Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015-2-GA-P1-gab.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -recorder 2015-2-GA-P1-gab.tex")) % (defun c () (interactive) (find-LATEXsh "lualatex 2015-2-GA-P1-gab.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2015-2-GA-P1-gab.pdf")) % (defun e () (interactive) (find-LATEX "2015-2-GA-P1-gab.tex")) % (defun u () (interactive) (find-latex-upload-links "2015-2-GA-P1-gab")) % (defun z () (interactive) (find-zsh "flsfiles-tgz 2015-2-GA-P1-gab.fls 2015-2-GA-P1-gab.tgz")) % (defun z () (interactive) (find-zsh "flsfiles-zip 2015-2-GA-P1-gab.fls 2015-2-GA-P1-gab.zip")) % (find-xpdfpage "~/LATEX/2015-2-GA-P1-gab.pdf") % (find-xdvipage "~/LATEX/2015-2-GA-P1-gab.dvi") % (find-sh0 "cp -v ~/LATEX/2015-2-GA-P1-gab.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2015-2-GA-P1-gab.pdf /tmp/pen/") % file:///home/edrx/LATEX/2015-2-GA-P1-gab.pdf % file:///tmp/2015-2-GA-P1-gab.pdf % file:///tmp/pen/2015-2-GA-P1-gab.pdf % http://angg.twu.net/LATEX/2015-2-GA-P1-gab.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input istanbuldefs % (find-LATEX "istanbuldefs.tex") \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\pu{\directlua{pu()}} % (find-LATEX "edrx15.sty" "psm-and-pmat") \def\dsm #1{\left |\begin{smallmatrix}#1\end{smallmatrix}\right |} \def\dmat#1{\left |\begin{matrix}#1\end{matrix}\right |} {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2015.2 \par Mini-gabarito da P1 - Eduardo Ochs \par Links importantes: \par \url{http://angg.twu.net/2015.2-GA.html} (página do curso) \par \url{http://angg.twu.net/2015.2-GA/2015.2-GA.pdf} (quadros) \par \url{http://angg.twu.net/LATEX/2015-2-GA-P1-gab.pdf} \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk % Dots, labels, vectors % \def\uu{\vec u} \def\vv{\vec v} \def\ww{\vec w} \def\Vec#1{{\overrightarrow{#1}}} \def\VEC#1{{\overrightarrow{(#1)}}} \def\nm#1{\|#1\|} \def\Reg#1{(#1)} \def\setofxyst#1{\setofst{(x,y)∈\R^2}{#1}} \def\setofet #1{\setofst{#1}{t∈\R}} \def\setofeu #1{\setofst{#1}{u∈\R}} \def\setofpt #1 #2 #3 #4 {\setofet{(#1,#2)+t\VEC{#3,#4}}} \def\setofpu #1 #2 #3 #4 {\setofeu{(#1,#2)+u\VEC{#3,#4}}} \def\setofek #1{\setofst{#1}{k∈\R}} \def\setofeth #1{\setofst{#1}{θ∈\R}} % mygrid % % 2015dec20 % (find-angg ".emacs.papers" "tikz") \tikzset{mycurve/.style=very thick} \tikzset{axis/.style=semithick} \tikzset{tick/.style=semithick} \tikzset{grid/.style=gray!20,very thin} \tikzset{anydot/.style={circle,inner sep=0pt,minimum size=1.2mm}} \tikzset{opdot/.style={anydot, draw=black,fill=white}} \tikzset{cldot/.style={anydot, draw=black,fill=black}} % \def\mygrid(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); \draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-10,0) -- (10,0); \draw[axis] (0,-10) -- (0,10); \foreach \x in {-10,...,10} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-10,...,10} \draw[tick] (-0.2,\y) -- (0.2,\y); } \def\myaxes(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); %\draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-20,0) -- (20,0); \draw[axis] (0,-20) -- (0,20); \foreach \x in {-20,...,20} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-20,...,20} \draw[tick] (-0.2,\y) -- (0.2,\y); } % Grid color \tikzset{grid/.style=gray!50,very thin} \def\tikzp#1{\mat{\begin{tikzpicture}#1\end{tikzpicture}}} \def\mydraw #1;{\draw [mycurve] \expr{#1};} \def\mydot #1;{\node [cldot] at \expr{#1} [] {};} \def\myldot #1 #2 #3;{\node [cldot] at \expr{#1} [label=#2:${#3}$] {};} \def\myseg #1 #2;{\draw [mycurve] \expr{#1} -- \expr{#2};} \def\mylabel #1 #2 #3;{\node [] at \expr{#1} [label=#2:${#3}$] {};} \def\myseggrid #1 #2;{\draw [grid] \expr{#1} -- \expr{#2};} \def\e{\expr} 1) %L A, B, C, D = v(1,-1), v(2,1), v(0,-1), v(-1,-3) \pu $\tikzp{[scale=0.5,auto] \mygrid (-2,-4) (3,2); \draw [mycurve] \e{A} -- \e{B} -- \e{C} -- \e{D} -- \e{A}; \myldot A 0 A; \myldot B 0 B; \myldot C 180 C; \myldot D 0 D; } $ $\Vec{AB} = \VEC{1,2} = \Vec{DC}$ $\Vec{BC} = \VEC{-2,-2} = \Vec{AD}$ $\text{Área} = \dsm{1 & -2 \\ 2 & -2 \\} = 2$ \bsk \bsk 2) % %L A, B, C, D = v(0,1), v(2,2), v(1,3) %L P = v(2.5, 2.25) %L CC = v(1.6, 1.8); CCC = v(2.2, 0.6) %L l = Line.new(A, B-A, -1,3) \pu $\tikzp{[scale=0.75,auto] \mygrid (0,0) (4,4); % \draw [mycurve] \e{A} -- \e{B} -- \e{C} -- \e{D} -- \e{A}; \mydraw l:draw(); \draw [mycurve] \e{A} -- \e{C} -- \e{P}; \myldot A 0 A; \myldot B 270 B; \myldot C 180 C; \myldot P 270 P; } $ % \qquad % $\tikzp{[scale=0.75,auto] % \mygrid (-1,-1) (4,4); \mygrid (0,0) (4,4); \draw [mycurve] \e{A} -- \e{C} -- \e{CC} -- \e{CCC}; \mydraw l:draw(); \myldot A 0 A; \myldot B 0 B; \myldot C 180 C; \myldot CC 180 C'; \myldot CCC 180 C''; } $ 2a) $l = \setofet{(0,1)+t \VEC{2,1}} = \setofxyst{y=1+\frac{x}{2}}$ 2b) $\begin{array}[t]{l} r = \setofet{A+t \Vec{AC}} = \setofxyst{y=1+2x} \\ s = \setofet{C+t \VEC{2,1}} = \setofxyst{y=3.5-\frac{x}{2}} \\ P = (x,y) ∈ l∩s \\ 1+\frac{x}{2} = 3.5-\frac{x}{2} \quad⇒\quad x = 2.5 \\ y = 1+\frac{x}{2} = 1+\frac{2.5}{2} = 2.25 \quad⇒\quad P = (2.5, 2.25) \\ \end{array} $ 2c) $\Pr_{\Vec{AB}} \Vec{PC} = \Pr_{\VEC{2,1}} \VEC{-1.5,0.75} = \frac{-3+0.75}{5} \VEC{2,1} = -0.45 \VEC{2,1} = \VEC{-0.9,-0.45} $ 2d) % $\begin{array}[t]{l} \Pr_{\Vec{AB}} \Vec{AC} = \Pr_{\VEC{2,1}} \VEC{1,2} = \frac{4}{5} \VEC{2,1} = \VEC{1.6,0.8} \\ C' := A + \Pr_{\Vec{AB}} \Vec{AC} = (0,1) + \VEC{1.6,0.8} = (1.6, 1.8) \\ \Vec{CC'} = C'-C = (1.6, 1.8) - (1,3) = \VEC{0.6, -1.2} \\ C'' := C' + \Vec{C'C''} = C' + \Vec{CC'} = (1,3) + \VEC{0.6, -1.2} = (2.2,0.6) \\ \end{array} $ \newpage 3) % %L A = v(1, 1) %L B = v(0, -1) %L BB = v(2, 3) %L C = Ellipse.newcircle(A, 16/15) %L C = Ellipse.newcircle(A, 