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LLaRC

LLaRC =

Laboratério de Loégica e Representacao do Conhecimento =
Laboratory of Logic and Representation of Knowledge

at PURO/UFF =

Polo Universitario de Rio das Ostras/

Universidade Federal Fluminense

Rio das Ostras is city in the countryside of the
state of Rio de Janeiro, Brazil.

RO is ~180Km away from Rio de Janeiro

and ~150Km away from Niterdi,

which is where the main campi of UFF are situated.

The LLaRC is a research laboratory that,

despite our efforts in the last two years, 8-(,

still doesn’t have a physical room,

(the PURO has been facing severe space problems),
neither a decent internet connection

(we still have only about 3KB/s per machine at PURO),
and from nov/2009 to mar/2010 none of the printers

at PURO had toner...

We have decided that in order to give

some kind of official existence to our current research

we would temporarily lower the bar for what we would “publish”,
and work-in-progress versions of seminar notes, like these,

could be put in the LLaRC home page.

(We do not get brownie points for these).

This page should be removed for the final version, I guess...
But the Silent Majority just repealed

in the last departmental meeting

an informal agreement that in my opinion

was the main tool that kept everyone working together

and in good spirits in spite of all difficulties...

Anyway: the details don’t fit here,

I am saddened and pissed off,

and this page will be part of the first official

release of these notes. Cheers.
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Outsiders

This is Category Theory (from here on: “CT”)

done by an outsider, in a place where no one else

is doing research in CT, or even using CT in non-trivial ways...

If the ideas in these notes were perfect
AND crystal-clear AND had the best impact possible
then this is more or less what would happen:

e Local people close to me (non-CT-ists) would become able to read CT books
and articles;

e CT-ists (would...) find the method described here trivial, and would start to
circulate notes describing the archetypical models behind several constructions
that I've been struggling to understand (sheafification, classifying toposes, *-
autonomous categories, differential categories, Kan extensions, the Grothendieck
construction on a fibration, schemes, parametric models, DTT on LCCCs, etc);
I get hold of their notes and understand everything;

e Type theorists find out the right type systems for the syntactical world, the
real world and the projection; they also find classes of type equations (for the
“hints”) that can be extracted from the diagrams and solved automatically;

e Proof-assistants people come up with very good ways to formalize CT proofs
by doing the syntactical part first, then completing the details;

e Parametricity people grok immediately everything here, and we work together
on the missing meta-theorems;

e Philolophical Logic people would help me to fit these ideas in a grander scheme
of things: synthetical vs. analytical reasoning, external diagrams vs. internal
diagrams, the roles of intuition, of archetypal models and generalization;

e Diagrammatic logic people find out how to enrich my categorical diagrams
with some extra hints, so that diagrams like these, when stored in a computer
with the those extra hints would automatically generate the derivation trees —
and the code for proof-assistants.
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Outline

e Introduction

e The Yoneda Lemma

e Monads

e Cartesian Closed Categories
e Hyperdoctrines

e Models for polymorphism

e Typing (proto-)fibrations

o Etc

The introduction is quite good as it is now — no urgent changes needed.

The section about the Yoneda Lemma needs more details —
it shows just the first ideas, and doesn’t show the implementation in Coq.

The section about monads is a curiosity, and it is there mostly to show
the power of the method. It is not especially interesting to type theorists.

The section about CCCs is quite good as it is now — no urgent changes needed.

The section about hyperdoctrines is huge, but it still needs a lot of work —

it is the main basic application (and the main testbed) for Downcasing Types.
I need to make the translation between hyperdoctrine operations and
first-order logic very clear (for many reasons), and in comparison

with how complete and clear I need that section to be it is still

vary incomplete, and very messy.

The section on “models for polymorphism” is in a very preliminary stage.
It should show how to translate (or: how to “understand”)

at least four texts on models for polymorphic A-calculus:

Seely’s “Categorical Semantics for Higher Order Polymorphic A-Calculus”,
Reynolds’s “Polymorphism is not Set-Theoretic”,

Pitts’s “Polymorphism is Set-Theoretic, constructively”,

and chapter 8 of Jacobs’s book, “Categorical Logic and Type Theory”.

The section on “typing proto-fibrations” is in a very preliminary stage too.

The section “Etc” is currently just a handful of slides pointing to
other applications (works in progress).
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Curry-Howard

[PAQ)! [p: Ax B! ,
[PAQI! Q QoR [p: Ax B! @p:B T f:B—C
m app
P R mp: A f(@p):C
PAR (mp, f(n'p)) : Ax C ) 1
P/\QDP/\Rl Ap:(A x B).(mp, f(n'p)) : Ax B— AxC "’
[a, b]! p: AxB]'
o .g 7 .
[a,b] b b—c [p:AxB]lﬂ m'p: B f.BHC’app
¢ ¢ mp: A f(@'p): C
e Axe Y
a,b— a,c 1 Ap:(A x B)(mp, f(7'p)) : Ax B— AxC "’

The Curry-Howard isomorphism

(in its simplest form — there are several)
establishes a correspondence between

trees in (propositional) Natural Deduction and
trees in (simply-typed) A-calculus.

A-calculus is the language for expressing constructions.

The terms in the bottom of A-calculus trees get bigger and bigger,
so people usually don’t draw A-calculus trees —

they work “algebraically”; just with term at the bottom.

A A-calculus tree can be reconstructed from its bottom term.
Humans like full A-calculus trees, though,

because the trees explain the types of all subterms.

The tree at the bottom left above
describes the “intuitive meaning” behind
the A-calculus tree.
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Erasings as projections

a,b=p: Ax B )
b=x'p:B b»—>czf:B—>Capp
c= f(n'p): C
p:AxB a,b
/—7['/ _ﬂ'/
n'p: B f:B—-C b—c
. app ————— app
f(r'p): C c
p Ax B a,b
77.(./ —_— _
'p fapp B B—-C |<—-—-—=|b b—ec
f(7'p) C c

The “downcased tree” at the bottom right above

is an “intuitive view” of the (A-calculus) construction.
How do we formalize an “intuitive construction” like that?
Answer: erasings act like projections.

We add the missing information by lifting

and then we erase some things.

Here’s how we read the “downcased tree” aloud.

“If we have a meaning for ‘0’ and a meaning for ‘b +— ¢’

we have a natural meaning for ‘c’”...

Linguistic tricks:

e long names: ‘b+— ¢’ is a name

e no syntactical distinction between variables and non-atomic terms
e ‘b— ¢’ to ‘B — (C’: the types can be recovered by uppercasing

e each bar is a definition

e indefinite articles: “if I have a ‘b’ and a ‘b — ¢’ I have a ‘¢’”...
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Generalization is a kind of lifting
To generalize is the opposite of to specialize,
and specialization is obviously a projection.

2n+1 _9on 21+n _9n
= 2l.2n _9n
= 2.:2"—-1.2"
- 2-1).2"
= 7

2100 _ 299 — 21+99 _ 299
— 21 . 299 _ 299
= 2. 299 -1- 299
= (2-1)-2%
= 1.9299
— 299

299+1 _ 299 — 9299 holds “for any value of 997...
We are going to see how to do something like this
for categories (esp. hyperdoctrines, a2 toposes),
using “dictionary tricks”.

How generalizations work?

How do we think?

What are the possible/usual roles of diagrams?

Which kinds of reasonings are closer to intuition?

I discovered something quite surprising at UniLog’2010...
(at the talks of Danielle Macbeth and Juan Luis Gastaldi)

it is time to look for further conceptual tools
in Kant and Frege!
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Where we are heading
Fact: every “pure” term that deserves the name

(A, B) — (a,b— b,a)

is the (polymorphic) “flip” function.

More precisely:

we have a procedure, T' — Py, that produces
for each “pure” type T (a term is pure

when it has no constants besides the sorts)

a property Pr that every pure term ¢ : T obeys.

This is called parametricity.
(A good introductory reference:
Phil Wadler’s “Theorems for Free’, 1988).

All the categorical constructions that I will show are “pure”,
and it must be possible to use tools from parametricity to

prove meta-theorems about properties of pure constructions.

However, these tools (from parametricity)

are hard to understand, especially if we are

outside the Category Theory/A-calculus communities,
without much acess to the “oral culture” of these areas.
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Why topos theory (is important)

Models:

e Sheaves form (Grothendieck) toposes

e Every Set" is a topos (« Non-Standard Analysis)

e There are toposes with nilpotent infinitesimals (« SDG)

e There are toposes with polymorphism and parametricity

e There are toposes in which everything is constructive/computable

By realizing that a certain category C is

(or can be enlarged to) a topos

we immediately know a lot about it...

We can carry a lot of our knowledge about Set
(constructions, properties) to C,

and important constructions in C may turn out

to correspond to something simple and well-known in Set...

Topos theory (and Categorical Semantics in general)
is about translating knowledge
and recycling theorems.

And this point is becoming more and more important:
most proof assistants are based on

(intuitionistic) type theories whose models

do not fit well in ZFC

(Reynolds 1984: “Polymorphism is not Set-Theoretic”)
and learning Topos Theory is (perhaps)

one of the best ways to make all this make sense...
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Lifting basic topos theory

Here’s a conjecture, whose technical details

should not be deep:

it should be possible to develop and prove

almost all of the basic theory of toposes, modalities,
sheaves and geometrical morphisms

in the archetypical cases (i.e., in ‘SetD’s),

where everything is very concrete,

and then lift all the constructions and proofs

to the general case.
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Downcasing diagrams

abstract/generic:
(f;9)"P ~———P

At .p_*

fi9

] .

C

14

archetypal (long form): downcased (long form):
{all P(f(9(a)) } <t{b]| P(9(b)) } al|Pfga < bl|Pgb
! N
{all P(f(9(a))} =<———{cl| P(9) } a||Pfga ————d||Pc
A f B—% ¢ al b:=f(a) b c:=g(b)
f9 ' e=f(g(a))

i l

archetypal (shorthand):

downcased (shorthand):

P

{a%P}«{an\}\ 15:13
{a| P}~ {c| P} P \
A ! B——>C at b
fig I

The ideas from the method of “downcasing types”
are often used in disguise...

The way of structuring diagrams

(both for the generic case, in abstract notation,
and for the archetypal case — plus its shorthands)
comes from what has to be done to make the corresponding diagrams
make sense in downcased notation.

The dictionary tricks — which include

making ‘P +— ¢* P’ stand for a functor,

and putting corresponding diagrams side to side —
also come from downcased notation.

(Also the ideas like lifting, etc.)
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Downcasing diagrams (2)

abstract /generic:
(f;9)"P<———P
f

B—!scC
fig

|

archetypal (long form):
{all P({(g(a)) p=t{b1[ P(g(b)) }

{all P(f(9(a)) } =—————{cl| P(9) }
!

A

A B—-¢C

fig

Also, the abstract/generic case often makes distinctions
that disappear when we look at the archetypical case...

For example, the archetypal fibration, CanSub(Set),

is split, and so f*g*{c || P} = (fi9)"{c || P};

in the generic case there’s a canonical iso f*¢*P < (f;g9)*P,
but it doesn’t need to be the identity.

If we are trying to model categorically

a certain archetypical case (by generalizing it “in the right way”)
then certain equalities in the archetypical case

should become at least canonical isos in the generic case...

in CCCs and hyperdoctrines “one half” (i.e., one direction)

of these canonical isos will comes from natural constructions;
what we will do is to impose that the these natural constructions
should be invertible.

As we will work with (proto-)structure instead of with properties
we will require “proto-inverses” instead of requiring invertibility.
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Can we make Topos Theory more accessible?

Can we make Topos Theory more accessible using these techniques?
At the moment, unfortunately, not really —

the rules for the classifier object are problematic.

However, one of the most interesting ideas in Topos Theory

is how we can interpret first-order logic inside a topos —

and this can also be done in hyperdoctrines.

Hyperdoctrines came a few years before toposes.
Hyperdoctrines are exactly the categories where

we can interpret (intuitionistic, typed) first-order logic.

The definition of a hyperdoctrine seems much more convoluted
that the definition of a topos, but that’s because the presence
of a classifier object simplifies everything —

if we add a classifier rule to the hyperdoctrine rules

we see that many of the rules that we had before

can be discarded — they become redundant.
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From trees to dictionaries

[a,0]"
[a,b]! b T b
a c app
a,c . )
a,b—a,c i1
[a,b]*
[a,b]! b b—c
a c
a,c
a,b—a,c

{a,b)
(o)

)

)

i
bl

' " f
Wy f('p) ()
(mp, f(x'p)) 7
Ap:(A x B).(mp, f('p))

— T — 5 PP

Al

17

{a) = m(a,b)
(o) = n'{a,b)
{(c
{a,c) = ((a)),{c))
{a,b—a,c :

Each bar of a downcased tree is a definition.

If we list all these definitions together we get a

“dictionary” that almost gives us back the A-tree...

we need just a few more hints — the standard names of the

variables and the constants.
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Ambiguities

Liftings are not usually unique...

What should be the type of ‘a’? A or A’?

To lift we usually need “hints”.

The downcasing that starts with “a, a” below

is (apparently?) valid, but ambiguous.

I am not going to define what a good downcasing is.

Ax A Ax A AxA AxA
A’ A A A
A'x A Ax A
a,a’ a,a a,a a,a
a' a a a
a,a a,a

2009unilog-diags June 20, 2010 22:10



Ambiguities (2)

Composition is not well-behaved syntactically.
One solution (? — or workaround) is to have
a rule ‘ren’ that renames objects (i.e., create aliases)...

T:AxA—A f:A—B a,a’ —a arb

mf:AxA— B a,a’ —b
ar—b
7 AxA—A f:A—B a,a’ —a a—b a, 0/ —a o — ¥V
7 f:AxA— B a,a — b a,a’ — b
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Ambiguities (3)
Composition is associative, and that’s
the reason why we can write f;g;h.

fi9
At .p . .c_".p
g;h
Twisting this idea a bit:
we write f; g;h to indicate that (f;g);h = f;(g;h).
We have two different “natural constructions”
for things that “deserve the name” f;g; h.
Downcasing them, we get:
a—b boc b—c c—d
a—c ’ c—d a—b b—d ’
a— d ’ = — a — d ’

\ e

a—b b—c c—d

a—d

T used to express that the two “obvious” natural constructions
for (a — d) from (a — b), (b — ¢), (¢ — d) give the
same result by:

a—d

lab—>b b—c c»—>d]
wd

The entry for that {(wd][...])) in the dictionary would
have to say which “obvious constructions” were involved.
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More on the ‘wd’ symbol: the syntactical world
A category C is a tuple:

(Co, HOmc, idc, OC;assoCc, ich, IdRc)

Where the first four components are “structure”
and the last three are “properties” — equations.
The last three are ‘wd’ things.

I used to carry all the ‘wd’s around,

as if they were very very important.

I don’t anymore.

It turns out that we can define a projection

(Co,Homg,idg, oc; assocg, idLc, idR¢)

(Co,Homc, idc, oc)

that drops the equations.

This works for isos, functors, N'Ts, adjunctions, monads, etc, also.

We can do a “projected version” of Category Theory

and then lift the results back to the “Real World”

(not automatically — many steps have to be done by hand — but whatever).
I call the “projected version” the “Syntactical World”.

The projection keeps the “syntactical part” — the “structure” —

and drops the “equational part” — the “properties”.

The “projection on the syntactical world”, psyn,

is the main operation that we are studying here.

Warning: it will often be used implicitly!

Warning 2: psyn can be defined in many different,

slightly incompatible ways, so before studying its meta-properties
we need to collect enough non-trivial examples of it at work...

Each projection of a non-trivial categorical theorem, T
into the syntactical world, T~ := psyn(T),

gives a non-trivial example of a lifting:

T lifts to T.
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The syntactical world: proto-things

T use the prefix “proto” to refer to the projected structures.

A proto-category is a 4-uple (Coy, Homg,idc, oc).

A proto-functor F : A — B is a 2-uple: (Fp, F1)

(an “action on objects” and an “action on morphisms” —

the equational components, respcomp and respids, have been dropped).

Sometimes there are several possible “design choices”

for a proto-structure...

I will just say which definitions of proto-things work best.
(No time for the full rationale today!)

A proto-inverse for a morphism f: A — B

is a just a morphism f~!: B — A.

Note that we don’t have the conditions f; f~! =id4 and f~!; f =idp,
so the name f~! may be a bit misleading.

A proto-iso is a pair (f, f~1), where f~!

is a proto-inverse for f.

A proto-natural transformation (“proto-NT”) T: F — G
is just an operation A — (FA I GA)

(we drop the “square condition” that says that for each
f:+ A — B the “obvious square” must commute).

A proto-inverse for a (proto-)natural transformation T': F — G
is just a (proto-)natural transformation 7-!: G — F —

for each object A the morphisms TA and T~'A are the two
directions of a proto-iso.

A proto-natural isomorphism is a proto-NT plus a
proto-inverse for it.

What are proto-products, proto-exponentials, proto-fibrations...?
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Downcasing functors

Fix a set A.
Let (Ax) : Set — Set denote the functor
that takes each set B to A x B.

“The” functor?
In some contexts the action on morphisms, (Ax);,
is “obvious” once the action on objects, (AX)o, is given.

How?
Ax
b——a,b B+——= AxB
(AX)f =
— l f = ‘(/\p:AXB.(ﬂ'p,f(ﬂ"p)}
c——a,c C v AxC
By lifting;:
[a, 5" lel*
[a, b] b b—c ' 7p f
a c — m  f(7'p)
Gme (mp, f(7'p))
a,b—a,c Ap:(A x B).(mp, f(7'p))

b—c
a,b—a,c

(a double bar is like a folded accordion)
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Adjunctions

If L and R are functors going in opposite directions
between two categories, say,

L
B=_"A
R

then a proto-adjunction, L 4 R, is an 8-uple,

(A’ B7 L’ R7 b? h? ,r]? 6)

that we draw as:

LRB LA<— A A
€B 9;[ |<:>* \?ﬁ LWA
B B——RB RLA

B=———A

There is a lot of redundancy in this definition...
Most operations can be reconstructed from the others.

Our archetypal adjunction will be this one:
(not the usual F 4 U!)

(B—C)xC AxB<—A A
C C+—— B—C B—(AxB)

x B
Set = Set
B—
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Cheap and expensive adjunctions

In the supermarket you can buy DeLuxe adjunctions,

that are expensive but come with all the bells and whistles,
and you can buy the cheap, minimal, economy models,
that come in kit form, and (apparently) do much less...

There are theorems that take cheap adjunctions and
produce expensive adjunctions from them — for free.

In the Real World cheap and expensive adjunctions
are equivalent: if you do

(A7B7 L? R7 b7 ﬂ? ,’7’ 6) (A7 B? L7 R’ b? ﬁ?”? 6)

(A7B7L7R07 ﬁ? 6) (A7B7L07R7b7 n )

you get the original expensive adjunction back.
In the Syntactical World you may get something different,
but that doesn’t matter.
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Cheap and expensive adjunctions (2)

An “expensive” proto-adjunction L - R is an 8-uple:
(A,B,L,R,b,4,7,¢).
Here is how to reconstruct some of its components from the other ones.
LA < A

La
La:=
b <

(asma) A

|

LA—— RLA

LA<—— A

— |

LRB~<~—RB "9 | LRB<—RB LA<—— A

Lg

NA =
idpat

idLAl —

. LA+—— RLA
na;Rf

B R =
| (ep:B)*

B'+—— RB’
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Programming with long names

27

local ((a,c) = {a, c}
return ({a,c))

{a,bl->a,c)) = function ({a,b))) dnc00 = function (dnc01)
local a = pil({a,b))) local a = pil(dncO1)
local b = pi2({a,b))) local b = pi2(dnc01)
local ¢ = ((bl|->c))(b) — local ¢ = dnc02(b)

local dnc03 = {a, c}
return dnc03
end

end

{a,b— a,c)) = function ({a,b)))
local a = pil({a,b))
local b = pi2({a,b)))
local ¢ = {{b+— c)(b)
local ({a,c)) = {a, c}
return ((a,c))

end

Note that diagrams are perfectly good as names.

We can have:
a,b<——a
( I - I Y o= ..
c == b—c
In the (ascii) source code this would be:

{(\diag{adjunctioni})) := {...}
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The Yoneda Lemma

(n < ff) in adjunctions:

a a’ a
"I | c> l (I—;) I
ClL > (LLR Is CR
Lemma on preuniversals: Definition of universal arrow:
a b a a b a
I - c;l'»w univI - C;l(m'_;)I
b= bt c R b=>bF c cf
I ¥
Definitions of universal element
Yoneda Lemma: and representable functor:
* b * * b x
W -~ c_'>l|_>w uHiVI < C;I('f_;)v
b=> bR c cf b=>bk c cf
[ b I b (iso)
) et fmen - o |
! (universal ¢
element) (R is representable
I and is represented by B)
Corollary:
* b *
I <~ [ 2 l > I
b= a—b c a—c
[ b a
a—b c > $ > $
c ¢
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The Yoneda Lemma (2)

We can formalize the previous diagram in type system
(or in a programming language — say, ML or Coq).
Let’s look at a miniature.

Lemma on preuniversals:

a b a
V| < c$$|»$
b:>bR I R

]

Yoneda Lemma:

* b *
. IR ~—|c>]T
=b c B
bE c$—$}>cR

¢

In the top box:

BZBO
AZAO
R:B — Set
a+— b =g :Homap (A, RB)
a
1 | =(4,B,9)
b=>bE

¢= (b ¢) =Homp(B,—): B — Set
c= (a cf) = C+ Homp (A, RC) = Homa (A, R—) : B — Set

b a
c> -V(|—> Vv | =T : Nat(Homp (B, —),Homa (A, R—))
R
c ¢

g — T :=XT.(TBidg)
g— T = Af.(ACAg.(f; Rg))

When we move to the bottom box we specialize:

A := Set
A:=1={x}
*:1
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Monads

A protomonad for a proto-endofunctor 7': A — A is a 4-uple:

(A7T’ n’ /"L)

that we draw as:
HA

AL TAES TTA

A proto-comonad for a proto-endofunctor S : B — B is a 4-uple:
(B, S,¢,9)

that we draw as:
B<2 SB2% SSB

Each proto-adjunction induces both a proto-monad and a proto-comonad.
We draw all these together as:

LRLRB
6B =
Lnrp
LRB LA<—A A
€B = b nA =
idrs" gf\ — [?‘“ idpa®
B B+—RB RLA
pA =
Repa
L
B=———A RLRLA
R
LA RB ’
€
€ra: LRLA — LA nrp : RB — RLRB

pa:=Repa: RLRLA — RLA R 0p := Lngrp : LRB — LRLRB L
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From monads to adjunctions

An expensive adjunction comes with a monad.

If we erase the ‘b’, the ‘4, etc of this adjunction

and leave only the monad, can we reconstruct

the original adjunction from that?

The answer is no.

But we can construct two adjunctions from the monad,

Lt
Ar == A (Kleisli)

Rt

LT
AT =C A (Eilenberg-Moore)
RT
that are related to the original adjunction
L
B=—A
R
in interesting ways —
by comparison functors Fy and F7.

Ar
Fr Lt
Rt
B A
R
T
FT RT
AT
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The Kleisli category of a monad

A7 has the same objects as A,

but we write them in a funny way —
[A— >TA] instead of A —

because Homa . # Homa and oa,. # oa.
[f]: [A-==TA] - [C->TC] (in Ar)
isf:A—TC in A.

[f1;[9] = [f; Tg; e]-

[A- =TA] A
idia——TAali=[n,4) y\
[A— >=TA] TA
[A— >TA] A
f
[f]
[fLlg] =
(€~ >TC] [£;Tg:nE] C--~1¢
g Tg
lq] \ \

[A— >TA] A

Lra:= l

«@
lasm /]

[AI — >TA,] < A'

[C->TC|——TC

Rr([v]) =
Tyiper

[W]l —
[C'— >TC'|—TC'

Proving that oa, is non-trivial, by the way —
but in the syntactical world that doesn’t matter.
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The Kleisli adjunction of a monad

[TTC - =TTTC] [A'—>TA| <A

Sic——1C] =

Lr(N(rpic——1c))) = Lra := o
LT(nTC) = [0‘;”]A’]
(nrosmrrol

[TC— >TTC] [A— >TA] <~ A

flo-—To) = =~
lidrc] lg] = [91*:=g
[C->TC] [C->TCl+—TC
W] |

[C'— =TC"|+~TC"

Ar A

T
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The Eilenberg-Moore category of a monad

A proto-algebra for a monad (A, T,n,u) is a pair (A, a: TA—>T).
An algebra for a monad (A, T,n, i) is a proto-algebra (A, «)
that obeys Ta;a = pa;a.

A proto-morphism f : (A,a) — (C,~) of (proto-)algebras

is just a morphism f: A — C.

A morphism of algebras is a proto-morphism f

that obeys o; f =T f;~.

The proto-Eilenberg-Moore category of a monad (A, T,n, 1)
has the proto-algebras as objects and the proto-morphisms of
(proto-)algebras as morphisms. We write it as AT.

The Eilenberg-Moore category of a monad (A, T, n, 1),

AT, has the algebras as objects and the morphisms of
algebras as morphisms. We also write it as A7,

LT
Here is the adjunction AT == A:

RT
rre X2 1170
O ::Tnc?T
TC LTTC) [TALATTA]<— A A
€= b — ; f
WJ/ ! Tf’;l — dmnag |
[Cc<-TC] [C <-TC|——TC TA
rA
LT
AT A TTA
RT
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The comparison theorem

Everything fits in this diagram:

[A- = RLA]

N D{/\\W
\ / ol RLC

\ ~

[RL < RLRLA]
%]

[RLC £< RLRLC]

[ : [A~ = RLA] — [C - = RLC]

ren

g:A— RLC
Frlg) =g LA —LC
A
A L B
eoa:LRLA LA © ep: LRB—B ©

ua = Repa: RLRLA — RLA R Rep : RLRB — RB R
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Beck’s lemma
From Beck’s thesis (1967), reprinted at:
http://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html

DEFINITION 3. The adjoint pair « : F' 4 U is tripleable if ® : B —
AT is an equivalence of categories.

DEFINITION 3’. A functor U : B — A is tripleable if U has a left
adjoint F' and the adjoint pair F' - U is tripleable.

THEOREM 1. Let a: FF 4 U be an adjoint pair.

(1) If B has coequalizers, then there exists a left adjoint b - P.
Assuming the existence of ®:

(2) If U preserves coequalizers, then the unit of d - ® is an isomor-
phism AT = &P.

(3) If U reflects coequalizers, then the counit is an isomorphism
®d = B.

Finally, in the presence of (2), (3) can be replaced by:

(3’) If U reflects isomorphisms, then the counit is an isomorphism
3% = B.

I will call item (1) of Theorem 1 “Beck’s Lemma”.
In our notation this will be:
L
if in an adjunction B=Z A
R
the category B has coequalizers then
the comparison functor F7 : B — AT
has a left adjoint, A (i.e. we have an adjunction A - FT).
We need to construct Ag, Ay, b7, 47.
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Beck’s lemma (2)
Sketch of the proof (a construction, actually):

Let’s will write A as [A<"~TA] — A,.

The action of A on objects:

for each object [A<"-TA] in AT we need to produce
an object A, in B.
We define it as the coequalizer of €, 4 and La.

A (A< TA]
LA L a:RLA— A '
eon LRLA > LA * La:LRLA— LA fo
Qo : LA—>A,
Aq

en

eq
tgt

The action of A on morphisms (Ap := (Lh;qa)/qar),
and the transpositions:

LRLA' — == LA — % o A,

Lo’ ‘ \\ |
Lh  Lhiga Ah‘\\\\\\\\\\\y
N
€L V
LRLA———%2LA——> A,
AN

uT\ [A<* RLA|

g

o
[A<*- RLA] Res
o : LA»A, f:Ay— B [RB RLRB]

qo; f: LA— B ’
fﬁT = (qa;f)u :A— RB
g:[A<~-RLA] - [RB %% RLRB]

[A<*~ RLA] g:A— RB
Go : LA—A, ¢ :LA— B

fact.through.coeq
T
9 = ¢/4a: Ao — B
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Monads and cohomology
Quoting again from Beck’s thesis (p.12)...

2. Cohomology

Adjoint functors, it is now well known, lead to cohomology ([Eilen-
berg & Moore (1965a), Godement (1958), Mac Lane (1963)] — or
to homotopy [Huber (1961)]). If

ALBA A (FAHD)

is an adjoint pair, objects of the form AF € |B| are regarded as
“free” relative to the underlying object functor U. The counit

XUFX X

is intuitively the first step of a functorial free resolution of any ob-
ject X € |B|. By iterating UF one extends X to a free simplicial
resolution of X, and defines derived functors as usual in homological
algebra. Here we only consider the simplest case, that of defining
cohomology groups

Hn(X7 Y)’ n Z 07

of an object X € |B| with coefficients in an abelian group object
Y € |B|, relative to the given underlying object functor U : B — A
(having a left adjoint). Tripleableness of F' 4 U will not play any ap-
preciable role until we discuss special properties of the cohomology
in §3. We now recall the details of the construction of the coho-
mology groups. Some of the terms used are clarified in the proof of
Theorem 2, which summarizes the main properties the cohomology
possesses.

