
Emacs and eev, or: How to Automate Almost Everything
Eduardo Ochs

1http://angg.twu.net/

edrx@mat.puc-rio.br

Not currently affiliated to any institution.
Snail-mail address: R. Jardim Botânico 622/103B, Jardim Botânico, Rio de Janeiro, RJ, Brazil, CEP 22461-000.

Abstract. Interacting with programs with command-line interfaces always in-
volve a bit of line editing, and each CLI program tends to implement indepen-
dently its own minimalistic editing features. We show a way of centralizing these
editing tasks by making these programs receive commands that are prepared,
and sent from, Emacs. The resulting system is a kind of Emacs- and Emacs
Lisp-based “universal scripting language” in which commands can be sent to
both external programs and to Emacs itself either in blocks or step-by-step un-
der very fine control from the user.

Note: this is a working draft that has many pieces missing and needs urgent
revision on the pieces it has. Current version: 2005jun01 0:42. Newer ver-
sions are being uploaded to 〈http://angg.twu.net/FISL/〉, and two animations
(in Flash) showing eev at work can be found at:
〈http://angg.twu.net/eev-current/anim/channels.anim.html〉 and
〈http://angg.twu.net/eev-current/anim/gdb.anim.html〉.

1. Three kinds of interfaces

Interactive programs in a Un*x system1 can have basically three kinds of interfaces: they
can be mouse-oriented, like most programs with graphical interfaces nowadays, in which
commands are given by clicking with the mouse; they can be character-oriented, like most
editors and mail readers, in which most commands are single keys or short sequences of
keys; and they can be line-oriented, as, for example, shells are: in a shell commands are
given by editing a full line and then typing “enter” to process that line.

It is commonplace to classify computer users in a spectrum where the “users”
are in one extreme and the “programmers” are in the other; the “users” tend to use only
mouse-oriented and character-oriented programs, and the “programmers” only character-
oriented and line-oriented programs.

In this paper we will show a way to “automate” interactions with line-oriented
programs, and, but not so well, to character-oriented programs; more precisely, it is a
way to edit commands for these programs in a single central place — Emacs — and then
send them to the programs; re-sending the same commands afterwards, with or without
modifications, then becomes very easy.

This way (“e-scripts”) can not be used to send commands to mouse-oriented pro-
grams — at least not without introducing several new tricks. But “programmers” using

1Actually we are more interested in GNU systems than in “real” Unix systems; the reasons will become
clear in the section nnn. By the way: the term “Unix” is Copyright (C) Bell Labs).

Un*x systems usually see most mouse-oriented programs — except for a few that are in-
trinsically mouse-oriented, like drawing programs — as being just wrappers around line-
oriented programs than perform the same tasks with different interfaces; and so, most
mouse-oriented programs “do not matter”, and our method of automating interactions
using e-scripts can be used to automate “almost everything”; hence the title of the paper.

2. “Make each program do one thing well”
One of the tenets of the Unix philosophy is that each program should do one thing, and
do it well; this is a good design rule for Unix programs because the system makes it easy
to invoke external programs to perform tasks, and to connect programs.

Some of parts of a Unix system are more like “meta-programs” or “sub-programs”
than like self-contained programs that do some clearly useful task by themselves. Shells,
for example, are meta-programs: their main function is to allow users to invoke “real
programs” and to connect these programs using pipes, redirections, control structures (if,
for, etc) and Unix “signals”. On the other hand, libraries are sub-programs: for example,
on GNU systems there’s a library called GNU readline that line-oriented programs can
use to get input; if a program, say, bc (a calculator) gets its input by calling readline(...)
instead of using the more basic function fgets(...) then its line-oriented interface will have
a little more functionality: it will allow the user to do some minimal editing in the current
line, and also to recall, edit and issue again some of the latest commands given.

3. Making programs receive commands
Many line-oriented programs allow “scripting”, which means executing commands from
a file. For example, in most shells we can say “source ˜/ee.sh”, and the shell will then
execute the commands in the file ˜/ee.sh. There are other ways of executing commands
from a file — like “sh ˜/ee.sh” — but the one with “source” is the one that we’ll be more
interested in, because it is closer to running the commands in ˜/ee.sh one by one by hand:
for example, with “source ˜/ee.sh” the commands that change parameters of the shell
— like the current directory and the environment variables — will work in the obvious
way, while with “sh ˜/ee.sh” they would only change the parameters of a temporary sub-
shell; the current directory and the environment variables of the present shell would be
“protected”.

So, it is possible to prepare commands for a shell (or for scriptable line-oriented
programs; for arbitrary line-oriented programs see the section nnn) in several ways: by
typing them at the shell’s interface — and if the shell uses readline its interface can be
reasonably friendly — or, alternatively, by using a text editor to edit a file, say, ˜/ee.sh, and
by then “executing” that file with “source ˜/ee.sh”. “source ˜/ee.sh” is a lot of keystrokes,
but that can be shortened if we can define a shell function: by putting

function ee () { source ˜/ee.sh; }

in the shell’s initialization file (˜/.bashrc, ˜/.zshrc, ...) we can reduce “source ˜/ee.sh” to
just “ee”: e, e, enter — three keystrokes.

