How do we formalize a proof in Category Theory? What is the correct level
of detail? Which entities should we introduce first?

Well, this depends on our target audience; if we are speaking to a Category
Theorist then we may start by saying just, for example, “let f be a morphism”,
and it will be understood that we have two objects, Dom f and Cod f, belonging
to the same category — at this point unnamed — and that f goes from Dom f

to Cod f; if later we say f: A — B or A 1, B then we will be giving better
(and shorter) names for Dom f and Cod f, but the category where A and B live
may remain unnamed for a while more...

If we are talking to a proof assistant — Coq, say — instead of to a human
then we are forced to decaler our entities in a certain order, and to name all of
them. For example:

Variable CatC : Categories.
let (C_O0, Hom_C, id_C, o_C, idL_C, idR_C, assoc_C) := CatC in
Variable AB : C_0, £ : Hom_C A B.

end.

In this note we will show how to formalize some constructions and proofs in
a proof assistant in a way that:

1) lets us choose just a very few names,

2) lets us use names that are very close to a certain graphical notation,

3) lets us split our constructions and proofs in two layers, or parts: a “syn-
tactical” part, that must necessarily come first, and a “logical” part,

4) lets us build easily dictionaries between several standard notations.

We will say that a construction (or proof) that has both its syntactical part
and its logical part is happening in the “real world”; by dropping its logical
part and keeping just its syntactical part we obtain a corresponding construc-
tion in the “syntactical world”. We will call this passage from the real world to
the syntactical world a “projection” — as projections discard some information
(intuitively coordinates, or components) and forget some distinctions. The op-
posite operation is a “lifting”: we may start with a syntactical construction or
proof, and then try to lift that to the real world. The “projection” direction is
easy, and we can always be done (sec. _; explain abelian categories, and which
“always” is that); the “lifting” direction is hard, and I don’t even know how to
characterize when a given lifting can be done; see the list of problems in sec. _.

The plan of this paper is as follows. In sec. - we define “category”, “proto-
category”, “isomorphism”, “proto-isomorphism”, etc, in the right way (for our
purposes!). In sec. _ we explain a trick to make Coq accept our notation; in
sec. _ we present an example: a syntactical proof of the Yoneda Lemma. In
sec. - we present a system of Natural Deduction for (proto-)categories, and in
sec _ we sketch how it can be extended to a system of Natural Deduction for
dependent types. Section _ discusses open problems and directions for future
work.
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