Sheaves over finite DAGs may be archetypal (Or: "Sheaves for non-categorists". Work in progress)

Eduardo Ochs - PURO/UFF eduardoochs@gmail.com http://angg.twu.net/ http://angg.twu.net/math-b.html#sheaves-on-zdags

Presented at the XVI EBL (http://www.cle.unicamp.br/ebl2011/), held at Petrópolis, RJ, Brazil, on 2011may13. These slides will probably be updated soon to make them more self-contained.

Index of the slides:

Let's mystify the audience with technical terms
Let's mystify the audience a bit more4
Well-positioned subsets of Z^2 (and ZSets)
Black pawn's moves (and ZDags)6
Partial orders7
Cycles are evil
DAGs are good9
Our favorite topological space: $\mathbb V$ 10
Our favorite sheaves and presheaves11
Compatibility12
The evil presheaf
Stack operations14
Stack operations (2)15
Covers and families16
Saturated families17
Adding unions
Priming
What next?

3. Let's mystify the audience with technical terms

Modal logic:

S4 has the finite model property.

We have Gödel's translation: intuitionistic logic \rightarrow S4

So: as $\neg \neg P \supset P$ is not a theorem of intutionistic logic

 \Rightarrow there is a finite model (with two worlds)

in which $\neg \neg P \supset P$ is not true.

These finite counter-models are good for developing intuition about intuitionistic logic.

Category Theory:

Let \mathbb{W} be a finite poset. (\mathbb{W} is a system of possible worlds for S4, viewed as a category). Then $\mathbf{Set}^{\mathbb{W}}$ is a topos of presheaves. The logic of toposes is intuitionistic, and in $\mathbf{Set}^{\mathbb{W}} = \mathbf{Set}^{\bullet \to \bullet}$ we can falsify $\neg \neg P \supset P$.

Claim:

Toposes of the form $\mathbf{Set}^{\mathbb{W}}$ are good for developing intuition about Topos Theory (and CT in general).

4. Let's mystify the audience a bit more

Sheaves are very important in Topos Theory. Category Theory is hard (too abstract). Even basic sheaf theory is too hard. Idea: Let's use toposes of the form $\mathbf{Set}^{\mathbb{W}}$ to learn about sheaves!

In "Internal Diagrams in Category Theory" (2010) I "defined" (loosely) a way of thinking diagrammatically, and a notion of how much "mental space" each idea takes.

Specializations behave like projections, Generalizations behave like liftings:

Can we learn/define/understand sheaves in toposes of the form $\mathbf{Set}^{\mathbb{W}}$ and then lift the theory to the general case?

5. Well-positioned subsets of Z^2 (and ZSets)

Def: a subset $D = \{(x_1, y_1), ..., (x_n, y_n)\} \subset \mathbb{Z}^2$ is well-positioned when $\inf_i x_i = 0$ and $\inf_i y_i = 0$.

Def: **ZSet** is a finite well-positioned subset of \mathbb{Z}^2 .

Examples: $Y = \{(0,2), (2,2), (1,1), (1,0)\}$ $K = \{(1,3), (0,2), (2,2), (1,1), (1,0)\}$

They will usually be named according to their shapes ('K' is for 'Kite').

6. Black pawn's moves (and ZDags)

Example: Let $K = \{(1,3), (0,2), (2,2), (1,1), (1,0)\}$. Then the set of **black pawn's moves** on K, BPM_K , is the set of 5 arrows at the right. Let $\mathbb{K} = (K, \mathsf{BPM}_K) \qquad \leftarrow \text{this a DAG}.$

Every ZSet D induces a DAG $\mathbb{D} = (D, \mathsf{BPM}_D) \qquad \leftarrow \text{this a } \mathbf{ZDag}.$

7. Partial orders

We are interested in S4 and categories, so we like relations that are reflexive and transitive. It is clumsy to draw (Y, BPM_Y^*) (at the right), so we'd like to make (Y, BPM_Y) (at the left) stand for (Y, BPM_Y^*) .

Let's say that two relations, R and S, are **equivalent** if $R^* = S^*$. The class $[R] = \{ S \mid S^* = R^* \}$ has a top element, R^* , obtained by a kind of saturation process (transitive-reflexive closure).

8. Cycles are evil

Let $T = (\{1, 2, 3\}, \{1, 2, 3\}^2)$ be the complete graph on $\{1, 2, 3\}$. Then [T] has two different minimal elements:

If we want to represent partial orders by minimal graphs we will need to avoid these...

"Reflexive" arrows, i.e., those of the form $\alpha \to \alpha$ are (sort of) irrelevant, so let's ignore them: Def: R^{refl} is R plus all reflexive arrows. Def: R^{irr} is R minus all reflexive arrows. Def: R is acyclic when R^{irr} has no cycles. \leftarrow not standard! Then in each class [R] either all elements are acyclic

or all are cyclic.

9. DAGs are good

"Acyclic" for us is "acyclic modulo reflexive arrows"... Consider the set of DAGs on a finite set of vertices A. The equivalence relation $R \sim S \iff R^* = S^*$ partitions it into equivalent classes that are "diamond-shaped", i.e., "everything between a top and a bottom element": $[R] = \{ R' \mid R^{ess} \subseteq R' \subseteq R^* \}.$ To build R^{ess} from R we drop all "non-essential arrows". (This is the dual of the saturation $R \mapsto R^*$).

Moral: we can represent finite partial orders canonically by their minimal DAGs (that only have "essential arrows"). ZDags are finite, acyclic, and minimal. 8-)

10. Our favorite topological space: \mathbb{V}

Here it is: as a DAG, $\mathbb{V} = (V, \mathsf{BPM}_V) = (\{\alpha, \beta, \gamma\}, \{(\alpha \to \gamma), (\beta \to \gamma)\})$ as a partial order, $\mathbb{V} = (V, \mathsf{BPM}_V^*)$ as a top. space, $\mathbb{V} = (X, \mathcal{O}(X))$ \leftarrow note the renaming! $= (X, \{\{\alpha, \beta, \gamma\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, \{\gamma\}, \{\}\})$ $= (X, \{X, U, V, W, \emptyset\})$ \leftarrow names for the open sets $= (X, \{^{11}, ^{11}, ^{01}, ^{01}, ^{00}, ^{00}\})$ \leftarrow positional notation!

We can think of it as a quotient topology on \mathbb{R} ...

I draw X on top because it "covers" the other open sets, and because ${}^{11}_{1}$ is \top ("Top") in the Heyting algebra (but \top is also the terminal... the HA must \mathbb{K}^{op}). Surprise: $(\mathcal{O}(X), \supseteq^{\text{ess}})$ is a ZDag!

11. Our favorite sheaves and presheaves

Let's write $\mathcal{O}(\mathbb{R})$ for $(\mathcal{O}(\mathbb{R}), \subseteq)$ \leftarrow a category (\nearrow) and $\mathcal{O}(\mathbb{R})^{\mathrm{op}}$ for $(\mathcal{O}(\mathbb{R}), \supseteq)$. \leftarrow another (\swarrow) Then $\mathcal{C}^{\infty} \in \mathbf{Set}^{\mathcal{O}(\mathbb{R})^{\mathrm{op}}}$ is a sheaf. Bad news: it is too big to visualize.

We write $\mathbb{V} \equiv \bullet \bullet$ and $\mathbb{K} = \mathbb{V}' \equiv \bullet \bullet$. Let's define presheaves $C^{\infty}, E \in \mathbf{Set}^{\mathbb{K}}$. A presheaf in $\mathbf{Set}^{\mathbb{D}}$ is just a functor from \mathbb{D} to \mathbf{Set} . Sheafness is separatedness plus collatedness. C^{∞} will obey both, and E will fail both.

12. Compatibility

Let $U = (-\infty, 3)$ and $V = (2, \infty)$ (temporarily). Let $f_U \in \mathcal{C}^{\infty}(U, \mathbb{R})$ and $f_V \in \mathcal{C}^{\infty}(V, \mathbb{R})$, in:

$$\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$$
 \swarrow
 $\mathcal{C}^{\infty}((-\infty,3),\mathbb{R})$
 $\mathcal{C}^{\infty}((2,+\infty),\mathbb{R})$
 $\mathcal{C}^{\infty}((2,3),\mathbb{R})$
 \downarrow
 $\mathcal{C}^{\infty}(\emptyset,\mathbb{R})$

We say that two "locally defined functions", f_U and f_V , are **compatible** iff they "coincide wherever they're both defined" (in the example: on (2, 3)).

More precisely: f_U and f_V are compatible iff $f_U|_{U\cap V} = f_V|_{U\cap V}$. Sheafness means that every **compatible family** $\{f_U, \ldots, f_V\}$ has exactly one glueing to an $f_{U\cup\ldots\cup V}$

(collatedness guarantees existence of a glueing,

separatedness guarantees that there is at most one).

13. The evil presheaf

Here is the "evil presheaf", $E: \bullet \to \mathbf{Set}$. Note that everything here is given explicitly restriction functions that are the images of black pawn's moves, e.g., $\rho_V^X : E(X) \to E(V)$, are drawn; restriction functions like ρ_U^U are necessarily = $\mathrm{id}_{E(U)}$, and restriction functions like ρ_W^U are obtained by composition. Note (again!) that E is a functor.

Then $\{e_U, e_V\}$ is a compatible family, because $e_U|_{U\cap V} := \rho_W^U(e_U) = e^W$ and $e_V|_{U\cap V} := \rho_W^V(e_V) = e^W$, but $\{e_U, e_V\}$ has two different glueings, e_X and e'_X , so separatedness doesn't hold in E_{\dots} Also, $\{e_U, e'_V\}$ is another compatible family, and this one has no glueings. So collatedness also doesn't hold in E_{\dots}

14. Stack operations

The fastest way to formalize all this is by using **stacks**. (This is not the standard way at all! I learned it from Harold Simmons's "The point-free approach to sheafification".)

This is E as a stack: $\Sigma E = E(X) \sqcup E(U) \sqcup E(V) \sqcup E(W) \sqcup E(\emptyset)$ We have an operation called "extent", $[e_U] = U$, going from ΣE to $\Omega = \{X, U, V, W, \emptyset\}$, and a non-commutative '.', heavily overloaded, that behaves as *restriction* when its left arg is in ΣE and as *intersection* when its left arg is in Ω :

$$\begin{array}{rcl} U \cdot V & := & U \wedge V \\ & = & W \\ U \cdot e_V & := & U \cdot [e_V] \\ & = & U \cdot V \\ & = & W \\ e_U \cdot V & := & e_U|_{([e_U] \cdot V)} \\ & = & e_W \\ e_U \cdot e_V & := & e_U|_{([e_U] \cdot [e_V])} \\ & = & e_W \end{array}$$

15. Stack operations (2)

The '.' also accepts sets as arguments, with the usual conventions: $\{a, b\} \cdot \{c, d\} = \{a \cdot c, a \cdot d, b \cdot c, b \cdot d\},\ a \cdot \{b, c\} = \{a \cdot b, a \cdot c\},\ \{a, b\} \cdot c = \{a \cdot c, b \cdot c\}.\ (Also: [\{a, b\}] = \{[a], [b]\}).$

16. Covers and families

Def: a **cover** is a subset of Ω . (Example: $\{U, V\}$) Def: a **family** is a subset of ΣE "where [·] is injective". Def: a **compatible family** is a family "where '·' commutes". Example 1: $\{e_V, e_V'\}$ is not a family. Example 2: $\{e_U, e_V\}$ is a compatible family. Example 3: $\{e_X, e_V'\}$ is non-compatible family.

Notation for covers: $\mathcal{U}, \mathcal{V}, \ldots$, where $\bigcup \mathcal{V} = V$. Notation for families: $e_{\mathcal{U}}$, where $[e_{\mathcal{U}}] = \mathcal{U}$. Def: a cover \mathcal{U} is (downward) **saturated** when $\mathcal{U} \cdot \Omega = \mathcal{U}$. Def: a family $e_{\mathcal{U}}$ is (downward) **saturated** when $e_{\mathcal{U}} \cdot \Omega = e_{\mathcal{U}}$. Example 4: $\{U, V\} \cdot \Omega = \{U, V, W, \emptyset\}$. Example 5: $\{e_U, e'_V\} \cdot \Omega = \{e_U, e'_V, e_W, e_\emptyset\}$. Example 6: $e_X \cdot \Omega = \{e_X, e_U, e_V, e_W, e_\emptyset\}$. Example 7: $e_X \cdot \{U, V\} \cdot \Omega = \{e_U, e_V, e_W, e_\emptyset\}$.

17. Saturated families

Let's annotate saturated covers with a '•'. So: $\mathcal{U}, \mathcal{U}', \mathcal{U}^{\bullet}, \mathcal{U}^{\bullet'}$ are saturated families, possibly different, all "covering U".

Let's write the saturation operation, $\cdot \Omega'$, as $()^{\bullet}$, and let's say that $\mathcal{U} \approx \mathcal{V}$ when $(\mathcal{U})^{\bullet} = (\mathcal{V})^{\bullet}$, and write the equivalence classes as $[\mathcal{U}]$.

On finite DAGs each equivalence class has both a top element and a bottom element:

 $[\mathcal{U}] = \{ \mathcal{U}' \mid (\mathcal{U})^{\circ} \subseteq \mathcal{U}' \subseteq (\mathcal{U})^{\bullet} \}.$

The operation $(\mathcal{U})^{\circ}$, that drops all "non-essential open sets" in a cover, is new...

and it also makes sense for families.

Examples: $\{U, V, W\}^{\bullet} = \{U, V, W, \emptyset\}$ $\{U, V, W\}^{\circ} = \{U, V\}$ $\{e_U, e_V, e_W\}^{\bullet} = \{e_U, e_V, e_W, e_\emptyset\}$ $\{e_U, e_V, e_W\}^{\circ} = \{e_U, e_V\}$

18. Adding unions

In a sheaf $F : \mathbb{K} \to \mathbf{Set}$ every compatible family $f_{\mathcal{U}}$ can be glued in a unique way to obtain a $f_{\mathcal{U}}$, and we can obtain $f_{\mathcal{U}}$ back from $f_{\mathcal{U}}$: $f_{\mathcal{U}} = f_{\mathcal{U}} \cdot \mathcal{U}$.

To understand what is going on here we need another notion of saturation...

The '•' saturation adds *smaller opens sets* to a cover; The '••' saturation also adds *unions* to a cover.

19. Priming

To understand "topological sheaves" we take a DAG (e.g., \mathbb{V}) and prime it twice; the operations ' $\bullet \bullet$ ' and ' $\bullet \circ$ ' work on \mathbb{V}'' .

For "generic" sheaves ("sheaves on a site") we take any DAG \mathbb{D} to play the role of \mathbb{V}' and an operation '*' on \mathbb{D} that obeys three rules (obeyed by '••', of course), and from there on we treat what were "open sets" as "truth-values" (!!!), and the '*' as a modality (!!!!).

20. What next?

... but that doesn't fit in 20 minutes! 8-(

Look for the complete version of these slides in my home page!

Goodbye! 8-)