Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015-2-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2015-2-C2-P1.tex" :end)) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2015-2-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2015-2-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2015-2-C2-P1")) % (find-xpdfpage "~/LATEX/2015-2-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2015-2-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2015-2-C2-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2015-2-C2-P1.pdf % file:///tmp/2015-2-C2-P1.pdf % file:///tmp/pen/2015-2-C2-P1.pdf % http://angg.twu.net/LATEX/2015-2-C2-P1.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} %\usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input istanbuldefs % (find-LATEX "istanbuldefs.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} %\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %%L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\ddx{\frac{d}{dx}} \def\ddth{\frac{d}{d\theta}} \def\arcsen{\operatorname{arcsen}} \def\sen{\operatorname{sen}} \def\sec{\operatorname{sec}} \def\ln{\operatorname{ln}} \def\subst#1{\left[\sm{#1}\right]} \def\prims #1{∫#1\,ds} \def\primth#1{∫#1\,dθ} \def\ints #1#2#3{∫_{s=#1}^{s=#2}#3\,ds} \def\intu #1#2#3{∫_{u=#1}^{u=#2}#3\,du} \def\intx #1#2#3{∫_{x=#1}^{x=#2}#3\,dx} \def\intth#1#2#3{∫_{θ=#1}^{θ=#2}#3\,dθ} \def\difs #1#2#3{\left. #3 \right|_{s=#1}^{s=#2}} \def\difu #1#2#3{\left. #3 \right|_{u=#1}^{u=#2}} \def\difx #1#2#3{\left. #3 \right|_{x=#1}^{x=#2}} \def\difth#1#2#3{\left. #3 \right|_{θ=#1}^{θ=#2}} % Indefinite integrals \def\ints #1{∫#1\,ds} \def\intt #1{∫#1\,dt} \def\intu #1{∫#1\,du} \def\intx #1{∫#1\,dx} \def\intz #1{∫#1\,dz} \def\intth#1{∫#1\,dθ} % Definite integrals \def\Ints #1#2#3{∫_{s=#1}^{s=#2}#3\,ds} \def\Intt #1#2#3{∫_{t=#1}^{t=#2}#3\,dt} \def\Intu #1#2#3{∫_{u=#1}^{u=#2}#3\,du} \def\Intx #1#2#3{∫_{x=#1}^{x=#2}#3\,dx} \def\Intz #1#2#3{∫_{z=#1}^{z=#2}#3\,dz} \def\Intth#1#2#3{∫_{θ=#1}^{θ=#2}#3\,dθ} % Difference \def\Difs #1#2#3{\left. #3 \right|_{s=#1}^{s=#2}} \def\Difu #1#2#3{\left. #3 \right|_{u=#1}^{u=#2}} \def\Difx #1#2#3{\left. #3 \right|_{x=#1}^{x=#2}} \def\Difth#1#2#3{\left. #3 \right|_{θ=#1}^{θ=#2}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2015.2 \par P1 - 14/mar/2016 - Eduardo Ochs % \par Versão: 14/mar/2016 \par Links importantes: \par \url{http://angg.twu.net/2015.2-C2.html} (página do curso) \par \url{http://angg.twu.net/2015.2-C2/2015.2-C2.pdf} (quadros) \par \url{http://angg.twu.net/LATEX/2015-2-C2-material.pdf} \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk % (c2q 7 "integral de Riemann") % (c2q 9 "integral de Riemann sem partição especificada") % (c2q 11 "TFC") % (c2q 13 "TFC 2") % (c2q 15 "Substituição") % (c2q 16 "Diferenciais") % (c2q 22 "G(x,y) = x^2 + y^2") % (c2q 24 "Derivada da função inversa") % (c2q 27 "Integrando funções racionais") % (c2q 30 "Método de Heaviside") % (c2q 32 "Integrando funções racionais impróprias") % (c2q 34 "Integração por partes") % (c2q 35 "Truque do `onde'") % (c2q 36 "Tabelas de integrais") % (c2q 37 "Substituição trigonométrica") % (c2q 43 "Série de Taylor") % (c2q 45 "Plano complexo") % (c2q 48 "Grande truque: E") % (c2q 50 "Substituição trigonométrica") % (c2q 51 "EDOs") % (c2q 53 "EDOs: D") % (c2q 55 "EDOs: sen e cos vezes exp") % (find-es "ipython" "2015.2-C2-P1") 1) Seja $f_a(x) = x^2\cos ax$. Calcule: $$a) \;\; (\text{2.0 pts}) \quad \intx {f_a(x)}$$ $$b) \;\; (\text{1.0 pts}) \quad \Intx {0} {π} {f_2(x)}$$ 2) Calcule: $$(\text{3.0 pts}) \quad \intx {\frac {x^3} {x^2 + x - 20}}$$ 3) Calcule: $$a) \;\; (\text{2.0 pts}) \quad \intx {\frac{\sqrt{x^2-1}}{x^3}}$$ $$b) \;\; (\text{2.0 pts}) \quad \intx {\frac{\sqrt{4x^2-9}}{x^3}}$$ % (find-xpdfpage "~/2015.2-C2/3c3-TrigonometSubstitu_Stu.pdf" 5 "ex.13") % (find-xpdfpage "~/2015.2-C2/3c3-TrigonometSubstitu_Stu.pdf" 7 "answer") \newpage Método de Heaviside: Se $f(x) = \frac{\aa}{x-a} + \frac{\bb}{x-b} + \frac{\cc}{x-c} = \frac{p(x)}{(x-a)(x-b)(x-c)}$, então $\lim_{x \to a} f(x)(x-a) = \aa = \frac{p(a)}{(a-b)(a-c)}$. \bsk Substituição: \msk $\begin{array}{l} \Difx a b {g(h(x))} = \Intx a b {g'(h(x))\frac{d\,h(x)}{dx}} \\ \phantom{mmm}|\,| \\ \Difu {h(a)} {h(b)} {g(u))} = \Intu {h(a)} {h(b)} {g'(u)} \\ \end{array} $ \msk Fórmulas: \msk $\begin{array}{l} \Intx a b {f(g(x))\frac{d\,g(x)}{dx}} \\ = \Intx a b {f(u)\frac{du}{dx}} \\ = \Intu {g(a)} {g(b)} {f(u)} \end{array} \qquad \begin{array}{ll} \intx {f(g(x))\frac{d\,g(x)}{dx}} \\ = \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)} \\ = \intu {f(u)} & \subst{u=g(x)} \end{array} $ \bsk Substituição inversa: $\def\a{{h¹(α)}} \def\b{{h¹(β)}} \begin{array}{l} \Difx \a \b {g(h(x))} = \Intx \a \b {g'(h(x))\frac{d\,h(x)}{dx}} \\ \phantom{mmm}|\,| \\ \Difu {h(\a)} {h(\b)} {g(u))} = \Intu {h(\a)} {h(\b)} {g'(u)} \\ \phantom{mmm}|\,| \\ \Difu α β {g(u))} = \Intu α β {g'(u)} \\ \end{array} $ \msk Fórmulas: \msk $\def\a{{g¹(α)}} \def\b{{g¹(β)}} \begin{array}{l} \Intu α β {f(u)} \\ = \Intx \a \b {f(u)\frac{du}{dx}} \\ = \Intx \a \b {f(g(x))\frac{d\,g(x)}{dx}} \end{array} \qquad \begin{array}{ll} \intu {f(u)} \\ = \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)\\x=g¹(u)} \\ = \intx {f(g(x))\frac{d\,g(x)}{dx}} & \subst{x=g¹(u)} \\ \end{array} $ \bsk Substituição trigonométrica: \msk $ \begin{array}{ll} \Ints a b {F(s, \sqrt{1-s^2})} \\ = \Intth {\arcsen a} {\arcsen b} {F(\senθ, \sqrt{1-\sen^2θ}) \frac{d\senθ}{dθ}} \\ = \Intth {\arcsen a} {\arcsen b} {F(\senθ, \cosθ) \cosθ} \\ \end{array} \qquad \begin{array}{ll} \ints {F(s, \sqrt{1-s^2})} \\ = \intth {F(s, \sqrt{1-s^2}) \frac{ds}{dθ}} & \subst{s=\senθ \\ θ=\arcsenθ} \\ = \intth {F(s, c) c} & \subst{s=\senθ \\ c=\cosθ \\ θ=\arcsenθ} \\ \end{array} $ \msk $ \begin{array}{ll} \Intz a b {F(z, \sqrt{z^2-1})} \\ = \Intth {\arcsec a} {\arcsec b} {F(\secθ, \sqrt{\sec^2θ-1}) \frac{d\secθ}{dθ}} \\ = \Intth {\arcsec a} {\arcsec b} {F(\secθ, \tanθ) \secθ \tanθ} \\ \end{array} \qquad \begin{array}{ll} \intz {F(z, \sqrt{z^2-1})} \\ = \intth {F(z, \sqrt{z^2-1}) \frac{dz}{dθ}} & \subst{z=\secθ \\ θ=\arcsec z} \\ = \intth {F(z, t) zt} & \subst{z=\secθ \\ θ=\arcsec z \\ t=\tanθ} \\ \end{array} $ \msk $ \begin{array}{ll} \Intt a b {F(t, \sqrt{1+t^2})} \\ = \Intth {\arctan a} {\arctan b} {F(\tanθ, \sqrt{1+\tan^2θ}) \frac{d\tanθ}{dθ}} \\ = \Intth {\arctan a} {\arctan b} {F(\tanθ, \secθ) \sec^2θ} \\ \end{array} \qquad \begin{array}{ll} \intt {F(t, \sqrt{1+t^2})} \\ = \intth {F(t, \sqrt{1+t^2}) \frac{dt}{dθ}} & \subst{t=\tanθ \\ θ=\arctan t} \\ = \intth {F(t, z) z^2} & \subst{t=\tanθ \\ θ=\arctan t \\ z=\secθ} \\ \end{array} $ \end{document} % Local Variables: % coding: utf-8-unix % modes: (fundamental-mode emacs-lisp-mode lua-mode) % End: