|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015-1-C2-lista-edrx-1.tex")
% (find-angg "LATEX/2015-1-C2-lista-edrx-1.lua")
% (defun c () (interactive) (find-LATEXsh "lualatex 2015-1-C2-lista-edrx-1.tex"))
% (defun c () (interactive) (find-LATEXsh "lualatex --output-format=dvi 2015-1-C2-lista-edrx-1.tex"))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2015-1-C2-lista-edrx-1.pdf"))
% (defun d () (interactive) (find-xdvipage "~/LATEX/2015-1-C2-lista-edrx-1.dvi"))
% (defun e () (interactive) (find-LATEX "2015-1-C2-lista-edrx-1.tex"))
% (defun l () (interactive) (find-LATEX "2015-1-C2-lista-edrx-1.lua"))
% (defun eg () (interactive) (find-LATEX "2015-1-GA-lista-edrx-1.tex"))
% (find-xpdfpage "~/LATEX/2015-1-C2-lista-edrx-1.pdf")
% (find-xdvipage "~/LATEX/2015-1-C2-lista-edrx-1.dvi")
\documentclass[oneside]{book}
\usepackage[latin1]{inputenc}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{tikz}
\usepackage{luacode}
\begin{document}
% \directlua{dofile "\jobname.lua"}
\def\th{\theta}
\def\sen{\operatorname{sen}}
\def\arcsen{\operatorname{arcsen}}
\def\Intsab{\int_{s=a}^{s=b}}
\def\Barsab{\left.\right|_{s=a}^{s=b}}
\def\nip{\par\noindent}
{\setlength{\parindent}{0em}
\footnotesize
\par Cálculo 2
\par PURO-UFF - 2015.1
\par Lista de exercícios 1 - Eduardo Ochs
\par Versão: 15/abril/2015 12:40
\par Links importantes:
\par \url{http://angg.twu.net/2015.1-C2.html} (página do curso)
\par \url{http://angg.twu.net/2015.1-C2/2015.1-C2.pdf} (quadros)
\par \url{http://angg.twu.net/2015.1-C2/????.pdf} (livro)
\par \url{http://angg.twu.net/2015.1-C2/2015-1-C2-lista-edrx-1.pdf}
(lista, atualizada)
\par {\tt eduardoochs@gmail.com} (meu e-mail)
}
\bsk
\bsk
\nip Lembre que estamos usando os seguintes materiais no curso:
\par [RI1], [RI2], ..., [RI6]: vídeos do Reginaldo Demarque sobre integração
\par [H]: Cristiane R.\ R.\ A.-F.\ Hernández - Apostila de Cálculo IIA (para EAD)
\par [T]: Thomas/Weir/Hass/Giordano: Cálculo, vol.1, 11ª ed
\nip Tem links pra eles (exceto o [T]) na página do curso.
\bsk
Digamos que $u = f(x)$ e $v = g(x)$. Então, por exemplo,
$$\begin{array}{ll}
\frac{d(u^4)}{dx} = 4 u^3 u_x \\
d(u^4) = 4 u^3 u_x \, dx = 4 u^3 \, du \\
\frac{d(u^{-1})}{dx} = (-1) u^{-2} u_x \\
d(u^{-1}) = - \frac{1}{u^2} u_x \, dx = - \frac{1}{u^2} \, du \\
\frac{d(uv)}{dx} = u_x v + u v_x = \frac{du}{dx} v + u \frac{dv}{dx} \\
d(uv) = v\,du + u\,dv \\
\end{array}
$$
\bsk
Sejam:
$$\begin{array}{ll}
c: = \cos \th, & \th = \arccos c, \\
s: = \sen \th, & \th = \arcsen s, \\
t: = \tan \th = \frac{\sen \th}{\cos \th}, & \th = \arctan s, \\
\end{array}
$$
Então $ds/d\th = c$,
$ds = c \, d\th = \sqrt{1-s^2} d\th$,
$\frac{1}{\sqrt{1-s^2}} ds = d\th$,
$\Int \frac{1}{\sqrt{1-s^2}} ds = \Int d\th = \Int 1\,d\th = \th$,
$\Intsab \frac{1}{\sqrt{1-s^2}} ds = \th \Barsab = \arcsen s \Barsab$,
% \nip O objetivo desta lista é {\sl complementar} os materiais acima em
\end{document}