Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (setenv "TEXINPUTS" "~/LATEX:") % (setenv "TEXINPUTS" nil) % (defun c () (interactive) (find-LATEXsh "run-latex 'stem=2014sfc-slides;pla'")) % (defun c () (interactive) (find-LATEXsh "run-latex 'stem=2014sfc-slides;d4;pla'")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2014sfc-slides.pdf")) % (defun fra () (interactive) (insert "\n% <>\n%\n\\begin{frame}\n\\frametitle{}\n\\end{frame}\n")) % http://angg.twu.net/LATEX/2014sfc-slides.pdf % (find-pen-links) % (find-sh0 "cp -v 2014sfc-slides.pdf /tmp/pen/ebl2014-ochs.pdf") % «.title-page» (to "title-page") % «.where-sheaves-stand» (to "where-sheaves-stand") % «.CT-why» (to "CT-why") % «.CT-why-now» (to "CT-why-now") % «.CT-should-be» (to "CT-should-be") % «.CT-lambda-calculus» (to "CT-lambda-calculus") % «.ZSets» (to "ZSets") % «.ZDAGs» (to "ZDAGs") % «.truth-values» (to "truth-values") % «.intuitionistic-truth-values» (to "intuitionistic-truth-values") % «.the-order-topology» (to "the-order-topology") % «.priming» (to "priming") % «.unpriming» (to "unpriming") % «.priming-theorems» (to "priming-theorems") % «.glueing-functions» (to "glueing-functions") % «.sheafness» (to "sheafness") % «.topological-sheafness» (to "topological-sheafness") % «.the-evil-presheaf» (to "the-evil-presheaf") % «.dual-operations» (to "dual-operations") % «.where-are-the-theorems» (to "where-are-the-theorems") % % «.closure-and-ess» (to "closure-and-ess") % (find-LATEX "README") % (find-dn4file ".files.sh" "cptexinputs") % (find-sh "pwd; ~/dednat4/.files.sh -n rmtexinputs") % (find-sh "pwd; ~/dednat4/.files.sh -n cptexinputs") % (find-sh "pwd; ~/dednat4/.files.sh rmtexinputs") % (find-sh "pwd; ~/dednat4/.files.sh cptexinputs") % (find-BEAMERfile "foo-ornate.tex") % (find-BEAMERfile "foo.tex") % (find-node "(kpathsea)Index" "TEXINPUTS") % (find-es "tex" "TEXINPUTS") % (find-LATEXfile "" "edrx08.sty") \documentclass[hyperref=colorlinks]{beamer} % \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \usepackage{etex} % (find-es "tex" "no-room-for-a-new-dimen") \mode<presentation> { % \usetheme{Warsaw} \usetheme{Boadilla} \useinnertheme{default} \useinnertheme{rectangles} \setbeamercovered{transparent} % or whatever (possibly just delete it) } \usepackage[english]{babel} \usepackage[latin1]{inputenc} \usepackage{times} \usepackage[T1]{fontenc} \usepackage{edrx08} \input 2011ebl-defs.tex % (find-LATEX "2011ebl-abs.tex" "priming") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input 2014sfc-slides.dnt \def\BPM{\mathsf{BPM}} \def\bbK{\mathbb{K}} \def\dn{{\dnto}} \def\Cont{\mathcal{C}} \def\Cinfty{\mathcal{C}^‚} \def\ctor#1{\mathcal{C}^‚(#1,\R)} \def\ctos#1{C(#1)} \def\bigdagop{ \def\searrow{\nwarrow} \def\swarrow{\nearrow} \def\downarrow{\uparrow} } \def\bigdagnoarrows{ \def\searrow{} \def\swarrow{} \def\downarrow{} } % \begin{document} % (find-beamerugpage 73 "\\setbeamertemplate{navigation symbols}{}") % (find-beamerugtext 73 "\\setbeamertemplate{navigation symbols}{}") \setbeamertemplate{navigation symbols}{} % «title-page» (to ".title-page") % \title{Sheaves for Children} \author{Eduardo Ochs} \institute[PURO/UFF]{ Departmento de Física e Matemática\\ Pólo Universitário de Rio das Ostras\\ UFF\\ % \footnotesize \scriptsize \url{http://angg.twu.net/math-b.html} \\ \url{http://angg.twu.net/ferramentas-para-ativistas.html} \\ \tiny \phantom{a} {\color{gray}(Version: 2014apr09)} \\ } \date{EBL 2014} \begin{frame} \titlepage \end{frame} % «where-sheaves-stand» (to ".where-sheaves-stand") % \begin{frame}[fragile] \frametitle{Where sheaves stand} {\footnotesize \begin{verbatim} ____________________ | | | Category Theory | Cartesian Closed Categories, | ________________ | Lambda-Calculus, | | | | Intuitionistic Logic | | Topos Theory | | | | ____________ | | | | | | | | Modal Logic (S4) | | | Sheaves | | | | | |____________| | | Topology | |________________| | |____________________| Algebraic Geometry \end{verbatim} } \end{frame} % «CT-why» (to ".CT-why") % \begin{frame}[fragile] \frametitle{CT: Why?} \par Category Theory is fascinating (for some people!), \par but (usually) too abstract... \msk \par The right level of abstraction \par makes lots of proofs {\it almost} automatic: \par {\it proving} something in CT means \par {\it constructing} something (CT is constructive!), and \par all ``natural'' constructions are equivalent (``coherence''). \msk \par More or less like this: \begin{quote} \par Let A and B be (arbitrary) sets. \par Then there is an ``obvious'' function $\text{flip}: A×B \to B×A$. \end{quote} % \msk \par This {\sl ought} to make some parts of CT {\sl easy}!!! \msk \par (Long story... see ``Internal Diagrams and Archetypal Reasoning in Category Theory'') \end{frame} % «CT-why-now» (to ".CT-why-now") % \begin{frame} \frametitle{Why study CT {\sl now}?} \includegraphics[width=8.5cm]{garota_de_ipanema.jpg} \par Public education in Brazil is being dismantled - \par maybe we should be doing better things than studying \par very technical \& inaccessible subjects \par with no research grants - \end{frame} % «CT-should-be» (to ".CT-should-be") % \begin{frame} \frametitle{Category theory should be more accessible} \par Most texts about CT are for specialists in research universities... \par {\sl Category theory should be more accessible.} \msk \par To whom?... \begin{itemize} \item Non-specialists (in research universities) \item Grad students (in research universities) \item Undergrads (in research universities) \item Non-specialists (in conferences - where we have to be quick) \item Undergrads (e.g., in CompSci - in teaching colleges) - (``Children'') \end{itemize} \end{frame} % «ZSets» (to ".ZSets") % \begin{frame} \frametitle{ZSets} \par Take a finite, non-empty subset of $\N^2$; \par translate it lowerleftwards as most as possible in $\N^2$, \par until you get something that touches both axes. \msk \par Subsets of $\N^2$ obtained in this way are said to be \par ``well-positioned'', and we call them {\sl ZSets}. \msk \par We can use a positional notation with bullets \par to denote our favourite ZSets (unambiguously!)... \msk \begin{tabular}{|l|l|c|l|} \hline % Lambda & $\dagLambda***$ & \\ \hline $V$ & Vee & $\dagVee***$ & $\{(0,1),\, (2,1),\, (1,0)\}$ \\ \hline $K$ & Kite & $\dagKite*****$ & $\{(1,3),\, (0,2),\, (2,2),\, (1,1),\, (1,0)\}$ \\ \hline $H$ & House & $\dagHouse*****$ & $\{(1,2),\, (0,2),\, (2,2),\, (0,1),\, (2,1)\}$ \\ \hline \end{tabular} \msk \par $\uparrow$ Some of my favorite ZSets - \par note that they have both short, one-letter names \par and long, pronounceable names. \msk \end{frame} % «ZDAGs» (to ".ZDAGs") % \begin{frame} \frametitle{ZDAGs} \par An arrow between points of $\N^2$ that goes one unit down \par and 0/1/-1 units horizontally is called a {\sl black pawn's move}. \msk \par Take a ZSet, $D$, and draw all possible black pawns moves \par between its points; this gives us a set of arrows, $\BPM(D)$, \par that turns $D$, a ZSet, into a directed, acyclical, graph, $\bbD$, \par in a canonical way: $\bbD = (D, \BPM(D)).$ \msk \par Note the change of font!!!: \quad $D \dashrightarrow \bbD$ %Notation (note the change of font): % D is a ZSet, % bbD = (D, BPM(D)) is a _ZDAG_. \msk Example: $$\def\ph{\phantom{m}} K \;\; = \;\; \dagKite***** \;\; = \quad {\bigdagnoarrows \bigKite {(1,3)} {(0,2)\ph} {\ph(2,2)} {(0,1)} {(0,0)} } \qquad \qquad \bbK \;\; = \quad \bigKite {(1,3)} {(0,2)\ph} {\ph(2,2)} {(0,1)} {(0,0)} $$ \end{frame} % «truth-values» (to ".truth-values") % \begin{frame}[fragile] \frametitle{Truth-values} \par A function from a ZSet $D$ to $\{0,1\}$ is a {\color{red}\sl modal truth-value}. \msk \par The positional notation gives us a way to write modal truth-values very compactly, and the points on a ZSet have a natural order - the ``reading order'', in which we read them line by line, left to right in each line. \msk \par This gives us a way to {\sl read aloud} modal truth-values - \par and to list all modal truth-values in order. $$\bigKite abcde \qquad \bigKite 00110 \;\; = \;\; \dagKite00110 \;\; = \;\; P \qquad (\text{``Kite 00110''}) $$ \msk Notation: $\Pts(\bbD)$ is the set of modal truth-values on $\bbD$ We use ``$\Pts(\bbD)$'' because $\dagKite00110$ ``is'' $\{c,d\}$ ($\subset K$) \end{frame} % «intuitionistic-truth-values» (to ".intuitionistic-truth-values") % \begin{frame} \frametitle{Intuitionistic truth-values} \msk $$\bigKite a b c d e \qquad \bigKite 0 0 1 1 0 \;\; = P \qquad (\text{``Kite 00110''}) $$ \msk \par Now consider that each 1 in $P$ is covered with (wet) black paint. \par Then $P$ (``Kite 00110'') is not {\sl stable}, because the paint \par of the 1 in position $d$ will flow down into the 0 of position $e$, \par and paint it black. \msk \par {\color{red}\sl Stable} modal truth-values are called {\color{red}\sl intuitionistic truth-values}. \msk \par Notation: $\dn P$ is $P$ after letting the black paint flow down. \par Example: $\dn \dagKite 00110 = \dagKite 00111$ \end{frame} % «the-order-topology» (to ".the-order-topology") % \begin{frame} \frametitle{The order topology} \par $$\dn \dagKite 00110 = \dagKite 00111$$ \bsk \par Notation: $\Pts(\bbD)$ is the set of modal truth-values on $\bbD$ \par Notation: $\Opens(\bbD)$ is the set of intuitionistic truth-values on $\bbD$ %\msk $$\dn: \Pts(\bbD) \to \Opens(\bbD)$$ \par The topology $\Opens(\bbD)$ is the {\sl order topology} - \par an arrow $\aa \to \bb$ in $\bbD$ means that \par if an open set contains $\aa$ it has to contain $\bb$ too. \msk \par {\footnotesize (Order topologies are Alexandroff.)} \end{frame} % «priming» (to ".priming") % \begin{frame}[fragile] \frametitle{Priming} \par Amazing fact: very often $\Opens(\bbD)$ can be represented as a ZDAG too! \par $\Opens(\bbD)$ has a natural order: \par $P \to Q$ means $P \le Q$, $P \subseteq Q$, $P \vdash Q$, \par and $§ = \dagVee111$ (``Top'') is the terminal of the category... \msk \par But if we draw $\Opens(\bbD)^\op$ instead of $\Opens(\bbD)$ \par we can see clearly how $\bbD \ito \Opens(\bbD)^\op$: \msk $$\bigVee a b c \qquad \bigKite {\dagVee111} {\dagVee101} {\dagVee 011} {\dagVee 001} {\dagVee 000} \qquad \bigKite {\dn ab} {\dn a} {\dn b} {\dn c} {\emp} $$ \msk \par Note that $\dn ab = \dn \{a,b\} = \dn \dagVee110 = \dagVee111$. \par Def: $\bbD' = \Opens(\bbD)^\op$. \par $\bbV' \cong \bbK$ - and, by abuse of language, $\bbV' = \bbK$. \end{frame} % «unpriming» (to ".unpriming") % \def\G#1#2#3#4#5#6{\dagGuill{#1}{#2}{#3}{#4}{#5}{#6}} % \begin{frame} \frametitle{Unpriming} \par If $\bbC' = \bbD$ can we recover $\bbC$ from $\bbD$? \par Better: if $\bbD$ is a ZDAG that is a Heyting algebra \par can we find a $\bbC \subset \bbD$ such that $\bbC' = \bbD$? \par Can we use that to determine quickly whether \par an arbitrary $\bbD$ is a Heyting algebra? \par Yes, yes, \& yes! % Look at the elements of $\left(\dagGuill******\right)'$ % that have exactly one arrow leaving them... $$\left( \bigGuill abcdef \right)' \quad \cong \quad \hugeGuillPrime {\G 111111} % 12 {\G 101111} % 11 {\G 011111} % 10 {\G 001111} % 8 {\G 010111} % 9 {\G 001011} % 7 {\G 000111} % 5 {\G 001010} % 6 {\G 000011} % 4 {\G 000010} % 3 {\G 000001} % 2 {\G 000000} % 1 \qquad \hugeGuillPrime {\dn ab} % 111111 {\dn a} % 101111 {\dn bc} % 011111 {\dn cd} % 001111 {\dn b} % 010111 {\dn cf} % 001011 {\dn d} % 000111 {\dn c} % 001010 {\dn ef} % 000011 {\dn e} % 000010 {\dn f} % 000001 {\emptyset } % 000000 $$ \end{frame} % «priming-theorems» (to ".priming-theorems") % \begin{frame} \frametitle{Priming: theorems} % \par For each ZDAG $\bbD$, let $\catD$ be $\bbD^*$ seen as a category. % \par We say that $\bbC \subset \bbD$ when there is a % \par proper inclusion $\catC \ito \catD$. \par We say that $\bbD$ is {\em 3-thin} when $\dagHthree*** \not\subset \bbD$. \par We say that $\bbD$ is {\em square-thin} when $\dagVV**** \not\subset \bbD$. \par We say that $\bbD$ is {\em thin} when it is both 3-thin and square-thin. \par Fact: if $\bbD$ is 3-thin then $\bbD'$ is a ZDAG. \par Fact: if $\bbD$ is thin then $\bbD'$ is a thin ZDAG. \msk Fact: every topology - whether planar or not - is a Heyting algebra - i.e., we can interpret $T$, $F$, $\land$, $\lor$, $\to$, $\neg$ on it, and every $\bbD'$ is a topology... \msk {\color{red} \par Priming gives us LOTS of Heyting algebras, \par and lots of {\sl planar} Heyting algebras! } \bsk {\sl Topological} sheaves are defined on diagrams like $\bbD \ito \bbD' \ito \bbD''$. \end{frame} % «glueing-functions» (to ".glueing-functions") % (find-LATEX "2011ebl-abs.tex" "quotient") % \begin{frame} \frametitle{Glueing locally-defined functions} \par Let $U$ be $(-‚,1)$ \par and $V$ be $(0,‚)$... \par Consider these open sets in $\R$, $$\def\ph{\phantom{m}} {\bigdagop \bigKite {(-‚,‚)} {(-‚,1)\ph} {\ph(0,‚)} {(0,1)} {\emp} \qquad % \quad \bigKite {UþV} {U} {V} {UÌV} {\emp} \qquad \bigKite {X} {U} {V} {W} {\emp} } \qquad \qquad \bigKite {\ctor X} {\ctor U\ph\ph} {\ph\ph\ctor V} {\ctor W} {\ctor\emp} \qquad \qquad \bigKite {\ctos X} {\ctos U} {\ctos V} {\ctos W} {\ctos\emp} $$ \par and the sheaf $C$ of $\Cinfty$ functions from them to $\R$. \msk \par Upward arrows are {\sl inclusions} (of an open set into another). \par Downward arrows are {\sl restrictions} (of domains). \msk \par Two functions $f_U$ and $f_V$ are {\sl compatible} \par if their restrictions to $UÌV$ coincide. \msk \par Each compatible family $\{f_U, f_V\}$ in $C$ has a unique glueing $f_X$. \par Generalize that, and you get the definition of {\sl sheafness}. \end{frame} % «sheafness» (to ".sheafness") % \begin{frame} \frametitle{Sheafness} \par A compatible family $\{f_U, f_V\}$ is defined on $\{U, V\} = \dagKite01100$, \par and it can be extended, using the restriction maps $\rho_{UW}:FU \to FW$ etc, \par to a downward-closed compatible family $\{f_U, f_V, f_W, f_\emp\}$, \par defined on $\{U, V, W, \emp\} = \dagKite01111$... \msk \par The ``unique glueing'' $f_X$ of $\{f_U, f_V\}$ can be extended \par to a downward-closed compatible family $\{f_X, f_U, f_V, f_W, f_\emp\}$, \par defined on $\{X, U, V, W, \emp\} = \dagKite11111$. \msk \par The restriction $$\{f_X, f_U, f_V, f_W, f_\emp\} \;\; \mton{\rho} \;\; \{f_U, f_V, f_W, f_\emp\} $$ \par is trivial to define - \par {\color{red}sheafness means that maps like these are bijections.} \end{frame} % «topological-sheafness» (to ".topological-sheafness") % \begin{frame} \frametitle{Topological sheafness} \par A closure operator: $$÷ \{U, V, W, \emp\} = \{X, U, V, W, \emp\}$$ \par it takes the union $U þ V þ W þ \emp = X$ \par and then all subsets of that. \par It acts on $\bbV''$: \quad $÷: \dagVee***'' \to \dagVee***''$ $$÷ \dagKite01111 = \dagKite11111$$ \par Which elements of $\bbV''$ are stable by $÷$? \par Only $\dn\{U,V\} \mto \dn \{X\}$ ($\dagKite01111 \mapsto \dagKite11111$) and $\emp \mto \{\emp\}$ ($\dagKite00000 \mapsto \dagKite00001$) \par are {\sl not} stable by $÷$. \par The stable elements of $\bbV''$ are these: $\dagKitePrime1011110$. \par {\color{red}These diagrams of stable elements are what we need to \par define sheaves ``in general''.} \end{frame} % «the-evil-presheaf» (to ".the-evil-presheaf") % (find-LATEXfile "2011ebl-abs.tex" "evil-presheaf") % \begin{frame} \frametitle{The evil presheaf} A presheaf $F$ in $\Set^{\Opens(\bbV)^\op}$ is simply a functor $F: \Opens(\bbV)^\op \to \Set$. % % (find-dn4 "experimental.lua" "relphantom") %L forths[".xtag="] = function () %L local dx, tag = getwordasluaexpr(), getword() %L tex = "\\ph{"..tag.."}" %L ds[1] = storenode{x=ds[1].x+dx, y=ds[1].y, tex=tex, tag=tag} %L end % %D diagram evil-presheaf %D 2Dx 100 +20 +20 +30 +20 +20 %D 2D 100 A0 B0 %D 2D / \ / \ %D 2D v v v v %D 2D +20 A1 A2 B1 B2 %D 2D \ / \ / %D 2D v v v v %D 2D +20 A3 B3 %D 2D | | %D 2D v v %D 2D +20 A4 B4 %D 2D %D (( A0 .tex= E(X) %D A1 .tex= E(U) %D A2 .tex= E(V) %D A3 .tex= E(W) %D A4 .tex= E(\emp) %D A0 A1 -> %D A0 A2 -> %D A1 A3 -> %D A2 A3 -> %D A3 A4 -> %D )) %D (( B0 .tex= \{e_X,e'_X\} place .xtag= -6 e_X .xtag= 12 e'_X %D # B1 .tex= \{e_U,e'_U\} place .xtag= -5 e_U .xtag= 10 e'_U %D B1 .tex= \{e_U\} %D B2 .tex= \{e_V,e'_V\} place .xtag= -5 e_V .xtag= 11 e'_V %D B3 .tex= \{e_W\} %D B4 .tex= \{e_\emp\} %D # e_X e_U -> e'_X e'_U -> %D # e_X e_V -> e'_X e_V -> %D # e_U B3 -> e'_U B3 -> %D # e_V B3 -> e'_V B3 -> %D # B3 B4 -> %D e_X B1 -> e'_X B1 -> %D e_X e_V -> e'_X e_V -> %D B1 B3 -> %D e_V B3 -> e'_V B3 -> %D B3 B4 -> %D )) %D enddiagram %D $$ % (find-LATEXgrep "grep -nH -e color *.tex") % \def\ph#1{{\color{red}#1}} % \def\ph#1{\phantom{#1}} \def\ph{\phantom} \diag{evil-presheaf} $$ The {\color{red}evil presheaf} $E: \Opens(\bbV)^\op \to \Set$, above, fails to be in a sheaf in two ways: the compatible family $\{e_U, e_V\}$ has two different glueings, the compatible family $\{e_U, e'_V\}$ doesn't have a glueing. \end{frame} % «dual-operations» (to ".dual-operations") % \begin{frame} \frametitle{Dual operations} \par Due to we being in a finite / planar / etc case, \par several interesting operations have duals (adjoints): \msk \begin{itemize} \item In finite DAGs the transitive-reflexive closure $(A,R) \mto (A,R^*)$ \par has an adjoint that keeps only the ``essential arrows'' of the graph; \item The ``let the paint flow down'' operation $\dn \dagKite00110=\dagKite00111$ \par has an adjoint $\dagKite 00111 \mto \dagKite 00100$ that returns the ``generators''of an open set; \item Each closure operator like $\calU \mto ÷\calU$ has an adjoint that returns the smallest equivalent cover... \end{itemize} %\par In finite DAGs the transitive-reflexive closure $(A,R) \mto (A,R^*)$ %\par has an adjoint that keeps only the ``essential arrows'' of the graph; %\msk %\par The ``let the paint flow down'' operation $\dn \dagKite00110=\dagKite00111$ %\par has an adjoint $\dagKite 00111 \mto \dagKite 00100$ that returns % the ``generators''of an open set; %\msk %\par Each closure operator like $\calU \mto ÷\calU$ has an adjoint that % returns the smallest equivalent cover... \end{frame} % «where-are-the-theorems» (to ".where-are-the-theorems") % \begin{frame} \frametitle{Where are the theorems?} \par {\color{red}Not here! Why???} \par Because this is ``for children'' - \par we are focusing on the tools to let people check particular cases... \par and this {\sl complements} [Bell 1988] and my IDARCT paper, \par that explains how to do theorems and archetypal cases in parallel \msk \par Slightly more advanced things: \begin{itemize} \item CCCs and Heyting Algebras; $(∧Q) \dashv (Q{\to})$ \item presheaves of the form $\Set^\bbD$ as toposes \item the classifier object of a $\Set^\bbD$ \item other modalities (besides $÷$) in a $\Set^\bbD$ \item all logical properties of modalities follow from three axioms \item operations on the lattice of modalities \item forcing \item sheafification \item geometric morphisms between toposes - I need help here ${=}($ \end{itemize} \end{frame} % % %\section*{Summary} % %\begin{frame}{Summary} %\end{frame} % % % %% All of the following is optional and typically not needed. %\appendix %\section<presentation>*{\appendixname} %\subsection<presentation>*{For Further Reading} % \begin{frame}[allowframebreaks] % \frametitle<presentation>{For Further Reading} \frametitle{For Further Reading} \begin{thebibliography}{10} \beamertemplatebookbibitems % Start with overview books. \bibitem{Bell1988} J.L.~Bell. \newblock {\em Toposes and Local Set Theories}. \newblock Oxford, 1988 (re-ed: Dover, 2007). \beamertemplatearticlebibitems % Followed by interesting articles. Keep the list short. \bibitem{Ochs2013} E.~Ochs. \newblock{\em Internal Diagrams and Archetypal Reasoning in Category Theory} \newblock Logica Universalis, 2013 \newblock{\url{http://angg.twu.net/math-b.html}}. % (find-TH "math-b" "sheaves-on-zdags") % (find-TH "math-b" "internal-diags-in-ct") \end{thebibliography} \end{frame} \end{document} % «closure-and-ess» (to ".closure-and-ess") % \begin{frame} \frametitle{Closure and essentiality} \par If $(A,R)$ is a graph, \par then $(A,R^*)$ is its transitive-reflexive closure. \msk \par Notation and terminology: \par $\bbD = (D, \BPM(D))$ \par $\bbD^* = (D, \BPM(D)^*)$ \par $\catD$ is $\bbD^*$ seen as a category ($\catD$ a poset) \par $\Set^\catD$ is a ZDAG-topos \msk \par $\Opens(\bbD)$ are opens sets of the order topology on $\bbD$ \par $\bbD' = \Opens(\bbD)$ \msk \par We ${\color{red}\heartsuit}$ transitive and reflexive relations \par (and categories, and posets). \msk \par The operation $R \mapsto R^*$ is well-known. \msk \par If $(A,R)$ is a finite DAG, \par look for the smallest set of arrows, $R^-$, \par such that $(R^-)^* = R^*$. \par Fact 1: on finite DAGs this $R^-$ is unique. \par Fact 2: for any ZDAG $\bbD$ we have $\bbD^- = (\bbD^*)^- = \bbD$. \par {\sl This is not well-known.} % \msk % \par Example: $\bbK \to \bbK^* \to (\bbK^*)^-$ \end{frame} %D diagram miniadj %D 2Dx 100 120 %D 2D 100 a^L <= a %D 2D - - %D 2D | | %D 2D v v %D 2D 120 b => b^R %D a^L a <= a^L b |-> a b^R |-> b b^R => %D enddiagram %$$\diag{miniadj}$$ %: [a,b]^1 %: ------- %: [a,b]^1 b b|->c %: ------- ------------ %: a c %: --------------- %: a,c %: ---------1 %: a,b|->a,c %: %: ^tree1 %: %$$\ded{tree1}$$ % «CT-lambda-calculus» (to ".CT-lambda-calculus") % \begin{frame}[fragile] \frametitle{CT and $\lambda$-calculus} \msk \par Again: \begin{quote} \par Let A and B be (arbitrary) sets. \par Then there is an ``obvious'' function $\text{flip}: A×B \to B×A$. \end{quote} \par This idea can be formalized in (typed, polymorphic) $\lambda$-calculus - \par because $\lambda$-calculus is {\sl made} for expressing computations. \par Roughly, we have this parallel: \begin{tabular}{|l|l|} \hline $\lambda$-calculus & Categories \\ \hline computations & constructions \\ $\lambda$-terms & diagrams \\ \hline \end{tabular} Sales pitch: {\sl Come learn CT, diagrammatic reasoning, $\lambda$-calculus and functional languages at the same time!} \end{frame} % \section{Motivation} % \subsection{The Basic Problem That We Studied} % Local Variables: % coding: raw-text-unix % End: