Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2008notations-utf8.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2008notations-utf8.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2008notations-utf8.pdf")) % (defun e () (interactive) (find-LATEX "2008notations-utf8.tex")) % (defun u () (interactive) (find-latex-upload-links "2008notations-utf8")) % (find-pdf-page "~/LATEX/2008notations-utf8.pdf") % (find-sh0 "cp -v ~/LATEX/2008notations-utf8.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2008notations-utf8.pdf /tmp/pen/") % file:///home/edrx/LATEX/2008notations-utf8.pdf % file:///tmp/2008notations-utf8.pdf % file:///tmp/pen/2008notations-utf8.pdf % http://angg.twu.net/LATEX/2008notations-utf8.pdf % (find-LATEX "2019.mk") % «.ls-deriv» (to "ls-deriv") % «.pavlovic-quantifiers» (to "pavlovic-quantifiers") % «.seely-plc» (to "seely-plc") % «.seely-plc-trees» (to "seely-plc-trees") % «.seely-plc-trees-dnc» (to "seely-plc-trees-dnc") % «.local-set-theories» (to "local-set-theories") % «.local-set-theories-2» (to "local-set-theories-2") % «.notes-seelyhyp» (to "notes-seelyhyp") % «.luo» (to "luo") \documentclass[oneside]{book} \usepackage[colorlinks,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % (find-dednat6 "dednat6/block.lua" "TexLines") \directlua{tf:processuntil(texlines:nlines())} %:*|-*⊢* %:*|->*↦* Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Quantifiers in Pavlovic's thesis} {2} \tocline {A derivation from Lambek/Scott} {3} \tocline {Seely's PLC paper} {4} \tocline {Seely's PLC paper: trees} {5} \tocline {Seely's PLC paper: trees, in DNC} {6} \tocline {Local set theories} {7} \tocline {Local set theories (1)} {8} \tocline {Notes on reading SeelyHyp} {9} \setlength{\parindent}{0em} \newpage % -------------------- % «pavlovic-quantifiers» (to ".pavlovic-quantifiers") % (s "Quantifiers in Pavlovic's thesis" "pavlovic-quantifiers") \myslide {Quantifiers in Pavlovic's thesis} {pavlovic-quantifiers} \def𝐬#1{{\color{red}#1}} The rules $𝐫IΠ, 𝐫EΠ, 𝐫IΣ, 𝐫EΣ$, as they appear in Pavlovi\v c: %: %: [X:P:\DD'] %: ============ %: 𝐬{q}:Q:\DD'' %: --------------------𝐫IΠ\DD'\DD'' %: 𝐬{λX.q}:ΠX⠆P.Q:\DD'' %: %: ^pav-IProd %: %: %: 𝐬p:P:\DD' 𝐬r:ΠX⠆P.Q(𝐬X):\DD'' %: -------------------------------𝐫EΠ\DD'\DD'' %: 𝐬{rp}:Q𝐬{[X:=p]}:\DD'' %: %: ^pav-EProd %: %: [X:P:\DD'] %: ========== %: 𝐬{p:P:\DD'} Q:\DD' 𝐬{q:Q(p):\DD''} %: ------------------------------------------𝐫IΣ\DD'\DD'' %: 𝐬{\ang{p,q}}:ΣX⠆P.Q:\DD' %: %: ^pav-ISum %: %: [X:P:\DD'] %: =============== %: [𝐬Y:Q(X):\DD''] %: ========================== %: 𝐬r:ΣX⠆P.Q:\DD'' 𝐬{s(X,Y)}:S(\ang{X,Y}):\DD %: --------------------------------------------𝐫EΣ\DD'\DD'' %: 𝐬{ν(r,(X,Y).s)}:S(𝐬r):\DD %: %: ^pav-ESum %: $$\ded{pav-IProd}$$ $$\ded{pav-EProd}$$ $$\ded{pav-ISum}$$ $$\ded{pav-ESum}$$ \msk The same rules, but with a DNC-ish choice of letters: %: [b:B:Θ'] %: ======== %: 𝐬c:C:Θ'' %: -----------------𝐫IΠΘ'Θ'' %: 𝐬{λb.c}:Πb⠆B.C:Θ'' %: %: ^pav-IProd-abc %: %: b':B:Θ' f:Πb⠆B.C(b):Θ'' %: -------------------------𝐫EΠΘ'Θ'' %: fb:C[b:=b']:Θ'' %: %: ^pav-EProd-abc %: %: [b:B:Θ'] %: ======== %: b':B:Θ' C:Θ' c:C(b'):Θ'' %: ------------------------------𝐫IΣΘ'Θ'' %: \ang{b',c}:Σb⠆B.C:Θ' %: %: ^pav-ISum-abc %: %: [b:B:Θ'] %: =============== %: [𝐬c:C(b):Θ''] %: ========================== %: 𝐬p:Σb⠆B.C:Θ'' 𝐬{d(b,c)}:D(\ang{b,c}):Θ''' %: --------------------------------------------𝐫EΣΘ'Θ'' %: 𝐬{ν(p,(b,c).d)}:D(𝐬p):Θ''' %: %: ^pav-ESum-abc %: $$\ded{pav-IProd-abc}$$ $$\ded{pav-EProd-abc}$$ $$\ded{pav-ISum-abc}$$ $$\ded{pav-ESum-abc}$$ \newpage % -------------------- % «ls-deriv» (to ".ls-deriv") % (s "A derivation from Lambek/Scott" "ls-deriv") \myslide {A derivation from Lambek/Scott} {ls-deriv} Lambek/Scott, p.131: %: ∀_{x∈A}\phi(x)|-∀_{x∈A}\phi(x) ∃_{x∈A}\phi(x)|-∃_{x∈A}\phi(x) %: ------------------------------(2.4) ------------------------------(2.4') %: ∀_{x∈A}\phi(x)|-_x\phi(x) \phi(x)|-_x∃_{x∈A}\phi(x) %: -------------------------------------------------------------(1.2) %: ∀_{x∈A}\phi(x)|-_x∃_{x∈A}\phi(x) %: --------------------------------(1.4) %: ∀_{x∈A}\phi(x)|-∃_{x∈A}\phi(x) %: %: ^LS-p131 %: $$\ded{LS-p131}$$ %: a;∀b.P|-∀b.P a;∃b.P|-∃b.P %: ------------(∀𝐫E) ------------(∃𝐫I) %: a,b;∀b.P|-P a,b;P|-∃b.P %: ----------------------------- %: a|-b a,b;∀b.P|-∃b.P %: -------------------------(𝐫s) %: a;∀b.P|-∃b.P %: %: ^LS-p131-dnc %: $$\ded{LS-p131-dnc}$$ \newpage % -------------------- % «seely-plc» (to ".seely-plc") % (s "Seely's PLC paper" "seely-plc") \myslide {Seely's PLC paper} {seely-plc} (1.1.1. {\sl Orders}) 1 and $Ω$ are orders; if $A$ and $B$ are orders, then $A×B$ and $Ω^A$ are also orders. (1.1.2. {\sl Operators}) In the following, ``$σ∈A$'' means $σ$ is an operator of order $A$; the rest of the arity is left unspecified for simplicity. For each order, there is a countable set of variable operators (called ``indeterminates''). $*∈1$. $⊤∈Ω$. If $σ, τ ∈ Ω$, then $σ∧τ$ and $σ→τ∈Ω$. If $σ∈Ω$ and $\aa$ is an indeterminate of order $A$, then $Σ\aa∈A·σ$ and $Π\aa∈A·σ∈Ω$. ($×I$) If $σ∈A$, $τ∈B$, then $\ang{σ,τ}∈A×B$. ($×E$) If $σ∈A×B$, then $π_1σ∈A$, $π_2σ∈B$. ($PI$) If $\aa$ is an indeterminate of order $A$ and $σ∈Ω$, then $[\aa∈A:σ]∈Ω^A$. ($PE$) If $τ∈A$, $σ∈Ω^A$, then $σ(τ)∈Ω$. {\textsc{Definition} 1.1.3.} A type is an operator of order $Ω$. (1.1.4. {\sl Terms}) In the following, ``$a∈τ$'' means $a$ is a term of type $τ$; the rest of the arity is left unspecified for simplicity. For each type, there is a countable set of variable terms (called ``variables''). ($⊤I$) $*∈⊤$. ($→I$) If $a∈τ$, $x$ a variable of type $σ$, then $λx∈σ·a∈σ→τ$. ($→E$) If $a∈σ→τ$, $b∈σ$, then $a(b)∈τ$. ($∧I$) If $a∈σ$, $b∈τ$, then $\ang{a,b}∈σ∧τ$. ($∧E$) If $a∈σ∧τ$, then $π_1a∈σ$ $π_2a∈τ$. ($ΣI$) If $\aa$is an indeterminate of order $A$, $σ∈Ω$, $τ∈A$, then $I_{Σ\aa·σ,τ}∈σ[τ/\aa]→Σ\aa∈A·σ$. When clear from the context, we shall denote this term by $I_τ$, or even by $I$; in particular, if $b∈σ[τ/\aa]$, then $I(b)∈Σ\aa∈A·σ$. ($ΣE$) In $a∈σ→ρ$, $\aa$ an indeterminate of order $A$ which is not free in $ρ$ nor in the type of any free variable in $a$, then $𝐛V\aa∈A·a∈(Σ\aa∈A·σ)→ρ$. ($ΠI$) If $a∈σ$, $\aa$ an indeterminate of order $A$ which is not free in the type of any free variable in $a$, then $\Lambda\aa∈A·a∈Π\aa∈A·σ$. ($ΠE$) If $a∈Π\aa∈A·\aa$, $τ∈A$, then $a\{τ\}∈σ[τ/\aa]$, where $σ[τ/\aa]$ is $σ$ with $τ$ replacing $\aa$. \newpage % -------------------- % «seely-plc-trees» (to ".seely-plc-trees") % (s "Seely's PLC paper: trees" "seely-plc-trees") \myslide {Seely's PLC paper: trees} {seely-plc-trees} %:*<*\langle * %:*>*\rangle * %:*&*\&* %: --- %: Ω:Θ %: %: ^Omega %: %: --- --- %: 1:Θ *:1 %: %: ^1 ^*1 %: %: --- --- %: ⊤:Ω *:⊤ %: %: ^T ^*T %: %: A:Θ B:Θ σ:A τ:B σ:A×B σ:A×B %: -------- --------- ------ ------ %: A×B:Θ <σ,τ>:A×B π_1σ:A π_2σ:B %: %: ^x ^xI ^xE1 ^xE2 %: %: A:Θ σ:Ω τ:A σ:A->Ω %: ------ -------------- ----------- %: A->Ω:Θ [\aa∈A:σ]:A->Ω σ(τ):Ω %: %: ^-> ^->I ^->E %: %: σ:Ω τ:Ω a:σ b:τ a:σ∧τ a:σ∧τ %: -------- --------- ------ ------ %: σ∧τ:Ω <a,b>:σ∧τ π_1a:σ π_2a:τ %: %: ^and ^andI ^andE1 ^andE2 %: %: σ:Ω τ:Ω a:τ b:σ a:σ→τ %: -------- ---------- ---------- %: σ→τ:Ω λx∈σ·a:σ→τ a(b):τ %: %: ^imp ^impI ^impE %: %: σ:Ω σ:Ω τ:A a:σ→ρ %: ---------- ------------------- ---------------------- %: Σ\aa∈A·σ:Ω I:σ[τ/\aa]→Σ\aa∈A·σ 𝐛V\aa∈A·a:(Σ\aa∈A·σ)→ρ %: %: ^sum ^sumI ^sumE %: %: σ:Ω a:σ τ:A a:Π\aa∈A·\aa %: ---------- ----------------------- ----------------- %: Π\aa∈A·σ:Ω \Lambda\aa∈A·a:Π\aa∈A·σ a\{τ\}:σ[τ/\aa] %: %: ^prod ^prodI ^prodE %: $$\begin{array}{ccc} \ded{Omega} \\ \\ \ded{1} & \ded{*1} \\ \\ \ded{T} & \ded{*T} \\ \\ \ded{x} & \ded{xI} & \ded{xE1} \qquad \ded{xE2} \\ \\ \ded{->} & \ded{->I} & \ded{->E} \\ \\ \ded{and} & \ded{andI} & \ded{andE1} \qquad \ded{andE2} \\ \\ \ded{imp} & \ded{impI} & \ded{impE} \\ \\ \end{array} $$ $$\begin{array}{ccccc} \ded{sum} && \ded{sumI} && \ded{sumE} \\ \\ \ded{prod} && \ded{prodI} && \ded{prodE} \\ \\ \end{array} $$ \newpage % -------------------- % «seely-plc-trees-dnc» (to ".seely-plc-trees-dnc") % (s "Seely's PLC paper: trees, in DNC" "seely-plc-trees-dnc") \myslide {Seely's PLC paper: trees, in DNC} {seely-plc-trees-dnc} %: --- %: Ω:Θ %: %: ^d.Omega %: %: --- --- %: 1:Θ *:1 %: %: ^d.1 ^d.*1 %: %: ------ ------- %: ω[⊤]:Ω ⊤:ω[T]⊤ %: %: ^d.T ^d.*T %: %: A B a b a,b a,b %: ----- ----- --- --- %: A×B a,b a b %: %: ^d.x ^d.xI ^d.xE1 ^d.xE2 %: %: A ω[P] a a|->ω[P] %: ------ -------- ----------- %: A->Ω a|->ω[P] ω[P] %: %: ^d.-> ^d.->I ^d.->E %: %: ω[P] ω[Q] P Q P&Q P&Q %: ---------- ---- --- --- %: ω[P&Q] P&Q P Q %: %: ^d.and ^d.andI ^d.andE1 ^d.andE2 %: %: ω[P] ω[Q] Q P P→Q %: ---------- --- ------ %: ω[P→Q] P→Q Q %: %: ^d.imp ^d.impI ^d.impE %: %: ω[P] a,b|-ω[P] a|-b a|-ω[Q] a,b;⊤|-P→Q %: ------- ---------------- -------------------- %: ω[∃b.P] a|-P→(∃b.P) a;⊤|-(∃b.P)→Q %: %: ^d.sum ^d.sumI ^d.sumE %: %: ω[P] a|-ω[P] a,b;P|-Q b ∀b.P %: ------- ----------------- ------- %: ω[∀b.P] a;P|-∀b.Q b %: %: ^d.prod ^d.prodI ^d.prodE %: $$\begin{array}{ccc} \ded{d.Omega} \\ \\ \ded{d.1} & \ded{d.*1} \\ \\ \ded{d.T} & \ded{d.*T} \\ \\ \ded{d.x} & \ded{d.xI} & \ded{d.xE1} \qquad \ded{d.xE2} \\ \\ \ded{d.->} & \ded{d.->I} & \ded{d.->E} \\ \\ \ded{d.and} & \ded{d.andI} & \ded{d.andE1} \qquad \ded{d.andE2} \\ \\ \ded{d.imp} & \ded{d.impI} & \ded{d.impE} \\ \\ \end{array} $$ $$\begin{array}{ccccc} \ded{d.sum} && \ded{d.sumI} && \ded{d.sumE} \\ \\ \ded{d.prod} && \ded{d.prodI} && \ded{d.prodE} \\ \\ \end{array} $$ \newpage % -------------------- % «local-set-theories» (to ".local-set-theories") % (s "Local set theories" "local-set-theories") \myslide {Local set theories} {local-set-theories} {%\myttchars \footnotesize \begin{verbatim} (T1) |-* (T2) a|-a a|-b b|->c (T3) ----------- a|-c a|-b_1 ... a|-b_n (T4) ----------------- a|-(b_1,...,b_n) a|-(b_1,...,b_n) (T5) ----------------- a|-b_i a,b|-ω[P] (T6) --------- a|-{b|P} a|-b a|-b' (T7) ----------- a|-ω[b=b'] a|-b a|-{b|P} (T8) -------------- a|-ω[b∈{b|P}] (L1) P<=>Q := ω[P]=ω[Q] (L2) ⊤ := *=* (L3) P∧Q := (ω[P],ω[Q])=(ω[⊤],ω[⊤]) (L4) P→Q := (P∧Q)<=>P (L5) ∀b.P := {b|P}={b|⊤} (L6) ⊥ := ∀ω[P].P (L7) ¬P := P→⊥ (L8) P∨Q := ∀ω[R].(((P→R)∧(Q→R))→R) (L9) ∃b.P := ∀ω[Q]. ... \end{verbatim} } \newpage % -------------------- % «local-set-theories-2» (to ".local-set-theories-2") % (s "Local set theories (1)" "local-set-theories-2") \myslide {Local set theories (1)} {local-set-theories-2} {%\myttchars \footnotesize \begin{verbatim} (Tautology) P|-P (Unity) |-*'=* (Equality) b'=b''|-c[b:=b']=c[b:=b''] (Products) |-π<b,c>=b |-π'<b,c>=c |-<π(b,c),π'(b,c)>=(b,c) (Comprehension) |-b∈{b|P}<=>P P|-R (Thinning) ------ P,Q|-R a;P|-Q a;P,Q|-R (Cut) ----------------- a;P|-R a,b;P|-Q a|-b' (Subst) -------------------- a;P[b:=b']|-Q[b:=b'] a,b;P|-b∈{b|Q}<=>b∈{b|R} (Extensionality) ------------------------ a;P|-{b|Q}<=>{b|R} P,Q|-R P,R|-Q (Equivalence) --------------- P|-Q<=>R \end{verbatim} } \newpage % -------------------- % «notes-seelyhyp» (to ".notes-seelyhyp") % (s "Notes on SeelyHyp" "notes-seelyhyp") \myslide {Notes on reading SeelyHyp} {notes-seelyhyp} %* % (eedn4a-bounded) % (find-ragshyppage (+ -504 513)) % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") \def\eqdef{\overset{\text{def}}{=}} SeelyHyp, \S4: (5') (i) For $t: X \to Y$, $\phi$ over $X$, we define $Σ_t \phi \eqdef ∃\xi (t\xi = y ∧ \phi(\xi))$, $Π_t \phi \eqdef ∀\xi (t\xi = y → \phi(\xi))$, %: tx=y∧\cc(x) %: -----------(∧E) %: [\cc(x)] tx=y∧\cc(x) %: :::::::P -----------(∧E) %: \phi(x) tx=y %: ---------------------(∧I) %: tx=y∧\phi(x) %: ---------------------(∃I) %: ∃\xi(t\xi=y∧\cc(\xi)) ∃\xi(t\xi=y∧\phi(\xi)) %: ---------------------------------------------(∃E) %: ∃\xi(t\xi=y∧\phi(\xi)) %: %: ^xii %: $$\ded{xii}$$ \bsk For $f: A \to B$, define: $Σ_f \ssst{a}{P(a)} \quad \eqdef \quad \ssst{b}{∃a.(f(a)=b \;\&\; P(a))}$ $Π_f \ssst{a}{P(a)} \quad \eqdef \quad \ssst{b}{∀a.(f(a)=b \;→\; P(a))}$ %: [f(a)=b∧P(a)]^1 %: ---------------(∧E) %: [f(a)=b∧P(a)]^1 P(a) %: ---------------(∧E) :::: %: f(a)=b Q(a) %: ---------------------(∧I) %: un f(a)=b∧Q(a) %: ---------------(∃I) %: ∃a.(f(a)=b∧P(a)) ∃a.(f(a)=b∧Q(a)) %: ---------------------------------------------(∃E) %: ∃a.(f(a)=b∧Q(a)) %: %: ^xiii %: $$\ded{xiii}$$ \newpage % -------------------- % «luo» (to ".luo") % (s "Luo's ECC" "luo") \myslide {Luo's ECC} {luo} \def\Type{\mathit{Type}} \def\Prop{\mathit{Prop}} % (fooi "\Type_j" "Θ_j") %: %: ---------------(Ax) -------(Ax) %: |-\Prop:\Type_0 |-Ω:Θ_0 %: %: ^luo-Ax ^luo-Ax-dnc %: %: \GG|-A:\Type_j a|-B:Θ_j %: ----------------------(C) -----------(C) %: \GG,x⠆A|-\Prop:\Type_0 a,b|-Ω:Θ_0 %: %: ^luo-C ^luo-C-dnc %: %: \GG|-\Prop:\Type_0 a|-Ω:Θ_0 %: ------------------------(T) ---------------------(T) %: \GG|-\Type_j:\Type_{j+1} \GG|-Θ_j:Θ_{j+1} %: %: ^luo-T ^luo-T-dnc %: %: \GG,x⠆A,\GG'|-\Prop:\Type_0 a,b,c|-Ω:Θ_0 %: ---------------------------(var) ------------(var) %: \GG,x⠆A,\GG'|-x⠆A a,b,c|-b %: %: ^luo-var ^luo-var-dnc %: %: \GG,x⠆A|-P:\Prop a,b|-ω[P]:Ω %: -----------------(Π1) -------------(Π1) %: \GG|-Πx⠆A.P:\Prop a|-ω[∀b.P]:Ω %: %: ^luo-prod1 ^luo-prod1-dnc %: %: \GG|-A:\Type_j \GG,x⠆A|-B:\Type_j a|-B:Θ_j a,b|-C:Θ_j %: ----------------------------------(Π2) ----------------------(Π2) %: \GG|-Πx⠆A.B:\Type_j a|-Πb⠆B.C:Θ_j %: %: ^luo-prod2 ^luo-prod2-dnc %: %: \GG,x⠆A|-M:B a,b|-c:C %: ------------------(λ) ------------------(λ) %: \GG|-λx⠆A.M:Πx⠆A.B a|-λb.c:Πb⠆B.C %: %: ^luo-lambda ^luo-lambda-dnc %: %: \GG|-M:Πx⠆A.B \GG|-N:A a|-(b|->c) a|-b %: -----------------------(app) -----------------------(app) %: \GG|-MN:[N/x]B a|-c %: %: ^luo-app ^luo-app-dnc %: %: \GG|-A:\Type_j \GG,x⠆A|-B:\Type_j a|-B:Θ_j a,b|-C:Θ_j %: ----------------------------------(Σ) --------------------(Σ) %: \GG|-Σx⠆A.B:\Type_j a|-Σb⠆B.C:Θ_j %: %: ^luo-sum ^luo-sum-dnc %: %: \GG|-M:A \GG|-N:[M/x]B \GG,x:A|-B:\Type_j %: -------------------------------------------(pair) %: \GG|-\mathbf{pair}_{Σx⠆A.B}(M,N):Σx⠆A.B %: %: ^luo-pair %: %: \GG|-M:Σx⠆A.B a|-(b,c):Σb⠆B.C %: -------------(π1) -------------(π1) %: \GG|-π_1(M):A a|-b:B %: %: ^luo-pi1 ^luo-pi1-dnc %: %: \GG|-M:Σx⠆A.B a|-(b,c):Σb⠆B.C %: -----------------------(π2) ---------------(π2) %: \GG|-π_2(M):[π_1(M)/x]B a|-c:C %: %: ^luo-pi2 ^luo-pi2-dnc %: %: \GG|-M:A \GG|-A':\Type_j %: --------------------------(A{\preceq}A') %: \GG|-M:A' %: %: ^luo-preceq %: $$\ded{luo-Ax}$$ $$\ded{luo-C}$$ $$\ded{luo-T}$$ $$\ded{luo-var}$$ $$\ded{luo-prod1}$$ $$\ded{luo-prod2}$$ $$\ded{luo-lambda}$$ $$\ded{luo-app}$$ $$\ded{luo-sum}$$ $$\ded{luo-pair}$$ $$\ded{luo-pi1}$$ $$\ded{luo-pi2}$$ $$\ded{luo-preceq}$$ \newpage $$\ded{luo-Ax-dnc}$$ $$\ded{luo-C-dnc}$$ $$\ded{luo-T-dnc}$$ $$\ded{luo-var-dnc}$$ $$\ded{luo-prod1-dnc}$$ $$\ded{luo-prod2-dnc}$$ $$\ded{luo-lambda-dnc}$$ $$\ded{luo-app-dnc}$$ $$\ded{luo-sum-dnc}$$ % $$\ded{luo-pair-dnc}$$ $$\ded{luo-pi1-dnc}$$ $$\ded{luo-pi2-dnc}$$ % $$\ded{luo-preceq-dnc}$$ \end{document} * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) cp -v ~/LATEX/2008notations.tex /tmp/o ~/LUA/texcatcodes.lua -trans /tmp/o /tmp/o2 # (find-fline "~/LATEX/2008notations.tex") # (find-fline "/tmp/o2") # (find-fline "~/LUA/texcatcodes.lua") % Local Variables: % coding: utf-8-unix % ee-tla: "NONE" % End: