivaƟves easily by just compuƟng two deriva-
Ɵves.

Problems
In Exercises 7 – 12, funcƟons z = f(x, y), x = g(t) and
y = h(t) are given.

(a) Use the MulƟvariable Chain Rule to compute dz
dt

.

(b) Evaluate dz
dt

at the indicated t-value.

7. z = 3x+ 4y, x = t2, y = 2t; t = 1

8. z = x2 − y2, x = t, y = t2 − 1; t = 1

9. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3; t = π/4

10. z = x
y2 + 1

, x = cos t, y = sin t; t = π/2

11. z = x2 + 2y2, x = sin t, y = 3 sin t; t = π/4

12. z = cos x sin y, x = πt, y = 2πt+ π/2; t = 3

In Exercises 13 – 18, funcƟons z = f(x, y), x = g(t) and
y = h(t) are given. Find the values of t where dz

dt = 0. Note:
these are the same surfaces/curves as found in Exercises 7 –
12.

13. z = 3x+ 4y, x = t2, y = 2t

14. z = x2 − y2, x = t, y = t2 − 1

15. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3

16. z = x
y2 + 1

, x = cos t, y = sin t

17. z = x2 + 2y2, x = sin t, y = 3 sin t

18. z = cos x sin y, x = πt, y = 2πt+ π/2

In Exercises 19 – 22, funcƟons z = f(x, y), x = g(s, t) and
y = h(s, t) are given.

(a) Use the MulƟvariable Chain Rule to compute ∂z
∂s

and
∂z
∂t

.

(b) Evaluate ∂z
∂s

and ∂z
∂t

at the indicated s and t values.

19. z = x2y, x = s− t, y = 2s+ 4t; s = 1, t = 0

20. z = cos
(
πx+ π

2
y
)
, x = st2, y = s2t; s = 1, t = 1

21. z = x2 + y2, x = s cos t, y = s sin t; s = 2, t = π/4

22. z = e−(x2+y2), x = t, y = st2; s = 1, t = 1

In Exercises 23 – 26, find dy
dx

using Implicit DifferenƟaƟon and
Theorem 12.5.3.

23. x2 tan y = 50

24. (3x2 + 2y3)4 = 2

25. x2 + y
x+ y2

= 17

26. ln(x2 + xy+ y2) = 1

In Exercises 27 – 30, find dz
dt

, or ∂z
∂s

and ∂z
∂t

, using the supplied
informaƟon.

27. ∂z
∂x

= 2, ∂z
∂y

= 1, dx
dt

= 4, dy
dt

= −5

28. ∂z
∂x

= 1, ∂z
∂y

= −3, dx
dt

= 6, dy
dt

= 2

29. ∂z
∂x

= −4, ∂z
∂y

= 9,

∂x
∂s

= 5, ∂x
∂t

= 7, ∂y
∂s

= −2, ∂y
∂t

= 6

30. ∂z
∂x

= 2, ∂z
∂y

= 1,

∂x
∂s

= −2, ∂x
∂t

= 3, ∂y
∂s

= 2, ∂y
∂t

= −1
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12.6 DirecƟonal DerivaƟves
ParƟal derivaƟves give us an understanding of how a surface changes when we
move in the x and y direcƟons. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fx. Likewise, the rise/fall in moving due north is comparable to fy. The steeper
the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? ParƟal derivaƟves
alone cannot measure this. This secƟon invesƟgates direcƟonal derivaƟves,
which do measure this rate of change.

We begin with a definiƟon.

DefiniƟon 12.6.1 DirecƟonal DerivaƟves

Let z = f(x, y) be conƟnuous on a set S and let u⃗ = ⟨u1, u2⟩ be a unit
vector. For all points (x, y), the direcƟonal derivaƟve of f at (x, y) in the
direcƟon of u⃗ is

Du⃗ f(x, y) = lim
h→0

f(x+ hu1, y+ hu2)− f(x, y)
h

.

The parƟal derivaƟves fx and fy are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a parƟcular unit vector u⃗. This may look a bit inƟmidaƟng but in reality it is
not too difficult to deal with; it oŌen just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem 12.6.1 DirecƟonal DerivaƟves

Let z = f(x, y) be differenƟable on a set S containing (x0, y0), and let
u⃗ = ⟨u1, u2⟩ be a unit vector. The direcƟonal derivaƟve of f at (x0, y0) in
the direcƟon of u⃗ is

Du⃗ f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

Example 12.6.1 CompuƟng direcƟonal derivaƟves
Let z = 14− x2 − y2 and let P = (1, 2). Find the direcƟonal derivaƟve of f, at P,
in the following direcƟons:

1. toward the point Q = (3, 4),

2. in the direcƟon of ⟨2,−1⟩, and

Notes:
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Figure 12.6.1: Understanding the direc-
Ɵonal derivaƟve in Example 12.6.1.

Chapter 12 FuncƟons of Several Variables

3. toward the origin.

SÊ½çã®ÊÄ The surface is ploƩed in Figure 12.6.1, where the point P =
(1, 2) is indicated in the x, y-plane as well as the point (1, 2, 9)which lies on the
surface of f. We find that fx(x, y) = −2x and fx(1, 2) = −2; fy(x, y) = −2y and
fy(1, 2) = −4.

1. Let u⃗1 be the unit vector that points from the point (1, 2) to the point
Q = (3, 4), as shown in the figure. The vector #  ‰PQ = ⟨2, 2⟩; the unit vector
in this direcƟon is u⃗1 =

⟨
1/

√
2, 1/

√
2
⟩
. Thus the direcƟonal derivaƟve of

f at (1, 2) in the direcƟon of u⃗1 is

Du⃗1 f(1, 2) = −2(1/
√
2) + (−4)(1/

√
2) = −6/

√
2 ≈ −4.24.

Thus the instantaneous rate of change in moving from the point (1, 2, 9)
on the surface in the direcƟon of u⃗1 (which points toward the point Q) is
about−4.24. Moving in this direcƟon moves one steeply downward.

2. We seek the direcƟonal derivaƟve in the direcƟon of ⟨2,−1⟩. The unit
vector in this direcƟon is u⃗2 =

⟨
2/

√
5,−1/

√
5
⟩
. Thus the direcƟonal

derivaƟve of f at (1, 2) in the direcƟon of u⃗2 is

Du⃗2 f(1, 2) = −2(2/
√
5) + (−4)(−1/

√
5) = 0.

StarƟng on the surface of f at (1, 2) andmoving in the direcƟon of ⟨2,−1⟩
(or u⃗2) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direcƟon towalk that does not
change the elevaƟon. One neither walks up nor down, rather just “along
the side” of the hill.
Finding these direcƟons of “no elevaƟon change” is important.

3. At P = (1, 2), the direcƟon towards the origin is given by the vector
⟨−1,−2⟩; the unit vector in this direcƟon is u⃗3 =

⟨
−1/

√
5,−2/

√
5
⟩
.

The direcƟonal derivaƟve of f at P in the direcƟon of the origin is

Du⃗3 f(1, 2) = −2(−1/
√
5) + (−4)(−2/

√
5) = 10/

√
5 ≈ 4.47.

Moving towards the origin means “walking uphill” quite steeply, with an
iniƟal slope of about 4.47.

As we study direcƟonal derivaƟves, it will help to make an important con-
necƟon between the unit vector u⃗ = ⟨u1, u2⟩ that describes the direcƟon and
the parƟal derivaƟves fx and fy. We start with a definiƟon and follow this with a
Key Idea.
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Note: The symbol “∇” is named “nabla,”
derived from the Greek name of a Jewish
harp. Oddly enough, in mathemaƟcs the
expression∇f is pronounced “del f.”

12.6 DirecƟonal DerivaƟves

DefiniƟon 12.6.2 Gradient

Let z = f(x, y) be differenƟable on a set S that contains the point (x0, y0).

1. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

2. The gradient of f at (x0, y0) is∇f(x0, y0) = ⟨fx(x0, y0), fy(x0, y0)⟩.

To simplify notaƟon, we oŌen express the gradient as ∇f = ⟨fx, fy⟩. The
gradient allows us to compute direcƟonal derivaƟves in terms of a dot product.

Key Idea 12.6.1 The Gradient and DirecƟonal DerivaƟves

The direcƟonal derivaƟve of z = f(x, y) in the direcƟon of u⃗ is

Du⃗ f = ∇f · u⃗.

The properƟes of the dot product previously studied allow us to invesƟgate
the properƟes of the direcƟonal derivaƟve. Given that the direcƟonal derivaƟve
gives the instantaneous rate of change of z when moving in the direcƟon of u⃗,
three quesƟons naturally arise:

1. In what direcƟon(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direcƟon(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direcƟon(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = || ∇f || || u⃗ || cos θ = || ∇f || cos θ, (12.4)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, || u⃗ || =
1.) This equaƟon allows us to answer the three quesƟons stated previously.

1. EquaƟon 12.4 is maximized when cos θ = 1, i.e., when the gradient and u⃗
have the same direcƟon. We conclude the gradient points in the direcƟon
of greatest z change.

Notes:

731



Chapter 12 FuncƟons of Several Variables

2. EquaƟon 12.4 is minimized when cos θ = −1, i.e., when the gradient and
u⃗ have opposite direcƟons. We conclude the gradient points in the oppo-
site direcƟon of the least z change.

3. EquaƟon 12.4 is 0 when cos θ = 0, i.e., when the gradient and u⃗ are or-
thogonal to each other. We conclude the gradient is orthogonal to direc-
Ɵons of no z change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direcƟon that leads you steepest uphill. Then the direcƟon that
leads steepest downhill is directly behind you, and side–stepping either leŌ or
right (i.e., moving perpendicularly to the direcƟon you face) does not change
your elevaƟon at all.

Recall that a level curve is defined as a curve in the x-y plane along which the
z-values of a funcƟon do not change. Let a surface z = f(x, y) be given, and let’s
represent one such level curve as a vector–valued funcƟon, r⃗(t) = ⟨x(t), y(t)⟩.
As the output of f does not change along this curve, f

(
x(t), y(t)

)
= c for all t, for

some constant c.
Since f is constant for all t, df

dt = 0. By the MulƟvariable Chain Rule, we also
know

df
dt

= fx(x, y)x ′(t) + fy(x, y)y ′(t)

= ⟨fx(x, y), fy(x, y)⟩ · ⟨x ′(t), y ′(t)⟩
= ∇f · r⃗ ′(t)
= 0.

This last equality states ∇f · r⃗ ′(t) = 0: the gradient is orthogonal to the
derivaƟve of r⃗, meaning the gradient is orthogonal to the graph of r⃗. Our con-
clusion: at any point on a surface, the gradient at that point is orthogonal to the
level curve that passes through that point.

We restate these ideas in a theorem, then use them in an example.

Theorem 12.6.2 The Gradient and DirecƟonal DerivaƟves

Let z = f(x, y) be differenƟable on a set S with gradient ∇f, let P =
(x0, y0) be a point in S and let u⃗ be a unit vector.

1. The maximum value of Du⃗ f(x0, y0) is || ∇f(x0, y0) ||; the direcƟon
of maximal z increase is∇f(x0, y0).

2. Theminimum value of Du⃗ f(x0, y0) is−|| ∇f(x0, y0) ||; the direcƟon
of minimal z increase is−∇f(x0, y0).

3. At P, ∇f(x0, y0) is orthogonal to the level curve passing through(
x0, y0, f(x0, y0)

)
.

Notes:
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(a)

(b)

Figure 12.6.2: Graphing the surface and
important direcƟons in Example 12.6.2.

Figure 12.6.3: At the top of a paraboloid,
all direcƟonal derivaƟves are 0.

12.6 DirecƟonal DerivaƟves

Example 12.6.2 Finding direcƟons of maximal and minimal increase
Let f(x, y) = sin x cos y and let P = (π/3, π/3). Find the direcƟons of max-
imal/minimal increase, and find a direcƟon where the instantaneous rate of z
change is 0.

SÊ½çã®ÊÄ We begin by finding the gradient. fx = cos x cos y and fy =
− sin x sin y, thus

∇f = ⟨cos x cos y,− sin x sin y⟩ and, at P, ∇f
(π
3
,
π

3

)
=

⟨
1
4
,−3

4

⟩
.

Thus the direcƟon of maximal increase is ⟨1/4,−3/4⟩. In this direcƟon, the
instantaneous rate of z change is || ⟨1/4,−3/4⟩ || =

√
10/4 ≈ 0.79.

Figure 12.6.2 shows the surface ploƩed from two different perspecƟves. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let u⃗ = ⟨u1, u2⟩ be the
unit vector in the direcƟon of ∇f at P. Each graph of the figure also contains
the vector ⟨u1, u2, ||∇f ||⟩. This vector has a “run” of 1 (because in the x-y plane
it moves 1 unit) and a “rise” of ||∇f ||, hence we can think of it as a vector with
slope of ||∇f || in the direcƟonof∇f, helping us visualize how “steep” the surface
is in its steepest direcƟon.

The direcƟon ofminimal increase is ⟨−1/4, 3/4⟩; in this direcƟon the instan-
taneous rate of z change is−

√
10/4 ≈ −0.79.

Any direcƟon orthogonal to ∇f is a direcƟon of no z change. We have two
choices: the direcƟon of ⟨3, 1⟩ and the direcƟon of ⟨−3,−1⟩. The unit vector
in the direcƟon of ⟨3, 1⟩ is shown in each graph of the figure as well. The level
curve at z =

√
3/4 is drawn: recall that along this curve the z-values do not

change. Since ⟨3, 1⟩ is a direcƟon of no z-change, this vector is tangent to the
level curve at P.

Example 12.6.3 Understanding when∇f = 0⃗
Let f(x, y) = −x2 + 2x− y2 + 2y+ 1. Find the direcƟonal derivaƟve of f in any
direcƟon at P = (1, 1).

SÊ½çã®ÊÄ Wefind∇f = ⟨−2x+ 2,−2y+ 2⟩. AtP, wehave∇f(1, 1) =
⟨0, 0⟩. According to Theorem 12.6.2, this is the direcƟon of maximal increase.
However, ⟨0, 0⟩ is direcƟonless; it has no displacement. And regardless of the
unit vector u⃗ chosen, Du⃗ f = 0.

Figure 12.6.3 helps us understand what this means. We can see that P lies
at the top of a paraboloid. In all direcƟons, the instantaneous rate of change is
0.

So what is the direcƟon of maximal increase? It is fine to give an answer of
0⃗ = ⟨0, 0⟩, as this indicates that all direcƟonal derivaƟves are 0.

Notes:
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The fact that the gradient of a surface always points in the direcƟon of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example 12.6.4 The flow of water downhill
Consider the surface given by f(x, y) = 20 − x2 − 2y2. Water is poured on the
surface at (1, 1/4). What path does it take as it flows downhill?

SÊ½çã®ÊÄ Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector–valued funcƟon de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
that water will always flow downhill in the steepest direcƟon; therefore, at any
point on its path, it will be moving in the direcƟon of−∇f. (We ignore the phys-
ical effects of momentum on the water.) Thus r⃗ ′(t) will be parallel to ∇f, and
there is some constant c such that c∇f = r⃗ ′(t) = ⟨x ′(t), y ′(t)⟩.

We find∇f = ⟨−2x,−4y⟩ and write x ′(t) as dx
dt and y ′(t) as dy

dt . Then

c∇f = ⟨x ′(t), y ′(t)⟩

⟨−2cx,−4cy⟩ =
⟨
dx
dt

,
dy
dt

⟩
.

This implies
−2cx =

dx
dt

and − 4cy =
dy
dt

, i.e.,

c = − 1
2x

dx
dt

and c = − 1
4y

dy
dt

.

As c equals both expressions, we have

1
2x

dx
dt

=
1
4y

dy
dt

.

To find an explicit relaƟonship between x and y, we can integrate both sides with
respect to t. Recall from our study of differenƟals that

dx
dt

dt = dx. Thus:∫
1
2x

dx
dt

dt =
∫

1
4y

dy
dt

dt∫
1
2x

dx =
∫

1
4y

dy

1
2
ln |x| = 1

4
ln |y|+ C1

2 ln |x| = ln |y|+ C1
ln |x2| = ln |y|+ C1

Notes:
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(b)

Figure 12.6.4: A graph of the surface de-
scribed in Example 12.6.4 along with the
path in the x-y planewith the level curves.

12.6 DirecƟonal DerivaƟves

Now raise both sides as a power of e:

x2 = eln |y|+C1

x2 = eln |y|eC1 (Note that eC1 is just a constant.)
x2 = yC2

1
C2

x2 = y (Note that 1/C2 is just a constant.)

Cx2 = y.

As the water started at the point (1, 1/4), we can solve for C:

C(1)2 =
1
4

⇒ C =
1
4
.

Thus the water follows the curve y = x2/4 in the x-y plane. The surface and
the path of the water is graphed in Figure 12.6.4(a). In part (b) of the figure,
the level curves of the surface are ploƩed in the x-y plane, along with the curve
y = x2/4. NoƟce how the path intersects the level curves at right angles. As the
path follows the gradient downhill, this reinforces the fact that the gradient is
orthogonal to level curves.

FuncƟons of Three Variables

The concepts of direcƟonal derivaƟves and the gradient are easily extended
to three (and more) variables. We combine the concepts behind DefiniƟons
12.6.1 and 12.6.2 and Theorem 12.6.1 into one set of definiƟons.

DefiniƟon 12.6.3 DirecƟonal DerivaƟves and Gradient with Three
Variables

Let w = F(x, y, z) be differenƟable on a set D and let u⃗ be a unit vector
in R3.

1. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

2. The direcƟonal derivaƟve of F in the direcƟon of u⃗ is

Du⃗ F = ∇F · u⃗.

The same properƟes of the gradient given in Theorem 12.6.2, when f is a

Notes:
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funcƟon of two variables, hold for F, a funcƟon of three variables.

Theorem 12.6.3 The Gradient and DirecƟonal DerivaƟves with
Three Variables

Let w = F(x, y, z) be differenƟable on a set D, let∇F be the gradient of
F, and let u⃗ be a unit vector.

1. The maximum value of Du⃗ F is || ∇F ||, obtained when the angle
between ∇F and u⃗ is 0, i.e., the direcƟon of maximal increase is
∇F.

2. The minimum value of Du⃗ F is −|| ∇F ||, obtained when the angle
between ∇F and u⃗ is π, i.e., the direcƟon of minimal increase is
−∇F.

3. Du⃗ F = 0 when∇F and u⃗ are orthogonal.

We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three–variable analogue to level curves.

Example 12.6.5 Finding direcƟonal derivaƟves with funcƟons of three
variables

If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.

Let k = 1, let u⃗ = ⟨2/3, 2/3, 1/3⟩ be a unit vector, and let P = (2, 5, 3).
Measure distances in inches. Find the direcƟonal derivaƟve of I at P in the di-
recƟon of u⃗, and find the direcƟon of greatest intensity increase at P.

SÊ½çã®ÊÄ Weneed the gradient∇I, meaningweneed Ix, Iy and Iz. Each
parƟal derivaƟve requires a simple applicaƟon of the QuoƟent Rule, giving

∇I =
⟨

−2x
(x2 + y2 + z2)2

,
−2y

(x2 + y2 + z2)2
,

−2z
(x2 + y2 + z2)2

⟩
∇I(2, 5, 3) =

⟨
−4
1444

,
−10
1444

,
−6
1444

⟩
≈ ⟨−0.003,−0.007,−0.004⟩

Du⃗ I = ∇I(2, 5, 3) · u⃗

= − 17
2166

≈ −0.0078.

The direcƟonal derivaƟve tells us that moving in the direcƟon of u⃗ from P re-
sults in a decrease in intensity of about −0.008 units per inch. (The intensity is
decreasing as u⃗moves one farther from the origin than P.)

Notes:
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The gradient gives the direcƟon of greatest intensity increase. NoƟce that

∇I(2, 5, 3) =
⟨

−4
1444

,
−10
1444

,
−6
1444

⟩
=

2
1444

⟨−2,−5,−3⟩ .

That is, the gradient at (2, 5, 3) is poinƟng in the direcƟon of ⟨−2,−5,−3⟩, that
is, towards the origin. That should make intuiƟve sense: the greatest increase
in intensity is found by moving towards to source of the energy.

The direcƟonal derivaƟve allows us to find the instantaneous rate of z change
in any direcƟon at a point. We can use these instantaneous rates of change to
define lines and planes that are tangent to a surface at a point, which is the topic
of the next secƟon.

Notes:
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Exercises 12.6
Terms and Concepts
1. What is the difference between a direcƟonal derivaƟve and

a parƟal derivaƟve?

2. For what u⃗ is D⃗u f = fx?

3. For what u⃗ is D⃗u f = fy?

4. The gradient is to level curves.

5. The gradient points in the direcƟon of increase.

6. It is generally more informaƟve to view the direcƟonal
derivaƟve not as the result of a limit, but rather as the result
of a product.

Problems
In Exercises 7 – 12, a funcƟon z = f(x, y) is given. Find∇f.

7. f(x, y) = −x2y+ xy2 + xy

8. f(x, y) = sin x cos y

9. f(x, y) = 1
x2 + y2 + 1

10. f(x, y) = −4x+ 3y

11. f(x, y) = x2 + 2y2 − xy− 7x

12. f(x, y) = x2y3 − 2x

In Exercises 13 – 18, a funcƟon z = f(x, y) and a point P are
given. Find the direcƟonal derivaƟve of f in the indicated di-
recƟons. Note: these are the same funcƟons as in Exercises
7 through 12.

13. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

(a) In the direcƟon of v⃗ = ⟨3, 4⟩
(b) In the direcƟon toward the point Q = (1,−1).

14. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
(a) In the direcƟon of v⃗ = ⟨1, 1⟩.
(b) In the direcƟon toward the point Q = (0, 0).

15. f(x, y) = 1
x2 + y2 + 1

, P = (1, 1).

(a) In the direcƟon of v⃗ = ⟨1,−1⟩.
(b) In the direcƟon toward the point Q = (−2,−2).

16. f(x, y) = −4x+ 3y, P = (5, 2)

(a) In the direcƟon of v⃗ = ⟨3, 1⟩ .

(b) In the direcƟon toward the point Q = (2, 7).

17. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

(a) In the direcƟon of v⃗ = ⟨−2, 5⟩

(b) In the direcƟon toward the point Q = (4, 0).

18. f(x, y) = x2y3 − 2x, P = (1, 1)

(a) In the direcƟon of v⃗ = ⟨3, 3⟩

(b) In the direcƟon toward the point Q = (1, 2).

In Exercises 19 – 24, a funcƟon z = f(x, y) and a point P are
given.

(a) Find the direcƟon of maximal increase of f at P.

(b) What is the maximal value of D⃗u f at P?

(c) Find the direcƟon of minimal increase of f at P.

(d) Give a direcƟon u⃗ such that D⃗u f = 0 at P.

Note: these are the same funcƟons and points as in Exercises
13 through 18.

19. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

20. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
21. f(x, y) = 1

x2 + y2 + 1
, P = (1, 1).

22. f(x, y) = −4x+ 3y, P = (5, 4).

23. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

24. f(x, y) = x2y3 − 2x, P = (1, 1)

In Exercises 25 – 28, a funcƟon w = F(x, y, z), a vector v⃗ and
a point P are given.

(a) Find∇F(x, y, z).

(b) Find D⃗u F at P, where u⃗ is the unit vector in the direcƟon
of v⃗.

25. F(x, y, z) = 3x2z3 + 4xy− 3z2, v⃗ = ⟨1, 1, 1⟩, P = (3, 2, 1)

26. F(x, y, z) = sin(x) cos(y)ez, v⃗ = ⟨2, 2, 1⟩, P = (0, 0, 0)

27. F(x, y, z) = x2y2 − y2z2, v⃗ = ⟨−1, 7, 3⟩, P = (1, 0,−1)

28. F(x, y, z) = 2
x2 + y2 + z2

, v⃗ = ⟨1, 1,−2⟩, P = (1, 1, 1)
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Figure 12.7.1: Showing various lines tan-
gent to a surface.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

12.7 Tangent Lines, Normal Lines, and Tangent Planes
DerivaƟves and tangent lines go hand–in–hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0); that

is, the slope of the tangent line is the instantaneous rate of change of f at x0.
When dealing with funcƟons of two variables, the graph is no longer a curve

but a surface. At a given point on the surface, it seems there are many lines that
fit our intuiƟon of being “tangent” to the surface.

In Figure 12.7.1 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definiƟon formally defines what it means to be “tangent
to a surface.”

DefiniƟon 12.7.1 DirecƟonal Tangent Line

Let z = f(x, y) be differenƟable on a set S containing (x0, y0) and let u⃗ =
⟨u1, u2⟩ be a unit vector.

1. The line ℓx through
(
x0, y0, f(x0, y0)

)
parallel to ⟨1, 0, fx(x0, y0)⟩ is the

tangent line to f in the direcƟon of x at (x0, y0).

2. The line ℓy through
(
x0, y0, f(x0, y0)

)
parallel to ⟨0, 1, fy(x0, y0)⟩ is the

tangent line to f in the direcƟon of y at (x0, y0).

3. The line ℓ⃗u through
(
x0, y0, f(x0, y0)

)
parallel to ⟨u1, u2,Du⃗ f(x0, y0)⟩

is the tangent line to f in the direcƟon of u⃗ at (x0, y0).

It is instrucƟve to consider each of three direcƟons given in the definiƟon in
terms of “slope.” The direcƟon of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direcƟon and the “rise” is fx(x0, y0) units in the z-direcƟon. Note
how the slope is just the parƟal derivaƟve with respect to x. A similar statement
can be made for ℓy. The direcƟon of ℓ⃗u is ⟨u1, u2,Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direcƟon (where u⃗ is a unit vector) and the “rise” is the direcƟonal
derivaƟve of z in that direcƟon.

DefiniƟon 12.7.1 leads to the following parametric equaƟons of direcƟonal
tangent lines:

ℓx(t) =

 x = x0 + t
y = y0
z = z0 + fx(x0, y0)t

, ℓy(t) =

 x = x0
y = y0 + t
z = z0 + fy(x0, y0)t

and ℓ⃗u(t) =

 x = x0 + u1t
y = y0 + u2t
z = z0 + Du⃗ f(x0, y0)t

.

Notes:
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(a)

(b)

Figure 12.7.2: A surface and direcƟonal
tangent lines in Example 12.7.1.

Chapter 12 FuncƟons of Several Variables

Example 12.7.1 Finding direcƟonal tangent lines
Find the lines tangent to the surface z = sin x cos y at (π/2, π/2) in the x and y
direcƟons and also in the direcƟon of v⃗ = ⟨−1, 1⟩ .

SÊ½çã®ÊÄ The parƟal derivaƟves with respect to x and y are:

fx(x, y) = cos x cos y ⇒ fx(π/2, π/2) = 0
fy(x, y) = − sin x sin y ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equaƟons of the line tangent to f at (π/2, π/2) in the

direcƟons of x and y are:

ℓx(t) =

 x = π/2+ t
y = π/2
z = 0

and ℓy(t) =

 x = π/2
y = π/2+ t
z = −t

.

The two lines are shown with the surface in Figure 12.7.2(a). To find the equa-
Ɵon of the tangent line in the direcƟon of v⃗, we first find the unit vector in the
direcƟon of v⃗: u⃗ =

⟨
−1/

√
2, 1/

√
2
⟩
. The direcƟonal derivaƟve at (π/2, π, 2) in

the direcƟon of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
⟨
−1/

√
2, 1/

√
2
⟩
= −1/

√
2.

Thus the direcƟonal tangent line is

ℓ⃗u(t) =


x = π/2− t/

√
2

y = π/2+ t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direcƟon of v⃗ is shown in Figure 12.7.2(b)
along with ℓ⃗u(t).

Example 12.7.2 Finding direcƟonal tangent lines
Let f(x, y) = 4xy− x4 − y4. Find the equaƟons of all direcƟonal tangent lines to
f at (1, 1).

SÊ½çã®ÊÄ First note that f(1, 1) = 2. We need to compute direcƟonal
derivaƟves, so we need∇f. We begin by compuƟng parƟal derivaƟves.

fx = 4y− 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus ∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The direcƟonal
derivaƟve of f at (1, 1)will beDu⃗ f(1, 1) = ⟨0, 0⟩·⟨u1, u2⟩ = 0. It does notmaƩer

Notes:
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Figure 12.7.3: Graphing f in Example
12.7.2.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

what direcƟon we choose; the direcƟonal derivaƟve is always 0. Therefore

ℓ⃗u(t) =

 x = 1+ u1t
y = 1+ u2t
z = 2

.

Figure 12.7.3 shows a graph of f and the point (1, 1, 2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relaƟve maximum at this point, hence its tangent line will have
a slope of 0. The following secƟon invesƟgates the points on surfaces where all
tangent lines have a slope of 0.

Normal Lines

When dealing with a funcƟon y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) and was normal
(or, perpendicular, orthogonal) to f if it had a slope of −1/f ′(c). We extend the
concept of normal, or orthogonal, to funcƟons of two variables.

Let z = f(x, y) be a differenƟable funcƟon of two variables. By DefiniƟon
12.7.1, at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩ and
ℓy(t) is a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these direcƟons
through

(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this point

and orthogonal to these direcƟons would be orthogonal, or normal, to the sur-
face. We can use this direcƟon to create a normal line.

The direcƟon of the normal line is orthogonal to d⃗x and d⃗y, hence the direc-
Ɵon is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .

It is oŌen more convenient to refer to the opposite of this direcƟon, namely
⟨fx, fy,−1⟩. This leads to a definiƟon.

Notes:
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Figure 12.7.4: Graphing a surface with a
normal line from Example 12.7.3.

Chapter 12 FuncƟons of Several Variables

DefiniƟon 12.7.2 Normal Line

Let z = f(x, y) be differenƟable on a set S containing (x0, y0) where

a = fx(x0, y0) and b = fy(x0, y0)

are defined.

1. A nonzero vector parallel to n⃗ = ⟨a, b,−1⟩ is orthogonal to f at
P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through Pwith direcƟon parallel to n⃗ is the normal line
to f at P.

Thus the parametric equaƟons of the normal line to a surface f at
(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =

 x = x0 + at
y = y0 + bt
z = f(x0, y0)− t

.

Example 12.7.3 Finding a normal line
Find the equaƟon of the normal line to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direcƟon of the normal line, follow-
ing DefiniƟon 12.7.2, to be n⃗ = ⟨0,−2,−1⟩. The line with this direcƟon going
through the point (0, 1, 1) is

ℓn(t) =

 x = 0
y = −2t+ 1
z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

The surface z = −x2 − y2 + 2, along with the found normal line, is graphed
in Figure 12.7.4.

The direcƟon of the normal line has many uses, one of which is the defini-
Ɵon of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is a general
geometric concept to define the distance from Q to the surface as being the
length of the shortest line segment PQ over all points P on the surface. This, in
turn, implies that #  ‰PQ will be orthogonal to the surface at P. Therefore we can
measure the distance from Q to the surface f by finding a point P on the surface
such that #  ‰PQ is parallel to the normal line to f at P.

Notes:
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Example 12.7.4 Finding the distance from a point to a surface
Let f(x, y) = 2 − x2 − y2 and let Q = (2, 2, 2). Find the distance from Q to the
surface defined by f.

SÊ½çã®ÊÄ This surface is used in Example 12.7.2, so we know that at
(x, y), the direcƟon of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩. A point P on
the surfacewill have coordinates (x, y, 2−x2−y2), so #  ‰PQ =

⟨
2− x, 2− y, x2 + y2

⟩
.

To find where #  ‰PQ is parallel to d⃗n, we need to find x, y and c such that c #  ‰PQ = d⃗n.

c #  ‰PQ = d⃗n
c
⟨
2− x, 2− y, x2 + y2

⟩
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x
c(2− y) = −2y

c(x2 + y2) = −1

In each equaƟon, we can solve for c:

c =
−2x
2− x

=
−2y
2− y

=
−1

x2 + y2
.

The first two fracƟons imply x = y, and so the last fracƟon can be rewriƩen as
c = −1/(2x2). Then

−2x
2− x

=
−1
2x2

−2x(2x2) = −1(2− x)
4x3 = 2− x

4x3 + x− 2 = 0.

This last equaƟon is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We find the distance
from Q to the surface of f is

|| #  ‰PQ || =
√
(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a parƟcular distance from a surface at a given point P on the
surface.

Notes:
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Figure 12.7.5: Graphing the surface in Ex-
ample 12.7.5 along with points 4 units
from the surface.

Chapter 12 FuncƟons of Several Variables

Example 12.7.5 Finding a point a set distance from a surface
Let f(x, y) = x−y2+3. Let P =

(
2, 1, f(2, 1)

)
= (2, 1, 4). Find pointsQ in space

that are 4 units from the surface of f at P. That is, find Q such that || #  ‰PQ || = 4
and #  ‰PQ is orthogonal to f at P.

SÊ½çã®ÊÄ We begin by finding parƟal derivaƟves:

fx(x, y) = 1 ⇒ fx(2, 1) = 1
fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direcƟon of n⃗:

u⃗ =
n⃗

|| n⃗ ||
=
⟨
1/

√
6,−2/

√
6,−1/

√
6
⟩
≈ ⟨0.408,−0.816,−0.408⟩ .

Thus a the normal line to f at P can be wriƩen as

ℓn(t) = ⟨2, 1, 4⟩+ t ⟨0.408,−0.816,−0.408⟩ .

An advantage of this parametrizaƟon of the line is that leƫng t = t0 gives a
point on the line that is |t0| units from P. (This is because the direcƟon of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Q1 = ℓn(4) Q2 = ℓn(−4)
≈ ⟨3.63,−2.27, 2.37⟩ ≈ ⟨0.37, 4.27, 5.63⟩

width=150pt The surface is graphed along with points P, Q1, Q2 and a porƟon of
the normal line to f at P.

Tangent Planes

We can use the direcƟon of the normal line to define a plane. With a =
fx(x0, y0), b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩

is orthogonal to f at P. The plane through P with normal vector n⃗ is therefore
tangent to f at P.

Notes:
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Figure 12.7.6: Graphing a surface with
tangent plane from Example 12.7.6.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

DefiniƟon 12.7.3 Tangent Plane

Let z = f(x, y) be differenƟable on a set S containing (x0, y0), where
a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and P =

(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at P.
The standard form of this plane is

a(x− x0) + b(y− y0)−
(
z− f(x0, y0)

)
= 0.

Example 12.7.6 Finding tangent planes
Find the equaƟon of the tangent plane to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ Note that this is the same surface and point used in Exam-
ple 12.7.3. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). Therefore the
equaƟon of the tangent plane is

−2(y− 1)− (z− 1) = 0.

The surface z = −x2−y2+2 and tangent plane are graphed in Figure 12.7.6.

Example 12.7.7 Using the tangent plane to approximate funcƟon values
The point (3,−1, 4) lies on the surface of an unknown differenƟable funcƟon f
where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equaƟon of the tangent
plane to f at P, and use this to approximate the value of f(2.9,−0.8).

SÊ½çã®ÊÄ Knowing the parƟal derivaƟves at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the equaƟon
of the tangent line to f at P is:

2(x−3)−1/2(y+1)−(z−4) = 0 ⇒ z = 2(x−3)−1/2(y+1)+4. (12.5)

Just as tangent lines provide excellent approximaƟons of curves near their point
of intersecƟon, tangent planes provide excellent approximaƟons of surfaces near
their point of intersecƟon. So f(2.9,−0.8) ≈ z(2.9,−0.8) = 3.7.

This is not a newmethod of approximaƟon. Compare the right hand expres-
sion for z in EquaƟon (12.5) to the total differenƟal:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y+ 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.

Notes:
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Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). AsmenƟonedwhen studying the total differenƟal, it is not uncommon
to know parƟal derivaƟve informaƟon about a unknown funcƟon, and tangent
planes are used to give accurate approximaƟons of the funcƟon.

The Gradient and Normal Lines, Tangent Planes

The methods developed in this secƟon so far give a straighƞorward method
of finding equaƟons of normal lines and tangent planes for surfaces with explicit
equaƟons of the form z = f(x, y). However, they do not handle implicit equa-
Ɵons well, such as x2 + y2 + z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

DefiniƟon 12.7.4 Gradient

Let w = F(x, y, z) be differenƟable on a set D that contains the point
(x0, y0, z0).

1. The gradient of F is∇F(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩.

2. The gradient of F at (x0, y0, z0) is

∇F(x0, y0, z0) = ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ .

Recall that when z = f(x, y), the gradient∇f = ⟨fx, fy⟩ is orthogonal to level
curves of f. An analogous statement can bemade about the gradient∇F, where
w = F(x, y, z). Given a point (x0, y0, z0), let c = F(x0, y0, z0). Then F(x, y, z) =
c is a level surface that contains the point (x0, y0, z0). The following theorem
states that∇F(x0, y0, z0) is orthogonal to this level surface.

Theorem 12.7.1 The Gradient and Level Surfaces

Let w = F(x, y, z) be differenƟable on a set D containing (x0, y0, z0) with
gradient∇F, where F(x0, y0, z0) = c.

The vector∇F(x0, y0, z0) is orthogonal to the level surface F(x, y, z) = c
at (x0, y0, z0).

The gradient at a point gives a vector orthogonal to the surface at that point.
This direcƟon can be used to find tangent planes and normal lines.

Notes:
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Figure 12.7.7: An ellipsoid and its tangent
plane at a point.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

Example 12.7.8 Using the gradient to find a tangent plane

Find the equaƟon of the plane tangent to the ellipsoid
x2

12
+

y2

6
+

z2

4
= 1 at

P = (1, 2, 1).

SÊ½çã®ÊÄ We consider the equaƟon of the ellipsoid as a level surface
of a funcƟon F of three variables, where F(x, y, z) = x2

12 +
y2
6 + z2

4 . The gradient
is:

∇F(x, y, z) = ⟨Fx, Fy, Fz⟩

=
⟨ x
6
,
y
3
,
z
2

⟩
.

At P, the gradient is ∇F(1, 2, 1) = ⟨1/6, 2/3, 1/2⟩. Thus the equaƟon of the
plane tangent to the ellipsoid at P is

1
6
(x− 1) +

2
3
(y− 2) +

1
2
(z− 1) = 0.

The ellipsoid and tangent plane are graphed in Figure 12.7.7.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximaƟons. Normal lines also
have many uses. In this secƟon we focused on using them to measure distances
from a surface. Another interesƟng applicaƟon is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next secƟon invesƟgates another use of parƟal derivaƟves: determining
relaƟve extrema. When dealing with funcƟons of the form y = f(x), we found
relaƟve extrema by finding x where f ′(x) = 0. We can start finding relaƟve
extrema of z = f(x, y) by seƫng fx and fy to 0, but it turns out that there is more
to consider.

Notes:
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Exercises 12.7
Terms and Concepts
1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as

having a “slope” of 3.

2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought
of as having a “slope” of−2.

3. T/F: Let z = f(x, y) be differenƟable at P. If n⃗ is a normal
vector to the tangent plane of f at P, then n⃗ is orthogonal
to ℓx and ℓy at P.

4. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to direcƟonal
tangent lines to a surface at a point.

Problems
In Exercises 5 – 8, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Give the parametric equaƟons of the following
direcƟonal tangent lines to f at P:

(a) ℓx(t)

(b) ℓy(t)

(c) ℓ⃗u (t), where u⃗ is the unit vector in the direcƟon of v⃗.

5. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

6. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

In Exercises 9 – 12, a funcƟon z = f(x, y) and a point P are
given. Find the equaƟon of the normal line to f at P. Note:
these are the same funcƟons as in Exercises 5 – 8.

9. f(x, y) = 2x2y− 4xy2, P = (2, 3).

10. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

11. f(x, y) = 3x− 5y, P = (4, 2).

12. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 13 – 16, a funcƟon z = f(x, y) and a point P are
given. Find the two points that are 2 units from the surface
f at P. Note: these are the same funcƟons as in Exercises 5 –
8.

13. f(x, y) = 2x2y− 4xy2, P = (2, 3).

14. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

15. f(x, y) = 3x− 5y, P = (4, 2).

16. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 17 – 20, a funcƟon z = f(x, y) and a point P are
given. Find the equaƟon of the tangent plane to f at P. Note:
these are the same funcƟons as in Exercises 5 – 8.

17. f(x, y) = 2x2y− 4xy2, P = (2, 3).

18. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

19. f(x, y) = 3x− 5y, P = (4, 2).

20. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 21 – 24, an implicitly defined funcƟon of x, y and
z is given along with a point P that lies on the surface. Use
the gradient∇F to:

(a) find the equaƟon of the normal line to the surface at
P, and

(b) find the equaƟon of the plane tangent to the surface
at P.

21. x2

8
+

y2

4
+

z2

16
= 1, at P = (1,

√
2,
√
6)

22. z2 − x2

4
− y2

9
= 0, at P = (4,−3,

√
5)

23. xy2 − xz2 = 0, at P = (2, 1,−1)

24. sin(xy) + cos(yz) = 0, at P = (2, π/12, 4)
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12.8 Extreme Values

Given a funcƟon z = f(x, y), we are oŌen interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost funcƟon, we
would likely want to know what (x, y) values minimize the cost. If z represents
the raƟo of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following definiƟon.

DefiniƟon 12.8.1 RelaƟve and Absolute Extrema

Let z = f(x, y) be defined on a set S containing the point P = (x0, y0).

1. If f(x0, y0) ≥ f(x, y) for all (x, y) in S, then f has an absolute maxi-
mum at P
If f(x0, y0) ≤ f(x, y) for all (x, y) in S, then f has an absolute mini-
mum at P.

2. If there is an open disk D containing P such that f(x0, y0) ≥ f(x, y)
for all points (x, y) that are in both D and S, then f has a relaƟve
maximum at P.
If there is an open disk D containing P such that f(x0, y0) ≤ f(x, y)
for all points (x, y) that are in both D and S, then f has a relaƟve
minimum at P.

3. If f has an absolute maximum or minimum at P, then f has an ab-
solute extrema at P.
If f has a relaƟve maximum or minimum at P, then f has a relaƟve
extrema at P.

If f has a relaƟve or absolute maximum at P = (x0, y0), it means every curve
on the surface of f through Pwill also have a relaƟve or absolute maximum at P.
Recalling what we learned in SecƟon 3.1, the slopes of the tangent lines to these
curves at Pmust be 0 or undefined. Since direcƟonal derivaƟves are computed
using fx and fy, we are led to the following definiƟon and theorem.

DefiniƟon 12.8.2 CriƟcal Point

Let z = f(x, y) be conƟnuous on a set S. A criƟcal point P = (x0, y0) of f
is a point in S such that, at P,

• fx(x0, y0) = 0 and fy(x0, y0) = 0, or

• fx(x0, y0) and/or fy(x0, y0) is undefined.

Notes:
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Figure 12.8.1: The surface in Example
12.8.1 with its absolute minimum indi-
cated.

Figure 12.8.2: The surface in Example
12.8.2 with its absolute maximum indi-
cated.

Chapter 12 FuncƟons of Several Variables

Theorem 12.8.1 CriƟcal Points and RelaƟve Extrema

Let z = f(x, y) be defined on an open set S containing P = (x0, y0). If f
has a relaƟve extrema at P, then P is a criƟcal point of f.

Therefore, to find relaƟve extrema, we find the criƟcal points of f and de-
termine which correspond to relaƟve maxima, relaƟve minima, or neither. The
following examples demonstrate this process.

Example 12.8.1 Finding criƟcal points and relaƟve extrema
Let f(x, y) = x2 + y2 − xy− x− 2. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) = 2x− y− 1 and fy(x, y) = 2y− x.

Each is never undefined. A criƟcal point occurswhen fx and fy are simultaneously
0, leading us to solve the following system of linear equaƟons:

2x− y− 1 = 0 and − x+ 2y = 0.

This soluƟon to this system is x = 2/3, y = 1/3. (Check that at (2/3, 1/3), both
fx and fy are 0.)

The graph in Figure 12.8.1 shows f along with this criƟcal point. It is clear
from the graph that this is a relaƟveminimum; further consideraƟon of the func-
Ɵon shows that this is actually the absolute minimum.

Example 12.8.2 Finding criƟcal points and relaƟve extrema
Let f(x, y) = −

√
x2 + y2 + 2. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) =
−x√
x2 + y2

and fy(x, y) =
−y√
x2 + y2

.

It is clear that fx = 0 when x = 0 & y ̸= 0, and that fy = 0 when y = 0 & x ̸= 0.
At (0, 0), both fx and fy are not 0, but rather undefined. The point (0, 0) is sƟll a
criƟcal point, though, because the parƟal derivaƟves are undefined. This is the
only criƟcal point of f.

The surface of f is graphed in Figure 12.8.2 along with the point (0, 0, 2). The
graph shows that this point is the absolute maximum of f.
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Figure 12.8.3: The surface in Example
12.8.3 with both criƟcal points marked.

12.8 Extreme Values

In each of the previous two examples, we found a criƟcal point of f and then
determinedwhether or not it was a relaƟve (or absolute)maximumorminimum
by graphing. It would be nice to be able to determine whether a criƟcal point
corresponded to amax or amin without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example 12.8.3 Finding criƟcal points and relaƟve extrema
Let f(x, y) = x3 − 3x− y2 + 4y. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ Once again we start by finding the parƟal derivaƟves of f:

fx(x, y) = 3x2 − 3 and fy(x, y) = −2y+ 4.

Each is always defined. Seƫng each equal to 0 and solving for x and y, we find

fx(x, y) = 0 ⇒ x = ±1
fy(x, y) = 0 ⇒ y = 2.

We have two criƟcal points: (−1, 2) and (1, 2). To determine if they correspond
to a relaƟve maximum or minimum, we consider the graph of f in Figure 12.8.3.

The criƟcal point (−1, 2) clearly corresponds to a relaƟve maximum. How-
ever, the criƟcal point at (1, 2) is neither a maximum nor a minimum, displaying
a different, interesƟng characterisƟc.

If one walks parallel to the y-axis towards this criƟcal point, then this point
becomes a relaƟvemaximumalong this path. But if onewalks towards this point
parallel to the x-axis, this point becomes a relaƟve minimum along this path. A
point that seems to act as both a max and a min is a saddle point. A formal
definiƟon follows.

DefiniƟon 12.8.3 Saddle Point

Let P = (x0, y0) be in the domain of f where fx = 0 and fy = 0 at P. We
say P is a saddle point of f if, for every open disk D containing P, there
are points (x1, y1) and (x2, y2) in D such that f(x0, y0) > f(x1, y1) and
f(x0, y0) < f(x2, y2).

At a saddle point, the instantaneous rate of change in all direcƟons is 0 and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.
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Chapter 12 FuncƟons of Several Variables

Before Example 12.8.3 we menƟoned the need for a test to differenƟate be-
tween relaƟve maxima and minima. We now recognize that our test also needs
to account for saddle points. To do so, we consider the second parƟal derivaƟves
of f.

Recall that with single variable funcƟons, such as y = f(x), if f ′′(c) > 0,
then if f is concave up at c, and if f ′(c) = 0, then f has a relaƟve minimum at
x = c. (We called this the Second DerivaƟve Test.) Note that at a saddle point, it
seems the graph is “both” concave up and concave down, depending on which
direcƟon you are considering.

It would be nice if the following were true:

fxx and fyy > 0 ⇒ relaƟve minimum
fxx and fyy < 0 ⇒ relaƟve maximum

fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. FuncƟons f exist where fxx and fyy are both
posiƟve but a saddle point sƟll exists. In such a case, while the concavity in the
x-direcƟon is up (i.e., fxx > 0) and the concavity in the y-direcƟon is also up (i.e.,
fyy > 0), the concavity switches somewhere in between the x- and y-direcƟons.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are equal
when conƟnuous (refer back to Theorem 12.3.1), we can rewrite this as D =
fxxfyy − f 2xy. D can be used to test whether the concavity at a point changes
depending on direcƟon. If D > 0, the concavity does not switch (i.e., at that
point, the graph is concave up or down in all direcƟons). If D < 0, the concavity
does switch. If D = 0, our test fails to determine whether concavity switches or
not. We state the use of D in the following theorem.

Theorem 12.8.2 Second DerivaƟve Test

Let R be an open set on which a funcƟon z = f(x, y) and all its first and
second parƟal derivaƟves are defined, let P = (x0, y0) be a criƟcal point
of f in R, and let

D = fxx(x0, y0)fyy(x0, y0)− f 2xy(x0, y0).

1. If D > 0 and fxx(x0, y0) > 0, then f has a relaƟve minimum at P.

2. If D > 0 and fxx(x0, y0) < 0, then f has a relaƟve maximum at P.

3. If D < 0, then f has a saddle point at P.

4. If D = 0, the test is inconclusive.
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12.8 Extreme Values

We first pracƟce using this test with the funcƟon in the previous example,
where we visually determined we had a relaƟve maximum and a saddle point.

Example 12.8.4 Using the Second DerivaƟve Test
Let f(x, y) = x3−3x−y2+4y as in Example 12.8.3. Determinewhether the func-
Ɵon has a relaƟve minimum, maximum, or saddle point at each criƟcal point.

SÊ½çã®ÊÄ We determined previously that the criƟcal points of f are
(−1, 2) and (1, 2). To use the Second DerivaƟve Test, we must find the second
parƟal derivaƟves of f:

fxx = 6x; fyy = −2; fxy = 0.

Thus D(x, y) = −12x.
At (−1, 2): D(−1, 2) = 12 > 0, and fxx(−1, 2) = −6. By the Second Deriva-

Ɵve Test, f has a relaƟve maximum at (−1, 2).
At (1, 2): D(1, 2) = −12 < 0. The Second DerivaƟve Test states that f has a

saddle point at (1, 2).
The Second DerivaƟve Test confirmed what we determined visually.

Example 12.8.5 Using the Second DerivaƟve Test
Find the relaƟve extrema of f(x, y) = x2y+ y2 + xy.

SÊ½çã®ÊÄ We start by finding the first and second parƟal derivaƟves of
f:

fx = 2xy+ y fy = x2 + 2y+ x
fxx = 2y fyy = 2

fxy = 2x+ 1 fyx = 2x+ 1.
We find the criƟcal points by finding where fx and fy are simultaneously 0 (they
are both never undefined). Seƫng fx = 0, we have:

fx = 0 ⇒ 2xy+ y = 0 ⇒ y(2x+ 1) = 0.

This implies that for fx = 0, either y = 0 or 2x+ 1 = 0.
Assume y = 0 then consider fy = 0:

fy = 0
x2 + 2y+ x = 0, and since y = 0, we have

x2 + x = 0
x(x+ 1) = 0.

Thus if y = 0, we have either x = 0 or x = −1, giving two criƟcal points: (−1, 0)
and (0, 0).
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Figure 12.8.4: Graphing f from Example
12.8.5 and its relaƟve extrema.

Chapter 12 FuncƟons of Several Variables

Going back to fx, now assume 2x+1 = 0, i.e., that x = −1/2, then consider
fy = 0:

fy = 0
x2 + 2y+ x = 0, and since x = −1/2, we have

1/4+ 2y− 1/2 = 0
y = 1/8.

Thus if x = −1/2, y = 1/8 giving the criƟcal point (−1/2, 1/8).
With D = 4y−(2x+1)2, we apply the Second DerivaƟve Test to each criƟcal

point.
At (−1, 0), D < 0, so (−1, 0) is a saddle point.
At (0, 0), D < 0, so (0, 0) is also a saddle point.
At (−1/2, 1/8), D > 0 and fxx > 0, so (−1/2, 1/8) is a relaƟve minimum.
Figure 12.8.4 shows a graph of f and the three criƟcal points. Note how this

funcƟon does not vary much near the criƟcal points – that is, visually it is diffi-
cult to determinewhether a point is a saddle point or relaƟveminimum (or even
a criƟcal point at all!). This is one reason why the Second DerivaƟve Test is so
important to have.

Constrained OpƟmizaƟon

When opƟmizing funcƟons of one variable such as y = f(x), we made use of
Theorem 3.1.1, the Extreme Value Theorem, that said that over a closed inter-
val I, a conƟnuous funcƟon has both a maximum and minimum value. To find
these maximum and minimum values, we evaluated f at all criƟcal points in the
interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to funcƟons of two variables. A
conƟnuous funcƟon over a closed set also aƩains a maximum and minimum
value (see the following theorem). We can find these values by evaluaƟng the
funcƟon at the criƟcal values in the set and over the boundary of the set. AŌer
formally staƟng this extreme value theorem, we give examples.

Theorem 12.8.3 Extreme Value Theorem

Let z = f(x, y) be a conƟnuous funcƟon on a closed, bounded set S. Then
f has a maximum and minimum value on S.

Example 12.8.6 Finding extrema on a closed set
Let f(x, y) = x2 − y2 + 5 and let S be the triangle with verƟces (−1,−2), (0, 1)
and (2,−2). Find the maximum and minimum values of f on S.

Notes:
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Figure 12.8.5: Ploƫng the surface of f
along with the restricted domain S in Ex-
ample 12.8.6.

12.8 Extreme Values

SÊ½çã®ÊÄ It can help to see a graph of f along with the set S. In Figure
12.8.5(a) the triangle defining S is shown in the x-y plane in a dashed line. Above
it is the surface of f; we are only concerned with the porƟon of f enclosed by the
“triangle” on its surface.

We begin by finding the criƟcal points of f. With fx = 2x and fy = −2y, we
find only one criƟcal point, at (0, 0).

We now find the maximum and minimum values that f aƩains along the
boundary of S, that is, along the edges of the triangle. In Figure 12.8.5(b) we
see the triangle sketched in the plane with the equaƟons of the lines forming its
edges labeled.

Start with the boƩom edge, along the line y = −2. If y is −2, then on
the surface, we are considering points f(x,−2); that is, our funcƟon reduces to
f(x,−2) = x2 − (−2)2 + 5 = x2 + 1 = f1(x). We want to maximize/minimize
f1(x) = x2 + 1 on the interval [−1, 2]. To do so, we evaluate f1(x) at its criƟcal
points and at the endpoints.

The criƟcal points of f1 are found by seƫng its derivaƟve equal to 0:

f ′1(x) = 0 ⇒ x = 0.

EvaluaƟng f1 at this criƟcal point, and at the endpoints of [−1, 2] gives:

f1(−1) = 2 ⇒ f(−1,−2) = 2
f1(0) = 1 ⇒ f(0,−2) = 1
f1(2) = 5 ⇒ f(2,−2) = 5.

NoƟce how evaluaƟng f1 at a point is the same as evaluaƟng f at its correspond-
ing point.

We need to do this process twice more, for the other two edges of the tri-
angle.

Along the leŌ edge, along the line y = 3x+ 1, we subsƟtute 3x+ 1 in for y
in f(x, y):

f(x, y) = f(x, 3x+ 1) = x2 − (3x+ 1)2 + 5 = −8x2 − 6x+ 4 = f2(x).

We want the maximum and minimum values of f2 on the interval [−1, 0], so we
evaluate f2 at its criƟcal points and the endpoints of the interval. We find the
criƟcal points:

f ′2(x) = −16x− 6 = 0 ⇒ x = −3/8.

Evaluate f2 at its criƟcal point and the endpoints of [−1, 0]:

f2(−1) = 2 ⇒ f(−1,−2) = 2
f2(−3/8) = 41/8 = 5.125 ⇒ f(−3/8,−0.125) = 5.125

f2(0) = 4 ⇒ f(0, 1) = 4.
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Figure 12.8.6: The surface of f along with
important points along the boundary of S
and the interior in Example 12.8.6.

Chapter 12 FuncƟons of Several Variables

Finally, we evaluate f along the right edgeof the triangle, where y = −3/2x+
1.

f(x, y) = f(x,−3/2x+ 1) = x2 − (−3/2x+ 1)2 + 5 = −5
4
x2 + 3x+ 4 = f3(x).

The criƟcal points of f3(x) are:

f ′3(x) = 0 ⇒ x = 6/5 = 1.2.

We evaluate f3 at this criƟcal point and at the endpoints of the interval [0, 2]:

f3(0) = 4 ⇒ f(0, 1) = 4
f3(1.2) = 5.8 ⇒ f(1.2,−0.8) = 5.8

f3(2) = 5 ⇒ f(2,−2) = 5.

One last point to test: the criƟcal point of f, (0, 0). We find f(0, 0) = 5.
Wehave evaluated f at a total of 7 different places, all shown in Figure 12.8.6.

We checked each vertex of the triangle twice, as each showed up as the end-
point of an interval twice. Of all the z-values found, the maximum is 5.8, found
at (1.2,−0.8); the minimum is 1, found at (0,−2).

This porƟon of the text is enƟtled “Constrained OpƟmizaƟon” because we
want to opƟmize a funcƟon (i.e., find its maximum and/or minimum values)
subject to a constraint – some limit to what values the funcƟon can aƩain. In
the previous example, we constrained ourselves by considering a funcƟon only
within the boundary of a triangle. This was largely arbitrary; the funcƟon and
the boundary were chosen just as an example, with no real “meaning” behind
the funcƟon or the chosen constraint.

However, solving constrainedopƟmizaƟonproblems is a very important topic
in appliedmathemaƟcs. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

Example 12.8.7 Constrained OpƟmizaƟon
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed 130”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

SÊ½çã®ÊÄ Letw, h and ℓ denote the width, height and length of a rect-
angular box; we assume here thatw = h. The girth is then 2(w+ h) = 4w. The
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Figure 12.8.7: Graphing the volume of a
box with girth 4w and length ℓ, subject to
a size constraint.

12.8 Extreme Values

volume of the box is V(w, ℓ) = whℓ = w2ℓ. We wish to maximize this volume
subject to the constraint 4w+ ℓ ≤ 130, or ℓ ≤ 130− 4w. (Common sense also
indicates that ℓ > 0,w > 0.)

We begin by finding the criƟcal values of V. We find that Vw = 2wℓ and
Vℓ = w2; these are simultaneously 0 only at (0, 0). This gives a volume of 0, so
we can ignore this criƟcal point.

We now consider the volume along the constraint ℓ = 130− 4w. Along this
line, we have:

V(w, ℓ) = V(w, 130− 4w) = w2(130− 4w) = 130w2 − 4w3 = V1(w).

The constraint is applicable on the w-interval [0, 32.5] as indicated in the figure.
Thus we want to maximize V1 on [0, 32.5].

Finding the criƟcal values of V1, we take the derivaƟve and set it equal to 0:

V ′
1(w) = 260w−12w2 = 0 ⇒ w(260−12w) = 0 ⇒ w = 0,

260
12

≈ 21.67.

We found two criƟcal values: when w = 0 and when w = 21.67. We again
ignore the w = 0 soluƟon; the maximum volume, subject to the constraint,
comes at w = h = 21.67, ℓ = 130 − 4(21.6) = 43.33. This gives a volume of
V(21.67, 43.33) ≈ 19, 408in3.

The volume funcƟon V(w, ℓ) is shown in Figure 12.8.7 along with the con-
straint ℓ = 130 − 4w. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the funcƟon. The point where the
volume is maximized is indicated.

It is hard to overemphasize the importance of opƟmizaƟon. In “the real
world,” we rouƟnely seek to make something beƩer. By expressing the some-
thing as a mathemaƟcal funcƟon, “making something beƩer” means “opƟmize
some funcƟon.”

The techniques shownhere are only the beginning of an incredibly important
field. Many funcƟons that we seek to opƟmize are incredibly complex, making
the step of “find the gradient and set it equal to 0⃗ ” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.
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Exercises 12.8
Terms and Concepts
1. T/F: Theorem 12.8.1 states that if f has a criƟcal point at P,

then f has a relaƟve extrema at P.

2. T/F: A point P is a criƟcal point of f if fx and fy are both 0 at
P.

3. T/F: A point P is a criƟcal point of f if fx or fy are undefined
at P.

4. Explain what it means to “solve a constrained opƟmizaƟon”
problem.

Problems
In Exercises 5 – 14, find the criƟcal points of the given func-
Ɵon. Use the Second DerivaƟve Test to determine if each crit-
ical point corresponds to a relaƟve maximum, minimum, or
saddle point.

5. f(x, y) = 1
2 x

2 + 2y2 − 8y+ 4x

6. f(x, y) = x2 + 4x+ y2 − 9y+ 3xy

7. f(x, y) = x2 + 3y2 − 6y+ 4xy

8. f(x, y) = 1
x2 + y2 + 1

9. f(x, y) = x2 + y3 − 3y+ 1

10. f(x, y) = 1
3
x3 − x+ 1

3
y3 − 4y

11. f(x, y) = x2y2

12. f(x, y) = x4 − 2x2 + y3 − 27y− 15

13. f(x, y) =
√

16− (x− 3)2 − y2

14. f(x, y) =
√

x2 + y2

In Exercises 15 – 18, find the absolute maximum and mini-
mum of the funcƟon subject to the given constraint.

15. f(x, y) = x2 + y2 + y + 1, constrained to the triangle with
verƟces (0, 1), (−1,−1) and (1,−1).

16. f(x, y) = 5x − 7y, constrained to the region bounded by
y = x2 and y = 1.

17. f(x, y) = x2 + 2x + y2 + 2y, constrained to the region
bounded by the circle x2 + y2 = 4.

18. f(x, y) = 3y − 2x2, constrained to the region bounded by
the parabola y = x2 + x− 1 and the line y = x.
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