
Sheaves over �nite DAGs may be archetypal
(Or: �Sheaves for non-categorists�. Work in progress)

Eduardo Ochs - PURO/UFF
eduardoochs@gmail.com
http://angg.twu.net/

http://angg.twu.net/math-b.html#sheaves-on-zdags

Presented at the XVI EBL
(http://www.cle.unicamp.br/ebl2011/),
held at Petrópolis, RJ, Brazil, on 2011may13.
These slides will probably be updated soon
to make them more self-contained.

http://angg.twu.net/
http://angg.twu.net/math-b.html#sheaves-on-zdags
http://www.cle.unicamp.br/ebl2011/

Index of the slides:

Let's mystify the audience with technical terms 3
Let's mystify the audience a bit more . 4
Well-positioned subsets of Z2 (and ZSets) .5
Black pawn's moves (and ZDags) . 6
Partial orders . 7
Cycles are evil . 8
DAGs are good . 9
Our favorite topological space: V . 10
Our favorite sheaves and presheaves . 11
Compatibility . 12
The evil presheaf . 13
Stack operations . 14
Stack operations (2) . 15
Covers and families . 16
Saturated families . 17
Adding unions . 18
Priming . 19
What next? . 20

3. Let's mystify the audience with technical terms

Modal logic:
S4 has the �nite model property.
We have Gödel's translation: intuitionistic logic → S4
So: as ¬¬P ��P is not a theorem of intutionistic logic
⇒ there is a �nite model (with two worlds)

in which ¬¬P ��P is not true.
These �nite counter-models are good for developing
intuition about intuitionistic logic.

Category Theory:
Let W be a �nite poset.
(W is a system of possible worlds for S4,
viewed as a category).
Then SetW is a topos of presheaves.
The logic of toposes is intuitionistic,
and in SetW = Set•→• we can falsify ¬¬P ��P .
Claim:
Toposes of the form SetW are good for developing
intuition about Topos Theory (and CT in general).

4. Let's mystify the audience a bit more

Sheaves are very important in Topos Theory.
Category Theory is hard (too abstract).
Even basic sheaf theory is too hard.
Idea: Let's use toposes of the form SetW

to learn about sheaves!

In �Internal Diagrams in Category Theory� (2010)
I �de�ned� (loosely) a way of thinking
diagrammatically, and a notion of how much
�mental space� each idea takes.

Specializations behave like projections,
Generalizations behave like liftings:

general
theory

particular
case

specialization
(projection)

��

general
theory

particular
case

OO

generalization
(lifting)

�
�
�
�
�

Toposes

`SetW's
��

Toposes

`SetW's

OO

�
�
�
�
�
�

Can we learn/de�ne/understand sheaves
in toposes of the form SetW

and then lift the theory to the general case?

5. Well-positioned subsets of Z2 (and ZSets)

Def: a subset D = {(x1, y1), ..., (xn, yn)} ⊂ Z2

is well-positioned when infi xi = 0 and infi yi = 0.

Def: ZSet is a �nite well-positioned subset of Z2.

Examples:
Y = {(0, 2), (2, 2), (1, 1), (1, 0)}
K = {(1, 3), (0, 2), (2, 2), (1, 1), (1, 0)}

They will usually be named according to their shapes
(`K' is for `Kite').

6. Black pawn's moves (and ZDags)

(1, 3)

(0, 2)
������

(1, 3)

(2, 2)
��????

(0, 2)

(1, 1)
��????

(2, 2)

(1, 1)
������

(1, 1)

(1, 0)
��

Example:
Let K = {(1, 3), (0, 2), (2, 2), (1, 1), (1, 0)}.
Then the set of black pawn's moves on K, BPMK ,
is the set of 5 arrows at the right.
Let K = (K,BPMK) ← this a DAG.

Every ZSet D induces a DAG
D = (D,BPMD) ← this a ZDag.

7. Partial orders

We are interested in S4 and categories, so
we like relations that are re�exive and transitive.
It is clumsy to draw (Y,BPM∗Y) (at the right),
so we'd like to make (Y,BPMY) (at the left)
stand for (Y,BPM∗Y).

(0, 2)

(1, 1)
��????

(2, 2)

(1, 1)
������

(1, 1)

(1, 0)
��

(saturate) //oo
(?)

(0, 2)

(1, 1)
""EEEEE

(2, 2)

(1, 1)
||yyyyy

(1, 1)

(1, 0)
��

(0, 2)
��

(2, 2)
��

(1, 1)
��

(1, 0)
WW

(0, 2)

(1, 0)
��3

3333333333
(2, 2)

(1, 0)
�������������

Let's say that two relations, R and S,
are equivalent if R∗ = S∗.
The class [R] = {S | S∗ = R∗ } has a top element,
R∗, obtained by a kind of saturation process
(transitive-re�exive closure).

8. Cycles are evil

Let T = ({1, 2, 3}, {1, 2, 3}2) be the complete graph on {1, 2, 3}.
Then [T] has two di�erent minimal elements:

1 2// 2

3
�������

3

1 [[77777
1 2//1 2oo1
��

2

3
�������

2

3

CC

�����
2
��

3

1[[77777
3

1

��

77777

3DD

**VVVVVVVV

1 2// 2

3
�������

3

1 [[77777
1 2//1 2oo1
��

2

3
�������

2

3

CC

�����
2
��

3

1[[77777
3

1

��

77777

3DD

jj
VVVV

1 2oo 2

3

CC

�����

3

1

��

77777

1 2//1 2oo1
��

2

3
�������

2

3

CC

�����
2
��

3

1[[77777
3

1

��

77777

3DD
44hhhhhhhh1 2oo 2

3

CC

�����

3

1

��

77777

1 2//1 2oo1
��

2

3
�������

2

3

CC

�����
2
��

3

1[[77777
3

1

��

77777

3DDtt
hhhh

If we want to represent partial orders by minimal graphs
we will need to avoid these...
�Re�exive� arrows, i.e., those of the form α→ α
are (sort of) irrelevant, so let's ignore them:
Def: Rrefl is R plus all re�exive arrows.
Def: Rirr is R minus all re�exive arrows.
Def: R is acyclic when Rirr has no cycles. ← not standard!
Then in each class [R] either all elements are acyclic
or all are cyclic.

9. DAGs are good

�Acyclic� for us is �acyclic modulo re�exive arrows�...
Consider the set of DAGs on a �nite set of vertices A.
The equivalence relation R ∼ S ⇐⇒ R∗ = S∗

partitions it into equivalent classes that are �diamond-shaped�,
i.e., �everything between a top and a bottom element�:
[R] = {R′ | Ress ⊆ R′ ⊆ R∗ }.
To build Ress from R we drop all �non-essential arrows�.
(This is the dual of the saturation R 7→R∗).

Moral: we can represent �nite partial orders canonically
by their minimal DAGs (that only have �essential arrows�).
ZDags are �nite, acyclic, and minimal. 8-)

10. Our favorite topological space: V

Here it is:
as a DAG, V = (V,BPMV) = ({α, β, γ}, {(α→ γ), (β → γ)})
as a partial order, V = (V,BPM∗V)
as a top. space, V = (X,O(X)) ← note the renaming!

= (X, {{α, β, γ}, {α, γ}, {β, γ}, {γ}, {}})
= (X, {X,U, V,W, ∅}) ← names for the open sets

= (X, {111 , 101 , 011 , 001 , 000 }) ← positional notation!

We can think of it as a quotient topology on R...
α

γ
��???? β

γ
������

(−∞, 3]

(2, 3)
��??

[2,+∞)

(2, 3)
����

•◦
◦

◦◦
•
��???

◦•
◦

◦◦
•
�����

X

U
�����
X

V
��???

U

W
��??? V

W
�����

W

∅
��

(−∞,+∞)

(−∞, 3)
����

(−∞,+∞)

(2,+∞)
��??

(−∞, 3)

(2, 3)
��??

(2,+∞)

(2, 3)
����

(2, 3)

∅
��

11
1

10
1

�����
11
1

01
1

��???

10
1

00
1

��???
01
1

00
1

�����
00
1

00
0

��

I draw X on top because it �covers� the other open sets,

and because
11
1 is > (�Top�) in the Heyting algebra

(but > is also the terminal... the HA must Kop).
Surprise: (O(X),⊇ess) is a ZDag!

11. Our favorite sheaves and presheaves

Let's write O(R) for (O(R),⊆) ← a category (↗↖)
and O(R)op for (O(R),⊇). ← another (↙↘)

Then C∞ ∈ SetO(R)op is a sheaf.
Bad news: it is too big to visualize.

We write V ≡ ••• and K = V′ ≡
•
••
•
•
.

Let's de�ne presheaves C∞, E ∈ SetK.
A presheaf in SetD is just a functor from D to Set.
Sheafness is separatedness plus collatedness.
C∞ will obey both, and E will fail both.

C∞ =

C∞(X)

C∞(U)
����
C∞(X)

C∞(V)
��??

C∞(U)

C∞(W)
��??

C∞(V)

C∞(W)
����

C∞(W)

C∞(∅)
��

=

C∞(R)

C∞((−∞, 1))
����
C∞(R)

C∞((0,+∞))
��??

C∞((−∞, 1))

C∞((0, 1))
��??
C∞((0,+∞))

C∞((0, 1))
����

C∞((0, 1))

C∞(∅)
��

12. Compatibility

Let U = (−∞, 3) and V = (2,∞) (temporarily).
Let fU ∈ C∞(U,R) and fV ∈ C∞(V,R), in:

C∞(R,R)

C∞((−∞, 3),R)
����
C∞(R,R)

C∞((2,+∞),R)
��??

C∞((−∞, 3),R)

C∞((2, 3),R)
��??
C∞((2,+∞),R)

C∞((2, 3),R)
����

C∞((2, 3),R)

C∞(∅,R)
��

We say that two �locally de�ned functions�, fU and fV ,
are compatible i� they �coincide wherever they're both
de�ned� (in the example: on (2, 3)).
More precisely: fU and fV are compatible i� fU |U∩V = fV |U∩V .
Sheafness means that every compatible family {fU , . . . , fV }
has exactly one glueing to an fU∪...∪V
(collatedness guarantees existence of a glueing,
separatedness guarantees that there is at most one).

13. The evil presheaf

Here is the �evil presheaf�, E :
•
••
•
•
→ Set.

Note that everything here is given explicitly �
restriction functions that are the images of black pawn's moves,
e.g., ρXV : E(X)→ E(V), are drawn;
restriction functions like ρUU are necessarily = idE(U), and
restriction functions like ρXW are obtained by composition.
Note (again!) that E is a functor.

E =

E(X)

E(U)
����
E(X)

E(V)
��??

E(U)

E(W)
��??

E(V)

E(W)
����

E(W)

E(∅)
��

=

{eX , e′X}

{eU} {eV , e′V }
��					
{{xxxxxx

 AAAAAA

��-

{eW }
��?????

{eW }
��????

{eW }
������

{eW }
yyttttttt

{eW }

{e∅}
��

Then {eU , eV } is a compatible family,
because eU |U∩V := ρUW (eU) = eW and eV |U∩V := ρVW (eV) = eW ,
but {eU , eV } has two di�erent glueings, eX and e′X ,
so separatedness doesn't hold in E...
Also, {eU , e′V } is another compatible family,
and this one has no glueings.
So collatedness also doesn't hold in E.

14. Stack operations

The fastest way to formalize all this is by using stacks.
(This is not the standard way at all! I learned it from
Harold Simmons's �The point-free approach to shea��cation�.)

This is E as a stack:
ΣE = E(X) t E(U) t E(V) t E(W) t E(∅)
We have an operation called �extent�, [eU] = U ,
going from ΣE to Ω = {X,U, V,W, ∅},
and a non-commutative `·', heavily overloaded,
that behaves as restriction when its left arg is in ΣE
and as intersection when its left arg is in Ω:

U · V := U ∧ V
= W

U · eV := U · [eV]
= U · V
= W

eU · V := eU |([eU]·V)

= eW
eU · eV := eU |([eU]·[eV])

= eW

15. Stack operations (2)

The `·' also accepts sets as arguments,
with the usual conventions:
{a, b} · {c, d} = {a · c, a · d, b · c, b · d},
a · {b, c} = {a · b, a · c},
{a, b} · c = {a · c, b · c}.
(Also: [{a, b}] = {[a], [b]}).

16. Covers and families

Def: a cover is a subset of Ω. (Example: {U, V })
Def: a family is a subset of ΣE �where [·] is injective�.
Def: a compatible family is a family �where `·' commutes�.
Example 1: {eV , e′V } is not a family.
Example 2: {eU , eV } is a compatible family.
Example 3: {eX , e′V } is non-compatible family.

{eX , e′X}

{eU} {eV , e′V }
��					
{{xxxxxx

 AAAAAA

��-

{eW }
��?????

{eW }
��????

{eW }
������

{eW }
yyttttttt

{eW }

{e∅}
��

Notation for covers: U ,V, . . ., where
⋃
V = V .

Notation for families: eU , where [eU] = U .
Def: a cover U is (downward) saturated when U · Ω = U .
Def: a family eU is (downward) saturated when eU · Ω = eU .
Example 4: {U, V } · Ω = {U, V,W, ∅}.
Example 5: {eU , e′V } · Ω = {eU , e′V , eW , e∅}.
Example 6: eX · Ω = {eX , eU , eV , eW , e∅}.
Example 7: eX · {U, V } · Ω = {eU , eV , eW , e∅}.

17. Saturated families

Let's annotate saturated covers with a `•'.
So: U , U ′, U•, U•′ are saturated families,
possibly di�erent, all �covering U �.

Let's write the saturation operation, `·Ω', as `()•',
and let's say that U ≈ V when (U)• = (V)•,
and write the equivalence classes as [U].

On �nite DAGs each equivalence class has both a top element
and a bottom element:
[U] = {U ′ | (U)◦ ⊆ U ′ ⊆ (U)• }.
The operation (U)◦, that drops all �non-essential open sets�
in a cover, is new...
and it also makes sense for families.

Examples:
{U, V,W}• = {U, V,W, ∅}
{U, V,W}◦ = {U, V }
{eU , eV , eW }• = {eU , eV , eW , e∅}
{eU , eV , eW }◦ = {eU , eV }

18. Adding unions

In a sheaf F : K→ Set every compatible family
fU can be glued in a unique way to obtain a fU ,
and we can obtain fU back from fU : fU = fU · U .

To understand what is going on here we need
another notion of saturation...

The `•' saturation adds smaller opens sets to a cover;
The `••' saturation also adds unions to a cover.

X {X}//X {X}oo {X} {X,U, V,W, ∅}
• //{X} {X,U, V,W, ∅}oo
◦
{X,U, V,W, ∅}

{U, V,W, ∅}

•◦

���
�
�

{X,U, V,W, ∅}

{U, V,W, ∅}

OO

••
�
�
�

{U, V } {U, V,W, ∅}
• //{U, V } {U, V,W, ∅}oo
◦

1
00
0
0

1
11
1
1

• //1
00
0
0

1
11
1
1

oo
◦

1
11
1
1

0
11
1
1

•◦
��

1
11
1
1

0
11
1
1

OO
••

0
11
0
0

0
11
1
1

• //0
11
0
0

0
11
1
1

oo
◦

19. Priming

1 2

3 4

5 6

↙ ↘ ↙

↘ ↙ ↘

11
11
11

(
10
11
11

)
01
11
11

00
11
11

(
01
01
11

)

00
10
11

(
00
01
11

)

(
00
10
10

)
00
00
11

(
00
00
10

) (
00
00
01

)

00
00
00

↙ ↘

↘ ↙ ↘

↙ ↘ ↙

↙ ↘ ↙

↘ ↙ ↘

↘ ↙

� � //

••
••
••

(
••
••
••

)′ =

•
••
••
••
••
••
•

� � //

To understand �topological sheaves� we take a DAG (e.g., V)
and prime it twice; the operations `••' and `•◦' work on V′′.

For �generic� sheaves (�sheaves on a site�) we take any DAG D
to play the role of V′ and an operation `∗' on D
that obeys three rules (obeyed by `••', of course),
and from there on we treat what were �open sets�
as �truth-values� (!!!), and the `∗' as a modality (!!!!!).

20. What next?

...but that doesn't �t in 20 minutes! 8-(
Look for the complete version of these slides in my home page!

Goodbye! 8-)

