Sheaves over finite DAGs may be archetypal (Or: "Sheaves for non-categorists". Work in progress)
Eduardo Ochs - PURO/UFF
eduardoochs@gmail.com
http://angg.twu.net/
http://angg.twu.net/math-b.html\#sheaves-on-zdags
Presented at the XVI EBL
(http://www.cle.unicamp.br/ebl2011/),
held at Petrópolis, RJ, Brazil, on 2011may13.
These slides will probably be updated soon
to make them more self-contained.

Index of the slides:

Let's mystify the audience with technical terms 3
Let's mystify the audience a bit more 4
Well-positioned subsets of Z^{2} (and ZSets) 5
Black pawn's moves (and ZDags) 6
Partial orders 7
Cycles are evil 8
DAGs are good 9
Our favorite topological space: \mathbb{V} 10
Our favorite sheaves and presheaves 11
Compatibility 12
The evil presheaf 13
Stack operations 14
Stack operations (2) 15
Covers and families 16
Saturated families 17
Adding unions 18
Priming 19
What next? 20
3. Let's mystify the audience with technical terms

Modal logic:

S4 has the finite model property.
We have Gödel's translation: intuitionistic logic $\rightarrow \mathrm{S} 4$
So: as $\neg \neg P \supset P$ is not a theorem of intutionistic logic
\Rightarrow there is a finite model (with two worlds) in which $\neg \neg P \supset P$ is not true.
These finite counter-models are good for developing intuition about intuitionistic logic.

Category Theory:

Let \mathbb{W} be a finite poset.
(\mathbb{W} is a system of possible worlds for S 4 ,
viewed as a category).
Then Set ${ }^{W}$ is a topos of presheaves.
The logic of toposes is intuitionistic,
and in $\mathbf{S e t}^{\mathbb{W}}=\mathbf{S e t}^{\bullet \rightarrow \bullet}$ we can falsify $\neg \neg P \supset P$.
Claim:
Toposes of the form Set ${ }^{\mathbb{W}}$ are good for developing intuition about Topos Theory (and CT in general).
4. Let's mystify the audience a bit more

Sheaves are very important in Topos Theory.
Category Theory is hard (too abstract).
Even basic sheaf theory is too hard.
Idea: Let's use toposes of the form Set ${ }^{W}$ to learn about sheaves!

In "Internal Diagrams in Category Theory" (2010)
I "defined" (loosely) a way of thinking diagrammatically, and a notion of how much "mental space" each idea takes.

Specializations behave like projections,
Generalizations behave like liftings:

Can we learn/define/understand sheaves in toposes of the form Set ${ }^{W}$ and then lift the theory to the general case?
5. Well-positioned subsets of Z^{2} (and ZSets)

Def: a subset $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subset \mathbb{Z}^{2}$ is well-positioned when $\inf _{i} x_{i}=0$ and $\inf _{i} y_{i}=0$.

Def: ZSet is a finite well-positioned subset of \mathbb{Z}^{2}.
Examples:
$Y=\{(0,2),(2,2),(1,1),(1,0)\}$
$K=\{(1,3),(0,2),(2,2),(1,1),(1,0)\}$
They will usually be named according to their shapes (' K ' is for 'Kite').
6. Black pawn's moves (and ZDags)

Example:
Let $K=\{(1,3),(0,2),(2,2),(1,1),(1,0)\}$.
Then the set of black pawn's moves on K, BPM_{K},
is the set of 5 arrows at the right.
Let $\mathbb{K}=\left(K, \mathrm{BPM}_{K}\right) \leftarrow$ this a DAG.
Every ZSet D induces a DAG
$\mathbb{D}=\left(D, \mathrm{BPM}_{D}\right) \quad \leftarrow$ this a ZDag.

7. Partial orders

We are interested in S4 and categories, so we like relations that are reflexive and transitive.
It is clumsy to draw $\left(Y, \mathrm{BPM}_{Y}^{*}\right)$ (at the right), so we'd like to make $\left(Y, \mathrm{BPM}_{Y}\right)$ (at the left) stand for $\left(Y, \mathrm{BPM}_{Y}^{*}\right)$.

$(0,2)$
$(2,2)$
$(1,0)$

$(1,0)$

Let's say that two relations, R and S, are equivalent if $R^{*}=S^{*}$.
The class $[R]=\left\{S \mid S^{*}=R^{*}\right\}$ has a top element, R^{*}, obtained by a kind of saturation process (transitive-reflexive closure).
8. Cycles are evil

Let $T=\left(\{1,2,3\},\{1,2,3\}^{2}\right)$ be the complete graph on $\{1,2,3\}$. Then $[T]$ has two different minimal elements:

If we want to represent partial orders by minimal graphs we will need to avoid these...
"Reflexive" arrows, i.e., those of the form $\alpha \rightarrow \alpha$ are (sort of) irrelevant, so let's ignore them:
Def: $R^{\text {refl }}$ is R plus all reflexive arrows.
Def: $R^{\text {irr }}$ is R minus all reflexive arrows.
Def: R is acyclic when $R^{\text {irr }}$ has no cycles.
\leftarrow not standard!
Then in each class $[R]$ either all elements are acyclic or all are cyclic.

9. DAGs are good

"Acyclic" for us is "acyclic modulo reflexive arrows"... Consider the set of DAGs on a finite set of vertices A. The equivalence relation $R \sim S \Longleftrightarrow R^{*}=S^{*}$ partitions it into equivalent classes that are "diamond-shaped", i.e., "everything between a top and a bottom element": $[R]=\left\{R^{\prime} \mid R^{\text {ess }} \subseteq R^{\prime} \subseteq R^{*}\right\}$. To build $R^{\text {ess }}$ from R we drop all "non-essential arrows". (This is the dual of the saturation $R \mapsto R^{*}$).

Moral: we can represent finite partial orders canonically by their minimal DAGs (that only have "essential arrows"). ZDags are finite, acyclic, and minimal. 8-)
10. Our favorite topological space: \mathbb{V}

Here it is:
as a DAG, $\mathbb{V}=\left(V, \mathrm{BPM}_{V}\right)=(\{\alpha, \beta, \gamma\},\{(\alpha \rightarrow \gamma),(\beta \rightarrow \gamma)\})$
as a partial order, $\mathbb{V}=\left(V, \mathrm{BPM}_{V}^{*}\right)$
as a top. space, $\mathbb{V}=(X, \mathcal{O}(X)) \quad \leftarrow$ note the renaming!

$$
\begin{aligned}
& =(X,\{\{\alpha, \beta, \gamma\},\{\alpha, \gamma\},\{\beta, \gamma\},\{\gamma\},\{ \}\}) \\
& =(X,\{X, U, V, W, \emptyset\}) \\
& =\left(X,\left\{\begin{array}{l}
11,{ }_{1}^{10},{ }_{1}^{0},{ }_{1}^{1},{ }_{1}^{0},{ }_{1}^{0}, 0 \\
0
\end{array}\right\}\right)
\end{aligned}
$$

We can think of it as a quotient topology on \mathbb{R}...

I draw X on top because it "covers" the other open sets, and because ${ }_{1}{ }^{1}$ is \top ("Top") in the Heyting algebra (but T is also the terminal... the HA must \mathbb{K}^{op}). Surprise: $\left(\mathcal{O}(X), \supseteq^{\text {ess }}\right)$ is a ZDag!
11. Our favorite sheaves and presheaves
$\begin{array}{ll}\text { Let's write } \mathcal{O}(\mathbb{R}) \text { for }(\mathcal{O}(\mathbb{R}), \subseteq) & \leftarrow \text { a category }(\nearrow \nwarrow) \\ \text { and } \mathcal{O}(\mathbb{R})^{\text {op }} \text { for }(\mathcal{O}(\mathbb{R}), \supseteq) . & \leftarrow \text { another }(\swarrow \searrow)\end{array}$
Then $\mathcal{C}^{\infty} \in \mathbf{S e t}^{\mathcal{O}(\mathbb{R})^{\mathrm{op}}}$ is a sheaf.
Bad news: it is too big to visualize.
We write $\mathbb{V} \equiv \because \cdot$ and $\mathbb{K}=\mathbb{V}^{\prime} \equiv \therefore$.
Let's define presheaves $C^{\infty}, E \in \mathbf{S e t}^{\mathbb{K}}$.
A presheaf in $\mathbf{S e t}^{\mathbb{D}}$ is just a functor from \mathbb{D} to Set.
Sheafness is separatedness plus collatedness.
C^{∞} will obey both, and E will fail both.

12. Compatibility

Let $U=(-\infty, 3)$ and $V=(2, \infty)$ (temporarily). Let $f_{U} \in \mathcal{C}^{\infty}(U, \mathbb{R})$ and $f_{V} \in \mathcal{C}^{\infty}(V, \mathbb{R})$, in:

$$
\begin{gathered}
\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\
\nvdash \\
\mathcal{C}^{\infty}((-\infty, 3), \mathbb{R}) \quad \mathcal{C}^{\infty}((2,+\infty), \mathbb{R}) \\
\downarrow \\
\mathcal{C}^{\infty}((2,3), \mathbb{R}) \\
\downarrow \\
\mathcal{C}^{\infty}(\emptyset, \mathbb{R})
\end{gathered}
$$

We say that two "locally defined functions", f_{U} and f_{V}, are compatible iff they "coincide wherever they're both defined" (in the example: on $(2,3)$). More precisely: f_{U} and f_{V} are compatible iff $\left.f_{U}\right|_{U \cap V}=\left.f_{V}\right|_{U \cap V}$. Sheafness means that every compatible family $\left\{f_{U}, \ldots, f_{V}\right\}$ has exactly one glueing to an $f_{U \cup \ldots \cup V}$ (collatedness guarantees existence of a glueing, separatedness guarantees that there is at most one).
13. The evil presheaf

Here is the "evil presheaf", $E: \therefore \rightarrow$ Set.
Note that everything here is given explicitly restriction functions that are the images of black pawn's moves, e.g., $\rho_{V}^{X}: E(X) \rightarrow E(V)$, are drawn; restriction functions like ρ_{U}^{U} are necessarily $=\operatorname{id}_{E(U)}$, and restriction functions like ρ_{W}^{X} are obtained by composition. Note (again!) that E is a functor.

Then $\left\{e_{U}, e_{V}\right\}$ is a compatible family, because $\left.e_{U}\right|_{U \cap V}:=\rho_{W}^{U}\left(e_{U}\right)=e^{W}$ and $\left.e_{V}\right|_{U \cap V}:=\rho_{W}^{V}\left(e_{V}\right)=e^{W}$, but $\left\{e_{U}, e_{V}\right\}$ has two different glueings, e_{X} and e_{X}^{\prime},
so separatedness doesn't hold in E...
Also, $\left\{e_{U}, e_{V}^{\prime}\right\}$ is another compatible family,
and this one has no glueings.
So collatedness also doesn't hold in E.

The fastest way to formalize all this is by using stacks. (This is not the standard way at all! I learned it from Harold Simmons's "The point-free approach to sheafification".)

This is E as a stack:
$\Sigma E=E(X) \sqcup E(U) \sqcup E(V) \sqcup E(W) \sqcup E(\emptyset)$
We have an operation called "extent", $\left[e_{U}\right]=U$, going from ΣE to $\Omega=\{X, U, V, W, \emptyset\}$, and a non-commutative ' \cdot ', heavily overloaded, that behaves as restriction when its left arg is in ΣE and as intersection when its left \arg is in Ω :

$$
\begin{aligned}
U \cdot V & :=U \wedge V \\
& =W \\
U \cdot e_{V} & :=U \cdot\left[e_{V}\right] \\
& =U \cdot V \\
& =W \\
e_{U} \cdot V & :=\left.e_{U}\right|_{\left(\left[e_{U}\right] \cdot V\right)} \\
& =e_{W} \\
e_{U} \cdot e_{V} & :=\left.e_{U}\right|_{\left(\left[e_{U}\right] \cdot\left[e_{V}\right]\right)} \\
& =e_{W}
\end{aligned}
$$

15. Stack operations (2)

The '.' also accepts sets as arguments, with the usual conventions:
$\{a, b\} \cdot\{c, d\}=\{a \cdot c, a \cdot d, b \cdot c, b \cdot d\}$,
$a \cdot\{b, c\}=\{a \cdot b, a \cdot c\}$,
$\{a, b\} \cdot c=\{a \cdot c, b \cdot c\}$.
(Also: $[\{a, b\}]=\{[a],[b]\}$).
16. Covers and families

Def: a cover is a subset of Ω. (Example: $\{U, V\}$)
Def: a family is a subset of ΣE "where [.] is injective".
Def: a compatible family is a family "where '.' commutes".
Example 1: $\left\{e_{V}, e_{V}^{\prime}\right\}$ is not a family.
Example 2: $\left\{e_{U}, e_{V}\right\}$ is a compatible family.
Example 3: $\left\{e_{X}, e_{V}^{\prime}\right\}$ is non-compatible family.

Notation for covers: $\mathcal{U}, \mathcal{V}, \ldots$, where $\bigcup \mathcal{V}=V$.
Notation for families: $e_{\mathcal{U}}$, where $\left[e_{\mathcal{U}}\right]=\mathcal{U}$.
Def: a cover \mathcal{U} is (downward) saturated when $\mathcal{U} \cdot \Omega=\mathcal{U}$.
Def: a family $e_{\mathcal{U}}$ is (downward) saturated when $e_{\mathcal{U}} \cdot \Omega=e_{\mathcal{U}}$.
Example 4: $\{U, V\} \cdot \Omega=\{U, V, W, \emptyset\}$.
Example 5: $\left\{e_{U}, e_{V}^{\prime}\right\} \cdot \Omega=\left\{e_{U}, e_{V}^{\prime}, e_{W}, e_{\emptyset}\right\}$.
Example 6: $e_{X} \cdot \Omega=\left\{e_{X}, e_{U}, e_{V}, e_{W}, e_{\emptyset}\right\}$.
Example 7: $e_{X} \cdot\{U, V\} \cdot \Omega=\left\{e_{U}, e_{V}, e_{W}, e_{\emptyset}\right\}$.
17. Saturated families

Let's annotate saturated covers with a ' \bullet '.
So: $\mathcal{U}, \mathcal{U}^{\prime}, \mathcal{U}^{\bullet}, \mathcal{U}^{\bullet \bullet}$ are saturated families, possibly different, all "covering U ".

Let's write the saturation operation, ' $\cdot \Omega$ ', as '(()$^{\bullet}$, and let's say that $\mathcal{U} \approx \mathcal{V}$ when $(\mathcal{U})^{\bullet}=(\mathcal{V})^{\bullet}$, and write the equivalence classes as $[\mathcal{U}]$.

On finite DAGs each equivalence class has both a top element and a bottom element:
$[\mathcal{U}]=\left\{\mathcal{U}^{\prime} \mid(\mathcal{U})^{\circ} \subseteq \mathcal{U}^{\prime} \subseteq(\mathcal{U})^{\bullet}\right\}$.
The operation $(\mathcal{U})^{\circ}$, that drops all "non-essential open sets" in a cover, is new...
and it also makes sense for families.
Examples:
$\{U, V, W\}^{\bullet}=\{U, V, W, \emptyset\}$
$\{U, V, W\}^{\circ}=\{U, V\}$
$\left\{e_{U}, e_{V}, e_{W}\right\}^{\bullet}=\left\{e_{U}, e_{V}, e_{W}, e_{\emptyset}\right\}$
$\left\{e_{U}, e_{V}, e_{W}\right\}^{\circ}=\left\{e_{U}, e_{V}\right\}$

18. Adding unions

In a sheaf $F: \mathbb{K} \rightarrow$ Set every compatible family $f_{\mathcal{U}}$ can be glued in a unique way to obtain a f_{U}, and we can obtain $f_{\mathcal{U}}$ back from $f_{U}: f_{\mathcal{U}}=f_{U} \cdot \mathcal{U}$.

To understand what is going on here we need another notion of saturation...

The ' \bullet ' saturation adds smaller opens sets to a cover; The ' $\bullet \bullet$ ' saturation also adds unions to a cover.

$$
\begin{aligned}
& X \rightleftarrows\{X\} \underset{\rightleftarrows}{\rightleftarrows}\{X, U, V, W, \emptyset\} \\
& { }_{0}^{0_{0}^{0}} \underset{0}{\bullet} \stackrel{\bullet}{\rightleftarrows}{ }^{1}{ }_{1}^{1} \\
& \text {-0||••• } \\
& \{U, V\} \underset{\circ}{\stackrel{\bullet}{\rightleftarrows}}\{U, V, V, W, \emptyset\}
\end{aligned}
$$

19. Priming

To understand "topological sheaves" we take a DAG (e.g., \mathbb{V}) and prime it twice; the operations ' $\bullet \bullet$ ' and ' \bullet ' work on \mathbb{V} '.

For "generic" sheaves ("sheaves on a site") we take any DAG \mathbb{D} to play the role of \mathbb{V}^{\prime} and an operation ' $*$ ' on \mathbb{D} that obeys three rules (obeyed by ' $\bullet \bullet$ ', of course), and from there on we treat what were "open sets" as "truth-values" (!!!), and the '*' as a modality (!!!!!).

20. What next?

...but that doesn't fit in 20 minutes! 8-(
Look for the complete version of these slides in my home page!
Goodbye! 8-)