How much of that has nice syntactical proofs?
(I don’t know yet!)
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Cartesian Closed Categories
A Cartesian Closed Category (“CCC”) (C, x,1,—)
is a category C plus a “cartesian closed structure” (x,1,—) on it.

Again, we will have cheap ways and expensive ways to specify (x,1,—).

The cheap ways (there will be several of them)
will appear from formalizing this diagram:

A AxB<—4A

/f g\ ‘/' uncur‘? |:| [gur‘f
B<—BxC—>C 1 C+—— B-=C

Another way — the “adjoint presentation” of a CCC —
will be by requiring that the functors A — (A x A),

A+ e, and A — A x B (note that for each object B of C
we have a different A — A x B) all have right adjoints:

(A,A)<— A o<~ A AxB<—A
(h”?ffrqgl — t?ﬁw | = ‘!g umm?\ pa [gurf
(B,C)=BxC o——1 C+—— B-C

The adjoint presentation is quite elegant, but if we
expand all the details we see that it is much more expensive
than the other ones.

By the way: a (cheap) topos, (C, x,1,—,Q),
is a CCC plus a “classifier object”, €2,

where the (2 obeys this magic axiom,

that has lots of consequences:

B’ 1
IJ T
N

B———0
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Cheap and expensive toposes

What matters to us is:

a CCC is a category in which we can interpret A-calculus;

a topos is a category in which we can interpret (a kind of) set theory;

a hyperdoctrine is a category in which we can interpret first-order logic.
(I’'m simplifying things a little bit, but anyway).

When we buy a cheap topos it takes a lot of work
to build the constructions that interpret first-order logic in it...
in a hyperdoctrine they sort of come out-of-the-box.

An expensive topos has all the structure and
properties of an expensive hyperdoctrine
plus a few more.

The category of sets, Set, is a topos, and therefore

if you go to the supermarket with the intent of buying
the category of sets you will find it there in several
different presentations... the more expensive ones
have all the hyperdoctrine rules, all the topos rules,
plus some.
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A-calculus in a CCC: an example
We can interpret the A-construction

A f:B—-C
A:(A x B).(nd, f(r'd)) : Ax B— AxC

in a Cartesian Closed Category as this diagram:

AxB—" s B

7 /' Ad:(AxB).
(md, f(n'd))

A AxC c

And we can interpret its “internalization”,

A B C
A:(B—C).\d:(A x B).(nd, f(x'd)) : (B—C) — (Ax B— AxC(C)

using this diagram:

Ax B

(B—C)x(AxB)

B (B—C)xB —— B—C

(B—C)x(AxB) (B—C) x (AxB) < (B—C)

cur Af:(B—C).

— Ad:(AXB).
(md,f(n'd))

A<—AxC——C A X Cr—— (AxB)—(Ax(C)
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A-calculus in a CCC: an

42

example (2)

...but in a case like this the diagrams

are secondary, and for most
unbearably big... we should

Ax B

(B—C)x(AxB)

A-terms they are
focus on the trees.

(B—C)x(AxB)

B (B—C)xB —— B—C

(B—C) x (AxB) <— (B—C)

Af:(B—C).
Ad:(Ax B).
(md, f(7'd))

cur

A<—AxC——C A X Cr—— (AxB)—(Ax(C)

/
(b—c),(ab)Fab ",

/
(b—c) (ab)Fab

(b—c),(a,b)F b o (b c),(a,b)Fb—c N

; app
(b—c),(a,b)Fa (bb—>c),(a,b)|—c<>
(b c),(a,b)Fa,c cur
b—cka,b—a,c
77' [d]' [a, 8]
i i 7w [a' 'd f [a,b]! b b
w'im (m, i) ev wd  f(r'd) a c
(n'ym, (m,7's ') ev) (md, f(x'd)) %“e
cur(n’; m, (w, 7';7'); ev) M.(rd, f(7'd)) a,b—a,c

2009unilog-diags June 20, 2010 22:10




43

The product property

For any diagram of the form B<L- P Cina category C
we have a natural operation,

A A
/N
h B hip hip’
/ \
P B c

Homeg(A, P) —— Homc¢ (A, B) x Home(A4, C)
hi (hip, h;p')

whose action is to compose any given h : A — P with p and p'.

Both Homg(—, P) and Homg(—, B) x Homg(—, C) are

(contravariant) functors from C°P to Set,

and the operation above is a natural transformation

prod” : Homg(—, P) — Home(—, B) x Homg(—, C)

The product property for a diagram B L rioc
is an inverse for the “natural” natural transformation above.

2009unilog-diags June 20, 2010 22:10



44

Product diagrams

Whenever we write B<— B X CL;C',

using the product symbol in the middle object, it will be implicit
that the B x C' must “deserve its name”: that is, we must have
“projection maps” m and 7’ (here they were shown explicitly),

and the diagram B<"—B x C == C
must have the product property.

We can draw the two natural transformations together as:

A rod A
R = VAN
BxC B C

but note that the projection maps did not appear in the picture...
As we can make diagram stand for whatever we want

(because diagrams are valid as long names)

we will take diagrams of this form as meaning:

a diagram B <— B x CL;C,

plus the product property for it,

plus a syntactical cue for how to name the results of prod;
in this case, this is: :

fitA—-B g:A—-C
(f,9) : Homg(A, B) x Homg(A, C)
(f,g) : A— BxC

prod 4

or, more briefly:
fiA—-B g:AxC

(f,g):A— BxC

prod

although this will be an abuse of language, in a sense —
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Product diagrams (2)

7N

B<—B><C—>C’

Note that if we write the rule prod as:

then it is exactly the inverse of:

h:A—-BxC h:A—BxC
h:A— BxC ! h;m:A— B him:A—C
(hym:A— B, hym: A— C) prod (hsm: A— B, hym: A— C)

()

We will repeat this pattern all over the place:
for some derived rule, blahh, an inverse blah.

Note that if you were given just B<— B x C' —=C and

A prodh A
A°P 4>( i de / \ )
BxC B C

then you would have to figure out the “natural construction”
for prod” yourself; and then prod would be its inverse.
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Products as adjunctions
If we rewrite the previous NT using the category C x C
and we flip the positions of the two vertical arrows

it becomes:
(4, A) A
prodh
e[ |
prod
(B,C) BxC

which looks almost like an adjunction...

In fact, if for any two objects B and C of C

we have a product object B x C' (that “deserves its name”,
i.e., comes with 7, 7/, and the product property)

then we have this adjunction,

(BxC,BxC) (A4,A4)<>—A A
b=prod®
(M/)l T ;l o \?ﬁg)“:—uyg) i)
(B,C) (B,C)—= B xC Ax A

A
CxC=——=C

X

where the action of x on a morphism (3,7) : (B,C) — (B’,C")
of C x C yields § x v := (m; 3, 7';7):
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Exponentials

In a category with binary products, (C, x),
an object deserves the name B—C'

if it comes with an evaluation map,

ev: (B—C)xB — C, and an inverse, cur,
for the “uncurrying” operation:

AxB<———+A
gxB <~ g
e Blew |(B—C)xB<— B—C

ev

C
This, again, looks like an adjunction:
AxB A
(T2 ]
cur
C B—C

where the top functor, A — A x B, is known.

Let’s fix the object B.

If we have the action of C — B—C

on objects — i.e., for each C'

we have B—C, evge and curge —

then we can build (B—);.

The trick comes from slide 21 (its bottom rectangle):

(B—C)xB <— B—C
CVBC\L
C B—vy =
[ cur(evec;y)
’Y

C'—— B—=(C'

We have just built an andjunction (Bx) - (B—)
from an operation C' — B—C.
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Exponentials (2)

It turns out that we can also construct

a functor (B°P,C) — B—C.

Its action on objects is obvious;

its action on morphisms takes

each (B°P,v) : (B°P,C) — (B'°P, (")

t0 (8—7) i= (—1)(8°%,7) = cur((m, s B); ev; ),

(B°P, C) ———= B—C
(B—7) =
(B°P7) (=1)(BP ) =
cur({m,7';8);ev;y)
(B C") —— B'—(’

where cur((m,7’; 8); ev;~y) is:

B C
B—C Vb B C
b—ce) b F(b—c),b (b—c),bFc ck
(b— ),V ¢
(b—c)k (b — )

B C

B—C (3:B'— B B C

= / : Y yio-c
(B—C)B" T(pcypis B)  evse v:C—

(m,7'; B);eviy
cur((m,7’; B); ev; )

cur

But how can we find a definition
like the one above for (8—~) —
without using brute force?
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Morphisms as sequents
We can lift the natural deduction tree

Y Wb
b b+ c]?
c cr—c
c/
V—c
2

o)~ ¥~ )

to something that looks more like

sequent calculus, in the sense that the hypotheses
are always listed explicitly before the ‘+’,

and names with ‘F’ stand for morphisms:

- /
(b—c) b Fb T bEb

(b o) b b " ot (b o) pr
(b—c)b e ckHd
(b— ),V -
cur

b—c)F )

I don’t want to get into the details of this now...
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Hyperdoctrines
The following is the precise definition of a hyperdoctrine.
It is too technical, so we will spend the next slides dissecting it.

A hyperdoctrine is a (cloven) fibration, p : E — B,
plus some extra structure:
e the base category B is a CCC
(i.e., (B, x,1,—) is a CCC))
e cach fiber Eg is a CCC
(i.e., each (Eg, A, T,2) is a CCC)
e for each map g: B — C in B
the change-of-base functor f* has adjoints 3y - f* 4V
e change-of-base preserves A, T, o modulo iso
(PA, PT, Po)
e the left and right Beck-Chevalley conditions hold
(BCCL, BCCR)
e the Frobenius condition holds
(Frob)

The precise definition of what a fibration is

is quite technical. I will give it in full here —

it will take several slides — but if you are a
non-specialist you should only pay only attention
to the last two operations: change-of-base functors
and the isomorphism between two changes of base
for the same g : B — C.
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Subobjects

Our archetypical fibration will be Cod : CanSub(Set) — Set,
where the “codomain functor”, Cod, takes each

“canonical subobject” P in Set

(where P is an inclusion map {b € B | P(b) } — B)

and returns its codomain, B.

The categorical way to describe “injective maps”

is via the notion of “monic”.

The monic arrows of Set are exactly the injective maps.
In Set some injective maps are inclusions.

Let’s regard Set as category with a (given) distinguished
class of monics — the “inclusions”.

A subobject of B is a monic A »— B

with codomain B.

A canonical subobject of B is an inclusion B’ — B

with codomain B.

Two subobjects of B, B’ — B and B” — B
are isomorphic when there is an iso B’ < B”
making the obvious triangle commute:

BI BII
B
Each subobject f: B’ — B

is isomorphic to a unique canonical subobject of B:

B <=TIm(f) = {be B| f~'(b) #0}

N
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Subobjects (2)
We will use the following notations for
canonical subobjects. In the archetypal case,

explicit, shorthand
long form: (note the ‘||'!):
{acA| Pla)}
i {a|| P(a)} E = CanSub(Set)
' l
p=Cod
A A B = Set

and in the generic/abstract case,

E is the “entire category”,
B is the “base category”,

p is the “projection”,

P is a “proposition over A”.

Note that instead of drawing a vertical arrow
P +— pP=A we just draw P over A.
(We will do the same for morphisms, by the way).
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Subobjects (3)

If B is an object of B, the fiber over B, Ep,

is the subcategory of E composed of the objects and morphisms
of E that are taken to B and idg by the projection p.

Being “over B” means “belonging to Ep”.

A morphism of E is said to be vertical if its image

is an identity in B.

We will have a notion of “horizontal morphisms” too,

but it will be harder to formalize — it will involve cartesianness.
Let’s start with an example.

Every map g : B — C in the base category
induces a “change-of-base functor”, g* : Ec — Ep,
and a natural transformation g : ¢* — idg_,

as in the diagram below:

{ollQ®)} Q

IS

{b|R(9¥))} —{cl| R()} g"R—"—=R

| -

{b11S(g®)} —{cll S} g¢"s—"—5

B g c B—2 =
The vertical map ¢ : R — S exists iff {c| R(c)} C {c]| S(c) },
ie., if Ve.R(c) 2 5(c).
The diagonal map j : @ — S exists iff its factorization through gz, k,
exists (because every map in E factors as “vertical map followed by
an horizontal map”, and we shall see), and:
the vertical map &k : Q — ¢g*R exists iff {0 ] Q(b)} C{b]| R(g9())) },
ie., if Vb.Q(b) > R(g(b)) — so the vertical/horizontal factorization
gives us a way to interpret diagonal morphisms “logically”.
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Subobjects (4)
The horizontal maps of the diagram

{o1l1 QM) } Q

I

{o]l R(g(0))} —A{cllR(c)} ¢"R

{611 S(g®)} —A{cll S} ¢S —"—5

B— % .¢C B—? ¢

are pullbacks in Set:

(01 RgO)} —= (e B@))
) ¢
B

C

{o] S(Q(Jb))}%{c | S(e) }
[ [
B— = (C

And so what?...
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Cartesianness

A vee in a category E is a pair

of morphisms in E, (' : P — R, ¢’ : Q — R)

with common codomain.

A completion for a vee (' : P - R, ¢’ : Q — R)

is an arrow f’: P — @ making the triangle commute.
A functor p : E — B takes completions of (h/,g’)

to completions of (ph', pg’); let’s call this induced map pi,g,.

A vee (W, ¢') in E has unique liftings (for p : E — B)
if the map py/y induced by p is a bijection.

A map ¢’ : Q — Rin E is cartesian

if any vee (h',¢’) with ¢’ as its “lower leg”

has unique liftings.

pi/g/\L 9

A=pP

N N h:ph/
F=pf" "y

B=pQ — C=pR
9=pg
To make things more manageable we will use
some shorthands: A := pP, B := pQ, C := pR,
f=pf'sg:=pg, h:=ph',
Invertibility of pEL, , means that
for any completion f for the vee (h,g)
there is exactly one completion f': P — @ for (b, ¢")
“over f”, i.e., such that f =pf’.
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Cartesianness (2)

A proto-vee in a category E is a pair

of morphisms in E, (' : P — R, ¢’ : Q — R)

with common codomain.

A proto-completion for a vee (b’ : P — R, ¢’ : Q — R)

is an arrow f': P — (Q making the triangle commute.

A functor p : E — B takes proto-completions of (h’, g")

to proto-completions of (ph’, pg’); let’s call this induced map pEL, g

Note that this new induced map has a bigger domain...
the old one had to act on all completions,
the new one has to act on all proto-completions.

A vee with proto-unique liftings
is a triple (R, ¢, pnrg),
where ppg is a proto-inverse for pi,g,.

P

<
N h'

7N\
oy

Q R
h ’
Ph/g/\L g
Ph’g’

A=pP

N N h:ph/
F=pf" Vg

B=pQ) — C=pR
9=pg
Proto-cartesianness for an arrow g’
is the assurance that any vee (h', g’) with lower leg ¢’
has proto-unique liftings.
More formally:
a proto-cartesian morphism is a pair (¢’, cart),
where cart = (P,h/ + pjs4) is an operation
that produces all the required proto-inverses.
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Pullbacks are cartesian
Cartesian maps are not so weird
as the preceding definition suggests...

Fact. When p = Cod, “pullback squares are cartesian”.
The core of the proof is the following diagram.

A"
al //
A h,:(hh )
f/:< (a§f}h”> > B xo C"
| —_—
B 9=
A

The arrow g’ = (7;) is a “pullback square”.
Fix any ' = ("") with the same codomain as g'.

For any completion f of the lower vee (h,g),
its lifting is f' = (<a;f ) )
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Cleavages

Here’s the abstract view of cartesianness & friends —

formulated in a way that projects well into the syntactical world.
Note that the conditions pR = C, pg’ = g, etc, are always implicit;
the conditions h = f;g and h' = f’; ¢’ are implicit

whenever f,g (resp. f',¢') are defined

and when we are in the real world;

in the syntactical world they are irrelevant.

Q——R

Pi/g/ i/ g
ph/g/

A=pP

N N h=ph/
F=pf" Vg

B=pQ) — C=pR
9=pg

Unique liftings for a vee (h/, ¢') is an inverse py/q
for the natural operation pEl, -
Cartesianness for an arrow g?
is an operation carty = (P, h/ — pprgr).
A cartesian lifting for g: B — C at R
is a triple clift,r = (Q, ¢', carty/).
A family of cartesian liftings for g : B — C
is an operation clifts, = (R + cliftyr).
A cleavage (for the functor p : E — B)
is an operation cleavage = (g — clifts,).

Or all at once:

a cleavage (for the functor p : E — B) is an operation
cleavage = (g — (R (Q, g/, (P, = (f — [))))),

or, more detailedly,

cleavage = (B,C,g — (R — (Q,¢', (A, P,h, ' — (f — ).

A cloven fibration is a 4-uple (B, E, p, cleavage),
where p : E — B and cleavage is a cleavage for p.

One further subtlety is needed to make this work in the
syntactical world: as we need a restricted version of
equality to be able to say “P is over A”, “f’ is over f”, etc,
E should be a “category defined over B”.

(Details later!)
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Cleavage induces change-of-base

A cheap cloven fibration is just a 4-uple (B, E, p, cleavage);
An expensive one also comes with change-of-base functions,
factorization through cartesian morphisms,

rules that say that the composites of cartesians are cartesian,
a family of adjunctions R — (pgr - cliftr) [« complete this],
isos between different changes of base, etc.

Here’s how to build the action on morphisms
of a change-of-base functor g*
((g*)o comes from cartesian liftings):

IR/

g*RI RI
LN J{

g*7‘1=f,\ R
::ph/g/f v ‘=9R’s

gR——R
9 ‘=9Rr

A:=B

f:—idB\/ hi=g
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Adjoints to change-of-base

In the archetypal case, p = Cod : CanSub(Set) — Set,

every change-of-base functor f* has both a left and a right adjoint.
In some cases these adjoints have simple forms.

Some terminology...

amap 7: Ax B — Ais a“projection”,

and the correspondent 7* : E4 — E4« p is a “weakening functor”;
amap m: Ax B — Ax B x B is a‘“diagonal”,

and the correspondent 6* : Eoxpxp — Eaxp is a “contraction functor”.
A 7* “introduces a dummy variable”,

a 0* “collapses two variables”.

{a,b||f(a,b)}|—>{a||Hb.iP(a,b)} ]J|—>EIJJ;P
{a,blliQ(a)}<—'{allf(a)} f’lQ<—|cf
{a,b|| R(a,b) } — {a || Vb.P(a,b)} Ri——=V,R

Ax B i A A1 _p

Pab=—>3b.Pab Pab=>b=b'APabb Pa—=—>Ja.a=fbAPa

- - -V|V -
QL — C;a ngb <— Qabb’ Q{”a — le
V=1 =0 ] =
Rab =>Vb.Rab Rab —>b=b'oRab  Ra —> Va.a=fboPa

a,b————a a,b——=a,b,t/ al—f>b
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Rules for the quantifiers

Now our task is to understand why, and in which sense,
the adjoints to change-of-base that were just mentioned
are “admissible”.

In Natural Deduction we have six rules:

i1, 3E, VI, VE, =I, =F

(a package with all six will be called ‘IV=IFE’)

and some of them only started to make sense to me (years ago!)

when I saw how to translate them to a sequent-calculus like form,

and how to interpret sequents as inclusions between subsets —

so we will see each of them in its ND form, in the corresponding SC form,
and in a “set-like” form, involving functions, sets and subsets.

An important idea:

any subtree of a derivation in natural deduction

“has semantics”, i.e., can be interpreted as an inclusion
between subsets.

The rules are:

[Pab Qa

Paj3 . 3. Pab Ra .
3b.Pab Ra
Qa
Rab 3 Vb.Rab
Vb.Rab VI Rap vE

; b= Pabb
b=b Pabt/

but each of these (apparently) small trees
packs a huge amount of information.
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Rules for the quantifiers (2)
Here are the translations...

Pap
3b.Pab

dI

(a—p):A— B {a,b|| Pab}

{a| Paf} — {a|3b.Pab}

atbp {a,b|l Pab}
a; PaB + 3b.Pab

62

[Pab]l‘ Qa

3b.Pab Ra

Ra JE

{a,b| PabANQa} — {a,b| Ra}

{a| (3b.Pab)NQa} — {a| Ra}

a,b; Pab,Qa - Ra
a;3b.Pab, Qa F Ra

Qa

Rab
vb.Rab 7!

{a,b|Qa} — {a,b| Rab}
{a|Qa}— {a|Vb.Rab}

6 Vb.Rab vE
Rap

(a—pB):A— B {a,b|| Rab}
{a|Vb.Rab} — {a | Raf}

a,b;Qa - Rab a—fp {a,b|| Rab}
a; Qa - Vb.Rab a;Vbh.Rab - Rap
I b=t/ Pabb
b=b Pabl/ o
B {a,b,V || Pabb}

([T (bbb} .

B

b T F b=b =1

{a,b,v | b=b' A Pabb} — {a,b,b’ | Pabl’ }

{a,b,b' || Pabb'}
0, b0 b=, Pabb - Pabtl
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Rules for equality
The three primitive rules for equality in Natural Deduction are:

[Pabb']!
b=t Pabh . Pabh Qabl
= ! Pabl Qaby

The four derived rules below deserve proper names.
Expensive ND systems come with them built-in,
but in cheap ND system we have to build them ourselves.

b= =
b=t/ b=t b=b L
T
b=l b=b" Y=t b=t
=y TS o Ty
Qb
b=t Qabb > Qabb
b=t Qaby Qabl  Qabl 5Qabb
Qab P = Qabb
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Adjoints to change-of-base: quantifiers

Pab
3b.Pab
D f

Qa

Qa
Dk

b Vb.Rab
—— VE

Rab

P'ab=—=>3b.P'ab

Pab =—=>3b.Pab

b

~
e
~

Rab — Vb.Rab

R'ab == Vb.R'ab

s
a,b——a

64

[P'ab]*

Cp

Pab
3.P'ab 3b.Pab .

db.Pab
[Pab]!

L g
db.Pab  Qa
TR

Qa
i h
Rab
Vb.Rab
b Vb.Rab
Rab vE

JE

vI
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Adjoints to change-of-base: equality

[b=b'APab]"
D f
b=bAPab Qabl’
Qabb

[Qabb]*
Sk
Qabb  b=b'>Rab
b=boRab

Rab

subst; 1

subst; 1

P'ab=—=>b=V'AP'ab

Ssp =

g gb —
=
= T s
Qabb <——= Qabl/
=k - k
h z Rt =

Rab —=> b=b'>Rab

ng =

R ab == b=b'>R'ab

a,b—6>a,b,b'

65

b=b'AP’ab
P'ab
b=b'AP'ab C
b=t/ Pab
b=b'APab

b=b' APab
Pab
b=b'APab Ly
b=t/ Qabb
Qabl/ -

b=b]" Qabb’
Qabb -
“h
Rab
b—b>Rab *
[b=b')!

b=b'>Rab
Rab

S
R'ab
b=b'oR'ab 1
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Adjoints to change-of-base: candidates
Remember that:

AB = <1dB,ldB> :B— B x B,

dap = (idaxp,m4p) : Ax B— (Ax B) xB.

If f: A— B and P € E4 then we can define
Ay P =35, ((idp x f)*Eqa T ATE4P):

A4 B B
BxA—BxB {bt]| b=t} {a| Pa}
{b,allb=fa} {b,all Pa}

{b,a || b=fanPa}
{b|| Ja.b=farnPa}

If P € Eaxp then we can define

Eq&AB P= (7r143 x ldB)* EqABTB A W?AXB)BP:

B
{o,0" [| o=b"} {a,b|| Pab}

Eq A BTB

66

f B
idp X f Eqa,'B P
(idp x [)*Eqa T 7haP
(idp x f)" Eqa TBATE P

HWBA((idB X f)* EqABTB/\WgAP)

B

!

{(a,0),0/ [|b=b'} {(a,0),0/ || Pab}  (map x1dp)" Ean,Ts 74yp)p?

*

{(a,b),v || b=b'APab} (r'yg x idp)* Eqa ,TBAT AxB)BP
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Preservation of ‘and’

P | P

b e — ]

FPAFR=f"(PAQ)<—PAQ

7 !
[rQ 1Q
N s
P Q PQ
f PAQFP PAQFQ T
fre . TEQFPT TEPQESQ
[(PAQ) F f*PAf*Q = [ (PAQ) F f*PAf*Q ’
f P Q PA
FPAFQE 17 (PAQ)

2009unilog-diags June 20, 2010 22:10



68

Preservation of ‘and’ (2)

In the archetypal model, CanSub(Set),

the arrows PA? and PA exist for trivial reasons:

[ PAfQ=A{allPfanQfa}={all P(f(a)) NQ(f(a))} and
fFPAQ)={al[PfarnQfa} ={all P(f(a)) AQ(f(a))}

are the same subobject.

{al| Pfa} {oll Pb}

(- ~ |

{all PfarnQfa} ——={al| PfaAQfa} <——{b]|| PbAQD}

o ~— :

{all Pfa} {bllQb}
A B

The same will happen for PT and P>,
and for some forms of Frob, BCCL and BCCR
(the details for Frob, BCCL and BCCR are in [Seely83])
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Preservation of ‘true’

Ta
f
A——-B
5 T
[ Ts |
f:A— B *Te
LB
f*TBl_TA = f*TBl_TA
f:A— B
S PT
Takf*Ts
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Preservation of ‘implies’

f* (QDR) N f* Q - f*((QDR) QDR) ANQ
i QDR Q:)R
fr Q:)f* QDR
A ! B
f Q@ R
FPAQE[F(QoR) T2 =
Q R
QDR
Q R OoR QDR

uncur
*

/ QR " Q A f (@R)NQFR

[ (QR)NQF f* ((QDR)AQ) fT(QR)NQ) F f*R
[T (@R)Af"QF f*R

[T (@R)F f*Qof"R

cur

f Q@ R
[ (QaR) F f*Pof* Q"
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Beck-Chevalley for the left adjoint

f/*P

i P
c*f*3.P \ f*c*3. P <—— c*3.P
Elc’f,*P \/ EICP
thCCL \Lid
1 3. P

f*3.P
A XB C ; C
N f
A ! B
P ¢ 5
EN
3. PF3.P “1
;OPFEP S (fi0=(¢if) 3P
fPPF 3P fre 3P 3P
c f c f P u f*Pt *f*3.P '
3./ PF f3.p BCCL 3./ PF f3.p
c f J f/

f*3.PF 317D BCCL
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Beck-Chevalley for the right adjoint

c* f*V.P < f*c*V.P <—— "V P

fli >{ ~— ! \
*P | P
\\f*VCP \ V. P
hMBCCR \ \Lid
Yo f*P V.P
AXBC ; C
_ ! \\\\\\\\\
A ! B
P ¢
w.p

mpkmpf
(fie)=(c';f) VYeP ' oV PFP Y

*fYPE NP fY. P f*P

c f  f P u P E f*P
VP Ev, P BECR [P F Y P Y
c c/ !/

L N

Vo f*PF f*V.P
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Frobenius
P 3P
! —
P/\f*Q'—>3f(P/\f*Q)FZ\b(E|fP)/\Q
! — =
* 1Q
A ! B
fQ., f e,
P fQ P fQ
PAfFQFP " ! P/\f*QFf*QW
f P Q u 3, (PAfQIESP ! T (PAS Q)I—Q?>
3(PAFQ)F BrP)AQ TP = 3 (PAF Q) F (3, P)AQ ’
f P Q Frob
3r(PAf*Q) F (3rP)AQ
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Cheap hyperdoctrines
A cheap hyperdoctrine is a structure like this:

H = (B, X, 1, —,
E,A, T,
p, cleavage,
PAPT, Po,
dp A AV,
Eqa 1A%,
BCC3,,BCCVY,)

Note that Frob does not appear,
and that BCCL and BCCR are stated only for
very special cases — BCC3, BCCV, BCC=

(details soon!)
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Pimp implies Frob

Fact: we can reconstruct Frob from Po.
(Note: this is a yellow-belt categorical proof,
but for some reason I find it difficult)

First we need a derived rule:

I (PAf*Q)F R

PAf*QF f*R
P+ f*Q>f*R ~
P f(QR) '~
34 (PAf*Q) F R ) J¢PF Q>R
3, PAQFR '~ =  3;PAQFR"
where ‘; P2’ is composition with ‘P=>’, as below.
Note that all the bars in the derivation at the right above
are bijections; the inverse of ¢; P>’ is ‘; Po".
;@ R b
PHIQofR PF f*Qof*R f*Qof*RF f(QoR) '
Pr f(QoR) =~ = PF f*(QoR) ’
f Q@ R h
PH(QR) Pr f(QoR) F(QR) - f*Qof R T~
P f*Qof*R '~ = Pr f*Qof*R ’
Now make R := 3;(P A f*Q).
We get the tree at the right, below,
that becomes our definition of Frob
as a derived rule (involving P>).
;] P Q
3 (PAf*Q) d
1
f P Q . Jp(PAf*Q) - 3p(PAf*Q) b
PAQF 3(PAf*Q) 0 = PAQF I(PAfQ)
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Pimp implies Frob (2)

Here is the construction as a diagram.
We start with R := 3;(P A f*Q) and with the arrow marked ‘(id)’,
and we build the arrow 3yP A Q F R =3;(P A f*Q), that is ‘Frob’.

3, PAQ {37 P
Frob“h \ % \
3H(PAFQ) —= R Q=R
EbTiaﬁ HbT\L;N
PAf*Q — P F*(QoR)
S & 1
SR F*Qof*R
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Pimp implies Frob (3)
In the notation of [Lawvere70] (p.6), this is stated and proved as:

DEFINITION-THEOREM. In any eed, the following are equivalent:

(1) Frobenius Reciprocity holds,

(2) Forany f: X - Y, o, ¥ in P(Y) f-(a:¢)i>f-a:>f-w

(3) Forany f: X =Y, ¢ € P(X),a€ P(Y) ((f-a)A@)Sf —>aA(¢Zf)
ProoF. The second conditions means that the diagram of functors (**) com-
mutes up to natural equivalence. Hence replacing each functor by its left adjoint
also yields a diagram which commutes up to canonical natural equivalence: (*).
But the latter is just the third condition. Conversely if the third condition

holds, we can replace the functors in the latter diagram by their right adjoints,
yielding the second condition.

anNpSf 12 f an()

Fmbuu\ % \ (mT T(w ()

((f- )NQ)BS - v "7 P Op(x)
szE” Ebuzﬁ
| P) Y py)
(- a)ne b f =)
=R

Note that he only draws the squares (*) and (**),

with the categories and the functors;

the cube with objects, morphisms, and ‘—’s for functors

is a kind of “internal view” of the categories and functors involved —
and such “internal views” are only very rarely drawn

in the (standard?) Category Theory literature.
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BCCL implies BCCR

Also, BCCL implies BCCR (and vice-versa),

by an argument similar to the previous one.

Here are the diagrams; we won’t get into the details.

Qv Vol*@Q
v (id) !
? BCCR
Y .y a*P I P V@
] 8
li lr waa waau
7z ——W 1
b J,a*P Q1 V@
h TBCCL RS
~
b*3, P /3, P
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A-calculus in a hyperdoctrine

As the base category B of a hyperdoctrine is a CCC
we can interpret A-calculus in it.

In diagrams:

A A AxB~<—4A
/fi/gN\ !‘/ uncur]gz |<:>| ‘gurf
B -~ BxC — C 1 C+——= B—C
A A Ax B<—A
|
akb akc
aF{f,c) akx allb)l_;glc) |<——>| ZI':J;I):B.C
B BxC c 1 Cr—B-C
pk7b pkmb’

In a sequent-calculus-like form:

B C akFb albc B C B C
X0 ’ m ud
BxC at(bc) pkap pkn'p
1 A !
1 abx "’
B C R B C app a,btc
—_— _— ——— cur
B—C " b frfb aF \b:B.c
In natural deduction form (in downcased notation):
a a
b ¢ b,c b,c
/
b, c ) b " c T
a
=1
*
a a a [b]!
b bisec c
app ;
c b—c
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Propositional calculus in a hyperdoctrine
As each fiber Eg of a hyperdoctrine is a CCC
we can interpret propositional calculus in it.

In diagrams:

P P PANQ <—— P
Q<—QANR——R g R+——Q@Q-oR
In a sequent-calculus-like form:
R P+ PFR R R
@ A @ A @ AV L ANFEy
QAR PFQAR QARF Q QARF R
) P
Tr PkFTp i
Q R Q R P,QFR

0-R ~ (R0 FR S Proor t

In natural deduction form (in downcased notation):

P P
O R QAR OMNR
U ANE, LT AE
ONR Vi 0 NEq R NE5
F o
Ts |
PP P [Q)
Q QR R
R > QoR U
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Interpreting ‘VI’ in a hyperdoctrine

™QFR
Ly
QF V. R
Qa
Rab a,b; Qa - Rab

Vb.Rab I a; Qa = Vb.Rab

TR <—Q

e

R—V.R

AxB -~ A

Qa<—=Qa

L=~

Rab = Vb.Rab

s
a,b———a
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Interpreting ‘VE’ in a hyperdoctrine

f QFV:R
QrGd /)R "E

(id, f)

_

(id, fy* R~—— R—> VR
A

AXB#-A

Qa
o |
: Qa
atb Vb.Rab vE atb a;Qat Vb.Rab vE
Rab’ a; Qa = Rab’ I ~ I ~ 1

Ral! <——= Rab =>Vb.Rab

a
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Interpreting ‘31’ in a hyperdoctrine

PAT*Q F m*R
3.PAQF R
Pad/ -, abb {a,b|l Pab}
3b.Pab a; Pab' - 3b.Pab

83

(id, /Y)*P P {3, P
J{ <~ J/ <~ J{id
(id, fY*n*3x P <—7*3 P+ 3P
(id, f)

A

AxB -S> A
id

Pal! <——= Pab<—=3b.Pabd

I < I < 1&1
db.Pab <— 3b.Pab —> 3b.Pab

id,
al /) a,b—" a

id
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Interpreting ‘JE’ in a hyperdoctrine

PAT*@ 3. PAQ

AN )

Ax B il A

PabAQa (3b.Pab)AQa
| |
Ra\ Ra
N N

Pab 3b.Pab

I ™S~ — \|J

QaoRa =——!' QaoRa <———— Qa>Ra
)

a,bi a
PAT*Q F m*R
—————— dF
3.PAQF R
[Pabl! Qa
3b.Pab Ra g @biPabQab Ra
Ra ’ a;3b.Pab, Qa F Ra
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PL categories

The paper [Seely87] (“Categorical Semantics

for Higher Order Polymorphic Lambda Calculus”),

shows how to interpret polymorphic A-calculus

in a hyperdoctrine with a universal object.

Its rules (X1), (XE), (ILI), (IIE)

correspond (very roughly) to our (VI), (VE), (3I), (3E),
and are stated as this in the paper (in the section (1.1.4)):

(XI) If « is an indeterminate of order A, o € Q, 7 € A,
then Isg.qr € 0[T/a] DX € A- 0. When clear from the context,

we shall denote this term by I, or even by I; in particular,
if b€ o[r/a], then I(b) € Za€ A- 0.

(XE) If a € 0 o p, @ an indeterminate of order A
which is not free in p nor in the type of any free variable in a,
then Vo € A-a € (Ba€ A-0)>p.

(II]) If @ € 0, a an indeterminate of order A which is not free

in the type of any free variable in a, then A € A-a €lla € A - 0.

(IIE)Ifaella € A-a, T € A, then a{r} € o[r/a],
where o[r/aa is o with 7 replacing «.

In a diagram:

o+—YacA.o

a R Va€A.a (SE)
p<~—"ip
olr/al {0 YacA.o
) Isaor < < id
pat
Ya€A.c < YacA.c < Ya€A.o
p Ip Ip
nE r
({ME) afr} =~ a l% %aeA.a (I11)
ui
olr/al e MacA.c
b (b,T x
B b BxA B
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PL categories (2)

Here is a Rosetta stone for translating between the paper’s notation
and the (“standard”) notation for hyperdoctrines that we use here.
In the middle rectangle the iso (id, 7)*7*3,P < 3P

has been collapsed — we show only the object 3, P.

or—>YacA.o

a R VacAa (SE)
p<~——"p
olr/al el YacA.o
1) Isa.o,r <~ < id
pat
YacA.oc<—YacA.oc<—YacA.o
p 1p 1p
l—[b
(E) —efr} =~ a I? aAaEA.a (I11)
olr/a] {0 IlacA.c
BT pya— T . B
P——-43.P
b
g Ii Lgb
T <—Q
(id, 7)*P P 3. P
(id,7)"np <— np <a—ﬁ| id
3P < 3, P <——3,P
Q | T*Q 1Q
. I’
(id,7)* k" <~ kb ~ ﬁu
1t
(id, )*R IR V.R
id, 7 T
BT Bya B
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Uppercasing names
When I defined a (proto-)cleavage,
several slides ago, I said that it was:

cleavage =
B7C7R’g'—>Q’gl7(A7P7f'—>f/)

Let’s formalize this.

A (proto-)cleavage (for a projection functor p : E — B)
is anything that “deserves the name”

B7C7R’g — Q?g/7 (A’P7f = fl)

that is, a cleavage for p: E — B

is any object of a certain type —

where that type is the uppercasing of

B’C7R7g — Q’gl7 (A7P7f — f/)'

How do we uppercase names as complex as that?
How do we extract the necessary “hints”

from the accompanying diagrams?

Can this always be done unambiguosly?
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Uppercasing names (2)
Let’s start with a simpler problem.
We have a set A and families of sets

a:AF B,

a:A,b:B, F Cyp

a:A,b:Bg, c:Cop F Dgpe

a:A, b:Ba, C:Cab, d:Dabc H Eabcd

and we want to find the type —
written in standard notation for A-calculus with
dependent types (i.e., with ‘>’s and ‘IT’'s) —
of:
a,b,ckd,e.

A convention: ‘E[a]’ will mean “the space of ‘a’s”.
We will add lots of ‘E[...]" entries to our dictionary
to keep track of the types.

Remember:
(a,b) : La:A.B,
(a—b):1a:A.B,
So:
Ela] = A
Eb = B, (<« which depends on a)
Ela,b] = XaE[a].Eb) = Xa:A.B,
Ela— b = a:E[e).Eb = Ha:A.B,
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Uppercasing names (3)
We want to uppercase

a,b,c—d,e.

We start by adding the missing parentheses:

(@, (b,¢)) = (d;e)

Then:
Ela, (b, ¢)] Ya:E[a].(Z0:E[b].E[c])
Ya:A.(Xb:By.Cap)
Ya:A.Xb:B,.Cyp
Eld, €] Yd:E[d].Ele]

Xd:Dape-Eaped
II(a, (b, ¢)):E|a, (b, ¢)].E[d, €]
H(a7 (b, C)):(Ea:A.Eb:Ba.Cab).(Zd:Dabc.Eabcd)

=t
11t:(Sa:A.2b:By.Cop)-((Sd: Dape. Eaped) |:b?=ﬂ-7r’t,:|)

E[(a, (b,¢)) — (d,e)]

c=r'n't
where the ‘[...]" on the last line is a substitution box, and:
a:=mt,
(Zd:Dabc-Eabcd |:b _7"7T tt:l 7rt (mr’t) (! 7! )-E(ﬂt)(ﬂ’ﬂ’t)(‘n"fr’t)d

when we use then name ‘a, (b, ¢)’ for ‘¢’ then it is obvious that:

{ah = m(a, (b))

(b, ) = 7'{a, (b,c))
) = wloe)
{e) = (b))

and so we can avoid choosing a name for the t = a, (b, ¢),
and we can omit the substitution box...
Long names save the day!  8-)
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Uppercasing names (4)
To summarize:

(E[a]) = A
(E[]) = B
(El) = Ca
(Eld) = Dabe
(Ele]) = FEabeca
{a, (b, 0)) = ¢
(E[b,c])) = Zb:(E[b]).(E[c]))
(Ela, (0,0)]) = Xa:(E[a])).(E[b, c])
{a) = m(a, (b))
(b, ch = 7'(a, (b,c))
(o) = m(b,c)
() = 7(b,c)

New terminology: a thing like (a, b)) —
a long name within double angle brackets —
is bracketed long name, or, for short, a blong name.

The dictionary treats blong names as macros.

The dictionary above has two parts.

In the top part we have the “terminals”.

In the bottom part we have “(real) macros” (non-terminals).

The definition for (a, (b,c))) could have been omitted —

the preprocessor would then substitute {(a, (b, c))) by dnc006,
which would be a perfectly acceptable name for a variable
(in, say, Coq).
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Currying long names
There are natural bijections

(@, (b,¢)) = (d;e) f
a— ((b,c) — (d,e)) f2
ar (b (e (de))) = f3
(a,0) = (c— (d,e)) fa
((a;0),¢) = (d,e) == 5

and usually when we are speaking with humans
we can gloss over the details, and say just:

a b c f

apps
d,e
For f being any of the ‘f;’s above.

f3 — the “totally curried” version of f —
has the simplest type:

f3 : Ha: Ay 11b: B, 11e:Cop.Xd:Dype-Egped

and the way to obtain d, e from a, b, ¢, f3 is the shortest:

(d, 6) = fi <CL, <b7 C>>
(d7 6) = faa <b7 C>
(d,e) = fsabce
(d,e) = fa{a,b)c
(da 6) = J5 <<a,b>7c>

so the “totally curried versions” are usually preferred
in implementations (where we cannot gloss over those details)...

Usually in mathematical practice we say Homc (A, B) (= Homc (A, B))
but in our implementation of (proto-)CT in type theory
we will use Homg A B.
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Typing proto-categories
It should be possible to type

C= (007 HOHIC, id07 OC)

from the equations:

A, B, C : CO
A— A = HomcAA : Sets
A— B = HomcAB : Sets
B—C := HomcBC
A—C := HomcAC
Home :  E[M.AB.Homc A B]
idg = idgd : A— A
idc : E[)\AldA]
gof = ocABCgf : A—=C
oc : E[MNAABACAg.Af.(go f)]

And it should be possible
to extract some of them
from this diagram:

ida

!

A—l . . ¢
gof

(Note: I'm ignoring all questions of size,
and 'm not saying where Cj lives).

After that we should have a constant, E[C],
that we can use to declare arbitrary (proto-)categories:
a proto-category is an element of E[C].

The result should be something like:

E[Cy] := Classes
E[Hom¢c] = Cy— (Cy — Sets)
E[idc] = HA:CO. Homc AA
E[Oc] = HACOHBCOHCCO
(Home BC — (Homg A B — Homg AC))
E[C] = E[CQ, HOmc, idc, OC]
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Introduction to Heyting Algebras

Let’s identify ‘true’ with with 1 and with the singleton set,
and ‘false’ with 0 and with the empty set.

Now all our truth-values (i.e., 0 and 1) are subsets

of a “top” set, T, and we have an arrow 0 — 1,

but there’s no arrow 1 — 0.

The arrows are “non-decreasing’.

In the category Set®*® we have 8 truth-values,

and in the category Set" just five:

1 111 Y
1IN N
110 101 011 1 1
NN

100 010 001 1

N i

0 000 0

Set Set*** Set"

V is the DAG

Vi=(W,R):=({apv}{a—768-7})

regarded as a category:
e B
vV = \ /
Y

In each category Set”, where D is a DAG,

the structure (Sub(lp), A, T,>) is a CCC,

and even more: (Sub(1lp),A, T,>,V, L) a (bi-)Heyting Algebra.
Its objects behave as intuitionistic truth-values...

In Set”, if we take P = %° we have
~—P=(P51)oL="=T,s0P#-—P.

2009unilog-diags June 20, 2010 22:10



94

Introduction to Lawvere-Tierney Topologies
The operation P +— P* := —=—P on a HA obeys these three rules:

PFQ

FT* P*FQ*

P* - P>

Anything obeying these three rules [in the HA of a topos]
is called a Lawvere-Tierney topology.
These three rules are the cheap presentation, of course.

The nicer equivalent expensive presentations for LT-topologies
include how the “*’ interacts with A, T, o, V, L,

PAQ ——— PAQ* 0o o
N N N\ N\
(PAQ)* === (PAQ*)* — ;
P*AQ P*AQ* 10 111\
N AN
(P*AQ)* \P*AQ *)* ™ g N\ g
PvQ —PVvVQ* 00— 10
\ \ 101 \ 101 \
(PV Q) —+ (PVQ)* iy iy
PVQ P Ve i i
N N AN N
(P*V Q) = (P*V Q) 11 11
PoQ P-Q* 1 P
\;_-, \ \ 01 \ 11
(PoQ)* (PoQ*) i1 11
88 i

P*o % P*oQ*
N\

(P Q) —

P*DQ )"
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Introduction to Lawvere-Tierney Topologies (2)
...plus how the “*’ interacts with V and 3,

plus the notions of *-sheaf and sheafification,

among lots of other things.

With just a little bit more we get forcing

and geometric maps between toposes.

This all looks very technical, and it is.
However toposes of the form Set”,
where D is a small DAG,

seem to be archetypal, in a sense...
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Map of the world
This is the map of the “obvious” places
where my work can be presented.

cT CompSci  Alg Logic
journals journals journals journals

CT CS/TT Alg Logic
books books books books

international national
conferences conferences
(papers) (papers)
international national roof
conferences conferences asfistants
(tutorial) (tutorial)
math math
Serars seminars
PUC/IMPA/ at UFF
UFRJ/etc
local local local local
CT comspci  algebra logic
seminars seminars seminars seminars
local cal local local local
categor- . algebra- logic-  topolog-
. CompScis % . i
ists ists 1ans ists

grad students
iniciacao cientifica
undergrads

However it makes more sense to use it to connect these “places”

than to think of it as belonging to one or a few of them in particular...
For example, it can be used to discuss, in local seminar with non-CT-ists,
how CT and Type Theory texts are written, and how to approach them.

2009unilog-diags June 20, 2010 22:10



97

There are no (new) theorems in these slides
...because the things that we usually call “theorems”
in Category Theory belong to the real world —
they are a construction plus something more.

Take for example the Yoneda Lemma.

It says that given a functor R : B — Set

and an object B of B we have a bijection between the set RB
and the set of natural transformations C' — ((B — C) — RC).
Here we are working in the syntactical world only

— we mention liftings to the real world,

but we don’t do any such liftings explicitly,

and so what we get is just the projection of that bijection,
which is a proto-iso between RB

and the set of proto-NTs C = ((B — C) — RC).

Usually a “theorem” involving a such construction

would have to either show that it is always a bijection,

or to show a case where it is not a bijection.

What we do have here is the definition of the two worlds
(mostly via examples, but whatever...), of the projections,
of the liftings, some ideas of how to work with this
splitting of worlds, and examples.

This is not the kind of work that usually gets published.
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Typing proto-adjunctions

Hom¢ : =A,B — (A — B)
ide : =A — id

oc: :A7B7Caf?g'_) h

C.: :(Co,HOmc,idc,Oc)

Fy:=A— FA
Fi:=AB,f— Ff
FZ:(Fo,Fl)
To:=A— Ty
TZ:(T())

bap =g+ f
fap:=frg
b:=A, B+ bap
f:=A B+ faB
n:=Armna

€e:=Br—e€p
(LA R):=(0,8m,€)
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Typing proto-CCCs

prod®: =A b+ f, g

prod: =A, f,g— h

B x C:=(P,m, 7, prod)
Xo:=B,C+— Bx(C

X1t :Bvch/aclvﬂ77H6X7
x 1 =(Xp, X1)

li=Ar—t
1:=(T,)

uncurge : =A,g— f
curpec :=4A,f—g
B—C : :E,evBc,cuch
—9:=B,C — B—=C

xB)g:=A+— AxXB
xB);:=A",A,a— a x B

B—)p : =C — (B—C)

B—)1 : =C,C",y — (B—)

uncurg : =A,C,g+— f

curg : =A,C, f—g

(xB) : =((xB)o, (xB)1)

(B—) : =((B—=)o, (B—)1)

np : =A r coevyp

eg: =Cr—evpo

((xB) 4 (B—)) : =(uncurp, curg,ng, €p)
— =B (B=),((xB) 4 (B—))

(
(
(
(

(C’ x? 17%)
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Typing proto-fibrations

B: :(BmHom[ﬂ;,idB,OB)

EO :=B+— EBO

Homg : =A, B, f, P,Q — Homg (P, Q, f)
ld]E : :A,P — idp

OF : :A,B,C,f,g,P,Q,R,f’,g’ — b
E: :(E07H0mﬂ;,idE,OE)

uliftp g 1 =f — f’

carty : =Ah, P I — ulifty, g
Jo:=R— Q,¢ carty
cleavage : =B,C, g — 7,

2009unilog-diags June 20, 2010 22:10