We just saw how a shell — or, by the way, any line-oriented program in which we
can define an ‘ee’ function like we did for the shell — can receive commands prepared in
an external editor and stored in a certain file; let’s refer to that file, ˜/ee.sh, as a “temporary
script file”. Now it remains to see how an external text editor can “send commands to the
shell”, i.e., how to make the editor save some commands in a temporary script file in a
convenient way, that is, without using too many keystrokes...

4. Sending commands

GNU Emacs, “the extensible, self-documenting text-editor” ([S79]), does at least two
things very well: one is to edit text, and so it can be used to edit temporary scripts, and
thus to send commands to shells and to line-oriented programs with ‘ee’ functions; and
the other one is to run Lisp. Lisp is a powerful programming language, and (at least in
principle!) any action or series of actions can be expressed as a program in Lisp; the first
thing that we want to do is a way to mark a region of a text and “send it as commands to
a shell”, by saving it in a temporary script file. We implement that in two ways:

1: (defun ee (s e)
2: "Save the region in a temporary script"
3: (interactive "r")
4: (write-region s e "˜/ee.sh"))
5:
6: (defun eev (s e)
7: "Like ‘ee’, but the script executes in verbose mode"
8: (interactive "r")
9: (write-region
10: (concat "set -v\n" (buffer-substring s e)
11: "\nset+v")
12: nil "˜/ee.sh"))

‘ee’ (the name stands for something like ‘emacs-execute’) just saves the currently-marked
region of text to ˜/ee.sh; ‘eev’ (for something like ‘emacs-execute-verbose’) does the same
but adding to the beginning of the temporary script a command to put the shell in “verbose
mode”, where each command is displayed before being executed, and also adding at the
end an command to leave verbose mode.

We can now use ‘ee’ and ‘eev’ to send a block of commands to a shell: just select
a region and then run ‘ee’ or ‘eev’. More precisely: mark a region, that is, put the cursor
at one of the extremities of the region, then type C-SPC to set Emacs’s “mark” to that
position, then go to other extremity of the region and type M-x eev (C-SPC and M-x are
Emacs’s notations for Control-Space and Alt-x, a.k.a. “Meta-x”). After doing that, go to
a shell and make it “receive these commands”, by typing ‘ee’.

5. Hyperlinks

When we are learning Un*x — and until the point where we become a genius or an idiot
savant who knows all the documentation files by heart; but I’ve been using GNU systems
for 10 years and I’m neither of these yet — we spend a lot of the time when we are
not issuing commands (which are mostly to shells) accessing and reading documentation
files; and we can use Emacs Lisp “one-liners” to create “hyperlinks” to files:

1: (info "(emacs)Lisp Eval")
2: (find-file "˜/usrc/busybox-1.00/shell/ash.c")
3: (find-file "/usr/share/emacs/21.4/lisp/info.el")

These expressions, when executed — which is done by placing the cursor after
them and then typing C-x C-e, or, equivalently, M-x eval-last-sexp — will open a page
of Emacs manual (the manual is in “Info” format), open the source file ‘shell/ash.c’ of a
program called busybox, and open the file ‘info.el’ from the Emacs sources, respectively.
As some of these files and pages can be very big, these hyperlinks are not yet very satis-
factory: we want ways to not only open these files and pages but also to “point to specific

positions”, i.e., to make the cursor go to these positions automatically. We can do that by
defining some new hyperlink functions, that are invoked like this:

1’: (find-node "(emacs)Lisp Eval" "C-x C-e")
2’: (find-fline "˜/usrc/busybox-1.00/shell/ash.c"

"void\nevalpipe")
3’: (find-fline "/usr/share/emacs/21.4/lisp/info.el"

"defun info")

1’’: (find-enode "Lisp Eval" "C-x C-e")
2’’: (find-busyboxfile "shell/ash.c" "void\nevalpipe")
3’’: (find-efile "info.el" "defun info")

The convention is that these “extended hyperlink functions” have names like ‘find-
xxxnode’, ‘find-xxxfile’, or ‘find-xxxyyy’; as the name ‘find-file’ was already taken by a
standard Emacs function we had to use ‘find-fline’ for ours.

Here is the definition of ‘find-node’ and ‘find-fline’:

14: (defun ee-goto-position (&optional pos-spec)
15: "If POS-SPEC is a string search for its first
16: occurrence in the file; if it is a number go to the
17: POS-SPECth line; if it is nil, don’t move."
18: (cond ((null pos-spec))
19: ((numberp pos-spec)
20: (goto-char (point-min))
21: (forward-line (1- pos-spec)))
22: ((stringp pos-spec)
23: (goto-char (point-min))
24: (search-forward pos-spec))
25: (t (error "Invalid pos-spec: %S" pos-spec))))
26:
27: (defun find-fline (fname &optional pos-spec)
28: "Like (find-file FNAME), but accepts a POS-SPEC"
29: (find-file fname)
20: (ee-goto-position pos-spec))
31:
32: (defun find-node (node &optional pos-spec)
33: "Like (info NODE), but accepts a POS-SPEC"
34: (info node)
35: (ee-goto-position pos-spec)))

The hyperlinks in lines 1
′′, 2

′′ and 3
′′ are equivalent to the ones in 1

′, 2
′′, 3

′′ but are
a bit shorter, and they hide details like Emacs’s path and the version of BusyBox; if we
switch to newer versions of Emacs and BusyBox we only need to change the definitions
of ‘find-busyboxfile’ and ‘find-efile’ to update the hyperlinks. Usually not many things
change from one version of a package to another, so most hyperlinks continue to work
after the update.

Eev defines a function called ‘code-c-d’ that makes defining functions like ‘find-
enode’, ‘find-busyboxfile’ and ‘find-efile’ much easier:

(code-c-d "busybox" "˜/usrc/busybox-1.00/")
(code-c-d "e" ""/usr/share/emacs/21.4/lisp/" "emacs")

The arguments for ‘code-c-d’ are a code (the “xxx” in a “find-xxxfile”), a direc-
tory, and optionally the name of a manual in Info format. The definition of code-c-d is
not very interesting, so we won’t show it here.

Note that we can put these Lisp hyperlinks inside “comments” and still execute
them (by hand); if we send the following lines to a shell,

(find-node "(gawk)Fields")
seq 4 9 | gawk ’{print $1, $1*$1}’

the shell will ignore the first line because of the ‘#’; but when we are editing that we can
execute the ‘(find-node ...)’ with C-x C-e.

It is so common to have Lisp hyperlinks that extend from some position in a line
— usually after a comment sign — to the end of the line that eev implements a special
key for executing these hyperlinks: the effect of typing M-e (when eev is installed and
“eev mode” is on) is roughly the same of first going to the end of the line and then typing
C-x C-e; that is, M-e does the same as the key sequence C-e C-x C-e2.

[There are many other kinds of hyperlinks. Examples?]

6. Dangerous hyperlinks

Note that these “hyperlinks” can do very dangerous things. If we start to execute blindly
every Lisp expression we see just because it can do something interesting or take us to an
interesting place then we can end up running something like:

(shell-command "rm -Rf ˜")

which destroy all files in our home directory; not a good idea. Hyperlinks should
be a bit safer than that...

The modern approach to safety in hyperlinks — the one found in web browsers,
for example — is that following a hyperlink can execute only a few kinds of actions, all
known to be safe; the “target” of a hyperlink is something of the form http://..., ftp://...,
file://..., info://..., mailto:... or at worst like javascript:...; none of these kinds of actions
can even erase our files. That approach limits a lot what hyperlinks can do, but makes it
harmless to hide the hyperlink action and display only some descriptive text.

Eev’s approach is the opposite of that. I wrote the first functions of eev in my first
weeks after installing GNU/Linux in my home machine and starting using GNU Emacs,
in 1994; before that I was using mostly Forth (on MS-DOS), and I hadn’t had a lot of
exposure to *nix systems by then — in particular, I had tried to understand *nix’s notions
of user IDs and file ownerships and permissions, and I felt that they were a thick layer of
complexity that I wasn’t being able to get through.

Forth’s attitude is more like “the user knows what he’s doing”; the system is kept
very simple, so that understanding all the consequences of an action is not very hard. If
the user wants to change a byte in a critical memory position and crash the machine he
can do that, and partly because of that simplicity bringing the machine up again didn’t use
to take more than one minute (in the good old days, of course). Forth people developed
good backup strategies to cope with the insecurities, and — as strange as that might sound

2The main difference between M-e and C-e C-x C-e is how they behave when called with numeric
“prefix arguments”: for example, M-0 M-e highlights temporarily the Lisp expression instead of executing
it and M-4 M-e executes it with some debugging flags turned on, while C-x C-e when called with any prefix
argument inserts the result of the expression at the cursor instead of just showing it at the echo area.

Figure 1: the result of typing M-h M-f find-file

nowadays, where all machines are connected and multi-user and crackers abound — using
the system in the Forth way was productive and fun.

*NIX systems are not like Forth, but when I started using them I was accustomed
to this idea of achieving simplicity through the lack of safeguards, and eev reflects that.
The only thing that keeps eev’s hyperlinks reasonably safe is transparency: the code that
a hyperlink executes is so visible that it is hard to mistake a dangerous Lisp expression
for a “real” hyperlink. Also, all the safe hyperlink functions implemented by eev start
with ‘find-’, and all the ‘find-’ functions in eev are safe, except for those with names like
‘find-xxxsh’ and ‘find-xxxsh0: for example,

(find-sh "wget --help" "recursive download")

executes “wget --help”, puts the output of that in an Emacs buffer and then jumps to the
first occurrence of the string “recursive download” there; other ‘find-xxxsh’ functions
are variations on that that execute some extra shell commands before executing the first
argument — typically either switching to another directory or loading an initialization
file, like ˜/.bashrc or ˜/.zshrc. The ‘find-xxxsh0’ functions are similar to their ‘find-xxxsh’
counterparts, but instead of creating a buffer with their output they just show it at Emacs’s
echo area and they use only the first argument and ignore the others (the pos-spec).

7. Generating Hyperlinks
Do we need to remember the names of all hyperlinks functions, like find-fline and find-
node? Do we need to type the code for each hyperlink in full by hand? The answers are
“no” and “no”.

Eev implements several functions that create temporary buffers containing hyper-
links, that can then be cut and pasted to other buffers. For example, ‘M-h M-f’ creates
links about an Emacs Lisp function: typing ‘M-h M-f’ displays a prompt in a minibuffer
asking for the name of an Elisp function; if we type, say, ‘find-file’ there (note: name
completion with the TAB key works in that prompt) we get a buffer like the one in fig-
ure 1.

The first line of that buffer is a hyperlink to that dynamically-generated page of
hyperlinks. Its function — ‘find-efunction-links’ — has a long name that is hard to re-
member, but there’s a shorter link that will do the same job:

(eek "M-h M-f find-file")

The argument to ‘eek’ is a string describing a sequence of keys in a certain verbose
format, and the effect of running, say, (eek "M-h M-f find-file") is the same
as of typing ‘M-h M-f find-file’.

[M-h is a prefix; (eek "M-h C-h") shows all the sequences with the same
prefix.]

[Exceptions: M-h M-c, M-h M-2, M-h M-y. Show examples of how to edit hyper-
links with M-h M-2 and M-h M-y.]

[Mention hyperlinks about a key sequence? (eek "M-h M-k C-x C-f")]

[Mention hyperlinks about a Debian package?]

8. Glyphs

Emacs allows redefining how characters are displayed, and one of the modules of eev —
eev-glyphs — uses that to make some characters stand out. Character 15, for example,
is displayed on the screen by default as ’ˆO’ (two characters, suggesting “control-O”),
sometimes in a different color from normal text3.

Eev changes the appearance of char 15 to make it be displayed as a red star. Here
is how: Emacs has some structures called “faces” that store font and color information,
and ‘eeglyphs-face-red’ is a face that says “use the default font and the default background
color, but a red foreground”; eev’s initialization code runs this,

(eev-set-glyph 15 ?* ’eev-glyph-face-red)

which sets the representation of char 15 to the “glyph” made of a star in the face eeglyphs-
face-red.

For this article, as red doesn’t print well in black and white, we used this instead:

(eev-set-glyph 15 342434)

this made occurrences of char 15 appear as the character 342434, ‘•’ (note that this is
outside of the ascii range), using the default face, i.e., the default font and color.

Eev also sets a few other glyphs with non-standard faces. The most important of
those are ‘〈〈’ and ’〉〉’, which are set to appear in green against the default background,
with:

(eev-set-glyph 171 171 ’eev-glyph-face-green)
(eev-set-glyph 187 187 ’eev-glyph-face-green)

There’s a technical point to be raised here. Emacs can use several “encodings” for files and
buffers, and ‘〈〈’ and ‘〉〉’ only have character codes 171 and 187 in a few cases, mainly in
the ‘raw-text’ encoding and in “unibyte” buffers; in most other encodings they have other
char codes, usually above 255, and when they have these other codes Emacs considers
that they are other characters for which no special glyphs were set and shows them in
the default face. This visual distinction between the below-255 ‘〈〈’ and ‘〉〉’ and the other
‘〈〈’ and ‘〉〉’s is deliberate — it helps preventing some subtle bugs involving the anchor
functions of section 12.

3Determined by the “face” escape-glyph-face, introduced in GNU Emacs in late 2004.

9. Compose Pairs

To insert a ‘•’ in a text we type ‘C-q C-o’ — C-q “quotes” the next key that Emacs
receives, and ‘C-q C-o’ inserts a “literal C-o”, which is a char 15. Typing ‘〈〈’ and ‘〉〉’s —
and other non-standard glyphs, if we decide to define our own — involves using another
module of eev: eev-compose.

Eev-compose defines a few variables that hold tables of “compose pairs”, which
map pairs of characters that are easy to type into other, weirder characters; for example,
‘eev-composes-otheriso’ says that the pair "<<" is mapped to "〈〈" and that ">>" is
mapped to "〉〉", among others. When we are in “eev mode” the prefix ‘M-,’ can be used
to perform the translation: typing ‘M-, < <’ enters ‘〈〈’, and typing ‘M-, > >’ enters
‘〉〉’.

The variable ‘eev-composes-accents’ holds mappings for accented chars, like
"’a" to "á" and "cc" to "ç"; ‘eev-composes-otheriso’ takes care of the other map-
pings that still concern characters found in the ISO8859-1 character set, like ‘〈〈’ and ’〉〉’
as above, "_a" to " a", "xx" to "×", and a few others; ‘eev-composes-globalmath’ and
‘eev-composes-localmath’ are initially empty and are meant to be used for used-defined
glyphs. The suffix ‘math’ in their names is a relic: Emacs implements its own ways to
enter special characters, which support several languages and character encodings, but
their code is quite complex and they are difficult to extend; the code that implements
eev’s ‘M-,’, on the other hand, takes about just 10 lines of Lisp (excluding the tables
of compose pairs) and it is trivial to understand and to change its tables of pairs. ‘M-,’
was created originally to enter special glyphs for editing mathematical texts in TEX, but it
turned out to be a convenient hack, and it stuck.

10. Delimited regions

Sometimes it happens that we need to run a certain (long) series of commands over and
over again, maybe with some changes from one run to the next; then having to mark the
block all the time becomes a hassle.

One alternative to that is using a variaton of M-x eev, eev-bounded, that saves
the region around the cursor up to certain delimiters instead of saving what’s between
Emacs’s “point” and “mark”. The original definition of eev-bounded was something like

(defun eev-bounded ()
(interactive)
(eev (ee-search-backwards "\n#•\n")

(ee-search-forward "\n#•\n")))

where the call to ee-search-backwards would search for the first occurrence of the string
"\n#•\n" (newline, hash sign, control-O, newline) before the cursor and return the po-
sition after the "\n#•\n", without moving the cursor, and the call to ee-search-forward
would do something similar with a forward search.

The block below shows a typical application:

(code-c-d "lua5" "/tmp/usrc/lua-5.0.2/")
(find-lua5file "INSTALL")
(find-lua5file "config" "support for dynamic loading")
(find-lua5file "config")
(find-lua5file "")
#•

Figure 2: sending a delimited block with F3

rm -Rv ˜/usrc/lua-5.0.2/
mkdir -p ˜/usrc/lua-5.0.2/
tar -C ˜/usrc/ \

-xvzf $S/http/www.lua.org/ftp/lua-5.0.2.tar.gz
cd ˜/usrc/lua-5.0.2/
cat >> config <<’---’
LOADLIB= -DUSE_DLOPEN=1
DLLIB= -ldl
MYLDFLAGS= -Wl,-E
EXTRA_LIBS= -lm -ldl

make test 2>&1 | tee omt
./bin/lua -e ’print(loadlib)’
#•

in unpacks a program (the interpreter for Lua), changes its default configuration slightly,
then compiles and tests it.

[about the size: the above code is “too small for being a script”, and the hyperlinks
are important]

Eev binds F3 to a function that runs the “default bounded function”, which is
usually eev-bounded; and the real definition of eev-bounded is quite different from the
one above, as it includes code that highlightings temporarily the region that was saved
(see Figure 2) and it also sets the default bounded function to eev-bounded — eev also
implements several other functions that have “bounded versions”, for example eelatex,
that saves the region (plus certain standard header and footer lines) to a “temporary LATEX
file” and saves into the temporary script file the commands to make ‘ee’ run LATEX on that
and display the result. The block below is an example of (...)

%•

% (eelatex-bounded)
% (ee-once (eelatex-bounded))
\def\myttbox#1{%

\setbox0=\hbox{\texttt{a}}%
\hbox to \wd0{\hss#1\hss}%

}
\catcode‘•=13 \def•{\myttbox{\bullet}}
\begin{verbatim}
abcdefg

d•fg
\end{verbatim}
%•

Actually F3 runs the function eeb-default; eeb-default consults the variable eeb-
default (in Emacs Lisp a function and a variable can have the same name: the “value as
function” and the “value as variable” of the symbol eeb-default are kept in two different
slots)

(defun eev-bounded ()
(interactive)
(setq eeb-defaults eev-bounded)
(eeb-default))

and eeb-default is a list containing eev, delim1, delim2 and other information.

F3, delimiters, glyphs

gdb (here-documents, gcc, ee-once)

mention TeX (add header and footer)

deal with blocks that are executed several times with small changes

example: compilation

(alternative: here-documents, gcc, gdb, screenshot(s) for gdb)

Flashes for a while

delimiter lines should be comments

different languages have use a different syntax for comments

example: latex

11. Communication channels

The way that we saw to send commands to a shell is in two steps: first we use M-x eev
in Emacs to “send” a block of commands, and then we run ‘ee’ at the shell to make it
“receive” these commands. But there is also a way to create shells that “listen” not only
to the keyboard for their input, but also to certain “communication channels”; by making
Emacs send commands through these communication channels we can skip the step of
going to the shell and typing ‘ee’ — the commands are received immediately.

The screenshot at Figure 3 shows this at work. The user has started with the cursor
at the second line from the top of the screen in the Emacs window and then has typed F9
several times. Eev binds F9 to a command that operates on the current line and then
moves down to the next line; if the current line starts with ‘•’ then what comes after the
‘•’ is considered as Lisp code and executed immediately, and the current line doesn’t start

Figure 3: sending commands to two xterms using F9

with ‘•’ then its contents are sent through the default communication channel, or though
a dummy communication channel if no default was set.

The first F9 executed (eechannel-xterm "A"), which created an xterm
with title “channel A”, running a shell listening on the communication channel “A”, and
set the default channel to A; the second F9 created another xterm, now listening to channel
B, and set the default channel to B.

The next two ‘F9’s sent each one one line to channel B. The first line was a shell
comment (“# Listen...”); the second one started the program netcat, with options to
make netcat “listen to the internet port 1234” and dump to standard output what it receives.

The next line had just ‘•’; executing the rest of it as Lisp did nothing. The follow-
ing line changed the default channel to A.

In the following lines there is a small shell program that outputs “hi”, then waits
one second, then outputs “bye”, then waits for another second, then finishes; due to the “|
netcat ...” its output is redirected to the internet port 1234, and so we see it appearing
as the output of the netcat running on channel B, with all the expected delays: one second
between “hi” and “bye”, and one second after “bye”; after that last one-second delay the
netcat at channel A finishes receiving input (because the program between ‘{’ and ‘}’
ends) and it finishes its execution, closing the port 1234; the netcat at B notices that the
port was closed and finishes its execution too, and both shells return to the shell prompt.

There are also ways to send whole blocks of lines at once through communication
channels; see Section 16.

11.1. The Implementation of Communication Channels

Communication channels are implemented using an auxiliary script called ‘eegchannel’,
which is written in Expect ([L90] and [L95]). If we start an xterm in the default way it
starts a shell (say, /bin/bash) and interacts with it: the xterm sends to the shell as characters
the keystrokes that it receives from the window manager and treats the characters that the
shell sends back as being instructions to draw characters, numbers and symbols on the
screen. But when we run (eechannel-xterm "A") Emacs creates an xterm that

interacts with another program — eegchannel — instead of with a shell, and eegchannel
in its turn runs a shell and interacts with it.

Eegchannel passes characters back and forth between the xterm and the shell with-
out changing them in any way; it mostly tries to pretend that it is not there and that the
xterm is communicating directly with the shell. However, when eegchannel receives a
certain signal it sends to the shell a certain sequence of characters that were not sent by
the xterm; it “fakes a sequence of keystrokes”.

Let’s see a concrete example. Suppose than Emacs was running with process id
(“pid”) 1000, and running (eechannel-xterm "A") in it made it create an xterm,
which got pid 1001; that xterm ran eegchannel (pid 1002), which ran /bin/bash (pid 1003).
Actually Emacs invoked xterm using this command line:

xterm -n "channel A" -e eegchannel A /bin/bash

and xterm invoked eegchannel with eegchannel A /bin/bash; eegchannel saw
the ‘A’, saved its pid (1002) to the file ˜/.eev/eeg.A.pid, and watched for SIGUSR1 sig-
nals; every time that it (the eegchannel) receives a SIGUSR1 it reads the contents of
˜/.eev/eeg.A.str and sends that as fake input to the shell that it is controlling. So, running

echo ’echo $[1+2]’ > ˜/.eev/eeg.A.str
kill -USR1 $(cat ˜/.eev/eeg.A.pid)

in a shell sends the string “echo $[1+2]” (plus a newline) “through the channel A”;
what Emacs does when we type F9 on a line that does not start with ‘•’ corresponds
exactly to that.

12. Anchors

The function ‘to’ can be used to create hyperlink to certain positions — called “anchors”
— in the current file. For example,

Index:
〈〈.first_block〉〉 (to "first_block")
〈〈.second_block〉〉 (to "second_block")

#•
〈〈first_block〉〉 (to ".first_block")
echo blah
#•
〈〈second_block〉〉 (to ".second_block")
echo blah blah
#•

What ‘to’ does is simply to wrap its argument inside ‘〈〈’ and ‘〉〉’ characters and
then jump to the first occurrence of the resulting string in the current file. In the (toy)
example above, the line that starts with “# 〈〈.first_block〉〉” has a link that jumps
to the line that starts with “# 〈〈first_block〉〉”, which has a link that jumps back —
the anchors and “(to ...)”s act like an index for that file.

[find-anchor]

The function ‘find-anchor’ works like a ‘to’ that first opens another file:

(find-anchor "˜/.zshrc" "update-homepage")

does roughly the same as:

(find-fline "˜/.zshrc" "〈〈update-homepage〉〉")

Actually ‘find-anchor’ consults a variable, ‘ee-anchor-format’, to see in
which strings to wrap the argument. Some functions modify ‘ee-anchor-format’
temporarily to obtain special effects; for example, a lot of information about
the packages installed in a Debian GNU system is kept in a text file called
/var/lib/dpkg/info/status; (find-status "emacs21") opens this file and searches
for the string "\nPackage: emacs21\n" there — that string is the header for the
block with information about the package emacs21, and it tells the size of the package,
description, version, whether it is installed or not, etc, in a format that is both machine-
readable and human-readable.

13. E-scripts
The best short definition for eev that I’ve found involves some cheating, as it is a circular
definition: “eev is a library that adds support for e-scripts to Emacs” — and e-scripts
are files that contain chunks meant to be processed by eev’s functions. Almost any file
can contain parts “meant for eev”: for example, a HOWTO or README file about some
program will usually contain some example shell commands, and we can mark these
commands and execute them with M-x eev; and if we have the habit of using eev and
we are writing code in, say, C or Lua we will often put elisp hyperlinks inside comment
blocks in our code. These two specific languages (and a few others) have a feature that
is quite convenient for eev: they have syntactical constructs that allow comment blocks
spanning several lines — for example, in Lua, where these comment blocks are delimited
by “--[[” and “--]]”s, we can have a block like

--[[
#•
This file: (find-fline "˜/LUA/lstoindexhtml.lua")
A test:
cd /tmp/
ls -laF | col -x \
| lua50 ˜/LUA/lstoindexhtml.lua tmp/ \
| lua50 -e ’writefile("index.html", io.read("*a"))’

#•
--]]

in a Lua script, and the script will be at the same time a Lua script and an e-script.

When I started using GNU and Emacs the notion of an e-script was something
quite precise to me: I was keeping notes on what I was learning and on all that I was trying
to do, and I was keeping those notes in a format that was partly English (or Portuguese),
partly executable things — not all of them finished, or working — after all, it was much
more practical to write

rm -Rv ˜/usrc/busybox-1.00/
tar -C ˜/usrc/ -xvzf \

$S/http/www.busybox.net/downloads/busybox-1.00.tar.gz
cd ˜/usrc/busybox-1.00/
cp -iv ˜/BUSYBOX/myconfig .config
make menuconfig
make 2>&1 | tee om

than to write

Unpack BusyBox’s source, then run "make menuconfig"
and "make" on its main directory

and then have to translate that from English into machine commands every time... So,
those files where I was keeping my notes contained “executable notes”, or were “scripts
for Emacs”, and I was quite sure that everyone else around were also keeping notes in ex-
ecutable formats, possibly using other editors and environments (vi, maybe?) and that if
I showed these people my notes and they were about some task that they were also strug-
gling with then they would also show me their notes... I ended up making a system that
uploaded regularly all my e-scripts (no matter how messy they were) to my home page,
and writing a text — “The Eev Manifesto” ([O99]) — about sharing these executable
notes.

Actually trying to define an e-script as being “a file containing executable parts,
that are picked up and executed interactively” makes the concept of an e-script very loose.

Note that we can execute the Lua parts in the code above by running the Lua
interpreter on it, we can execute the elisp one-liner with M-e in Emacs, and we can execute
the shell commands using F3 or M-x eev; but the code will do nothing by itself — it is
passive.

A piece of code containing instructions in English on how to use it is also an e-
script, in a sense; but to execute these instructions we need to invoke an external entity
— a human, usually ourselves — to interpret them. This is much more flexible, but also
much more error-prone and slow, than just pressing a simple sequence of keys like M-e,
or F9, or F3, alt-tab, e, e, enter.

14. Splitting eev.el

When I first submittted eev for inclusion in GNU Emacs, in 1999, the people at the FSF
requested some changes. One of them was to split eev.el — the code at that point was all
in a single Emacs Lisp file, called eev.el — into several separate source files according to
functionality; at least the code for saving temporary scripts and the code for hyperlinks
should be kept separate.

It turned out that that was the wrong way of splitting eev. The frontier between
what is a hyperlink and what is a block of commands is blurry:

man foo
man -P ’less +/bar’ foo
(eev "man foo")
(eev "man -P ’less +/bar’ foo")
(find-man "foo" "bar")

The two ‘man’ commands above can be considered as hyperlinks to a manpage,
but we need to send those commands to a shell to actually open the manpage; the option
-P ’less +/bar’ instructs ‘man’ to use the program ‘less’ to display the manpage, and it
tells ‘less’ to jump to the first occurrence of the string “bar” in the text, and so it is a
hyperlink to a specific position in a manpage. Each of the two ‘eev’ lines, when executed,
saves one of these ‘man’ commands to the temporary script file; because they contain Lisp
expressions they look much more like hyperlinks than the ‘man’ lines. The last line, ‘find-
man’, behaves much more like a “real” hyperlink: it opens the manpage inside Emacs and
searches for the first occurrence of ‘bar’ there; but Emacs’s code for displaying manpages

was tricky, and it took me a few years to figure out how to add support for pos-spec-lists
to it...

So, what happens is that often a new kind of hyperlink will begin its life as a series
of shell commands (another example: using ‘gv –page 14 file.ps’ to open a PostScript file
and then jump to a certain page) and then it takes some time to make a nice hyperlink
function that does the same thing; and often these functions are implemented by executing
commands in external programs.

There’s a much better way to split conceptually what eev does, though. Most
functions in eev take a region of text (for example Emacs’s own “selected region”, or the
extent of Lisp expression coming before the cursor) and “execute” that in some way; the
kinds of regions are

Emacs’s (selected) region M-x eev, M-x eelatex (sec. 4)
last-sexp (Lisp expression at
the left of the cursor)

C-x C-e, M-E (sec. 5)

sexp-eol (go to end of line,
then last-sexp)

C-e C-x C-e, M-e (sec. 5)

bounded region F3, M-x eev-bounded, M-x
eelatex-bounded (sec. 10)

bounded region around an-
chor

(ee-at “anchor” ...) (sec. 16)

current line F9 (sec. 11)
no text (instead use the next
item in a list)

F12 (sec. 15)

Actions (can be composed):

• Saving a region or a string into a file
• Sending a signal to a process
• Executing as Lisp
• Executing immediately in a shell
• Start a debugger

other functions, like find-fline are find-node, are auxiliary functions that imple-
ment some kinds of hyperlinks

[Emacs terminology: commands]

15. Steps

[Simple examples]

[writing demos]

[hyperlinks for which no short form is known]

[producing animations and screenshots]

16. Big Modular E-scripts

A shell can be run in two modes: either interactively, by expecting lines from the user
and executing them as soon as they are received4, or by scripts: in the later case the shell

4except for multi-line commands.

Figure 4: sending a block at once with eevnow-at

Figure 5: single-stepping through a C program

already has access to the commands, and executes them in sequence as fast as possible,
with no pause between one command and the next.

When we are sending lines to a shell with F9 we are telling it not only what to
execute but also when to execute it; this is somewhat similar to running a program step-
by-step inside a debugger — but note that most shells provide no single-stepping facilities.

We will start with a toy example — actually the example from Section 12 with
five new lines added at the end — and then and the next section we will see a real-world
example that uses these ideas.

[Somewhere between a script and direct user interaction]

[No loops, no conditionals]

[Several xterms]

17. Internet Skills for Disconnected People

Suppose that we have a person P who has learned how to use a computer and now wants
to learn how the internet works. That person P knows a bit of programming and can use
Emacs, and sure she can use e-mail clients and web browsers by clicking around with the
mouse, but she has grown tired of just using those things as black boxes; now she wants
to experiment with setting up HTTP and mail servers, to understand how data packets are
driven around, how firewalls can block some connections, such things.

The problem is that P has never had access to any machine besides her own, which
is connected to the internet only through a modem; and also, she doesn’t have any friends
who are computer technicians or sysadmins, because from the little contact that she’s had
with these people she’s got the impression that they live lifes that are almost as grey as the
ones of factory workers, and she’s afraid of them. To add up to all that, P has some hippie
job that makes her happy but poor, so she’s not going to buy a second computer, and the
books she can borrow, for example, Richard Stevens’ series on TCP/IP programming, just
don’t cut.

One of eev’s intents isto make life easier for autodidacts. Can it be used to rescue
people in positions like P ’s5? It was thinking on that that I created a side-project to eev
called “Internet Skills for Disconnected People”: it consists of e-scripts about running a
second machine, called the “guest”, emulated inside the “host”, and making the two talk
to each other via standard internet protocols, via emulated ethernet cards. Those e-scripts
make heavy use of the concepts in the last section [...]

18. Availability and Resources

Eev can be downloaded from the author’s homepage, http://angg.twu.net/. That page also
contains lots of examples, some animations showing some of eev’s features at work, a
mailing list, etc.

Eev is in the middle of the process of becoming a standard part of GNU Emacs;
I expect it to be integrated just after the release of GNU Emacs 22.1 in mid-2005. Eev’s
copyright has already been transferred to the FSF; it is distributed under the GPL license.

19. References

[L90] - Libes, D. Expect: Curing Those Uncontrollable Fits of Interaction. 1990. Avail-
able online from http://expect.nist.gov/ .

[L95] - Libes, D. Exploring Expect. O’Reilly, 1995.

[O99] - Ochs, E. The Eev Manifesto. http://angg.twu.net/eev-manifesto.html

[S79] - Stallman, R. EMACS: The Extensible, Customizable Display Editor.
http://www.gnu.org/software/emacs/emacs-paper.html

5by the way, I created P inspired on myself; my hippie job is being a mathematician.