1) %L l = Line.new(v(0, -1), v(1, 3/4), -3, 4) %L r = Line.new(v(0, 7/3), v(1, -4/3), -3, 4) %L s = Line.new(BB, v(1, 3/4), -4, 3) %L P = v(8/5, 1/5) \pu $\tikzp{[scale=0.75,auto] \mygrid (-1,-1) (4,3); \mydraw C:draw(); \mydraw l:draw(); \mydraw r:draw(); \mydraw s:draw(); \myldot A 0 A; \myldot B 0 B; \myldot BB 0 B'; \myldot P 0 P; } $ a) $\begin{array}[t]{l} r = \setofxyst{3x-4y-4=0} = \setofxyst{y=\frac{3}{4}x-1} \\ d((1,1), r) = \frac{5/4}{\sqrt{1+\frac{9}{16}}} = \frac{5/4}{\sqrt{25/16}} = \frac{5/4}{5/4} = 1 \\ C = \setofxyst{(x-1)^2+(y-1)^2=1} \\ \end{array} $ b) $\begin{array}[t]{l} B' := A + 2\Vec{BA} = (0,-1) + 2\VEC{1,2} = (2,3) \\ s = \setofet{(2,3)+t\VEC{1,\frac{3}{4}}} = \setofxyst{y=\frac{3}{4}x+1.5} \\ \end{array} $ \bsk \bsk 4) %L r = Line.new(v(-1, 2), v(2,-1), -3, 3) %L s = Line.new(v(1, 3), v(1, -2), -3, 3) \pu $\tikzp{[scale=0.75,auto] \mygrid (-1,-1) (4,3); \mydraw r:draw(); \mydraw s:draw(); \myldot r:t(0) 270 t{=}0; \myldot r:t(1) 270 t{=}1; \myldot s:t(0) 0 k{=}0; \myldot s:t(1) 0 k{=}1; } $ $r = \setofet{(-1,2)+t\VEC{2,-1}} = \setofxyst{y = 1.5 - \frac{x}{2}}$ $s = \setofek{(1,3)+k\VEC{1,-2}} = \setofxyst{y = 5 - 2x}$ $P = (x,y) ∈ r∩s$ $1.5 - \frac{x}{2} = 5 - 2x \quad⇒\quad 1.5x = 3.5 \quad⇒\quad x=\frac{7}{3}$ $y = 5 - 2\frac{7}{3} = \frac{15}{3} - \frac{14}{3} = \frac{1}{3} \quad⇒\quad P=(\frac{7}{3},\frac{1}{3}) $ Sejam $\uu := \VEC{2,-1}$ e $\vv := \VEC{1,-2}$. Temos $\nm{\uu} = \nm{\vv}$, então $b = \setofet{P+t(\uu+\vv)} = \setofet{(\frac{7}{3},\frac{1}{3})+t(3,-3)}$ e $b' = \setofet{P+t(\uu-\vv)} = \setofet{(\frac{7}{3},\frac{1}{3})+t(1,1)}$ são bissetrizes de $r$ e $s$. \newpage 5) % %L C1 = Ellipse.newcircle(v(0,3), 2) %L C2 = Ellipse.newcircle(v(1,0), 1) %L C3 = Ellipse.newcircle(v(1,0), 1) \pu $\tikzp{[scale=0.75,auto] \mygrid (-2,-1) (4,5); \mydraw C1:draw(); \mydraw C2:draw(); \mydraw C3:draw(); \myldot C1.C0 270 C_{1\,0}; \myldot C2.C0 90 C_{2\,0}; \myldot C3.C0 270 C_{3\,0}; } $ $\begin{array}{lll} C_1 &=& \setofeth{(0,3)+2\VEC{\cosθ,\senθ}} \\ &=& \setofxyst{x^2+(y-3)^2=2^2} \\ C_2 &=& \setofxyst{x^2-2x+y^2=0} \\ &=& \setofxyst{(x-1)^2-1+y^2=0} \\ &=& \setofxyst{(x-1)^2+y^2=1} \\ C_3 &=& \setofxyst{(x-1)^2+y^2=1} \\ \end{array} $ \bsk \bsk 6) % %L A, B, C, D = v(3,3), v(5,3), v(5,4), v(-1,1) %L r = Line.new(v(0, 5/3), v(1, 2/3), -2, 7) %L vv, ww = v(3, 2), v(-2, 3) %L D1, D2, D3 = D+vv, D+2*vv, D+2*vv+ww \pu $\tikzp{[scale=0.5,auto] % \mygrid (-1,-1) (4,4); \mygrid (-2,0) (7,8); % \draw [mycurve] \e{A} -- \e{B} -- \e{C} -- \e{D} -- \e{A}; \mydraw r:draw(); \draw [mycurve] \e{B} -- \e{A} -- \e{C} -- \e{B}; \myldot A 270 A; \myldot B 270 B; \myldot C 0 C; \myldot D 270 D; \myldot D2 0 E; \myldot D3 0 F; \draw [mycurve] \e{D} -- \e{D2} -- \e{D3} -- \e{D}; } $ $r = \setofxyst{2x-3y+5=0} = \setofet{D+t\VEC{3,2}}$ $E := D + 2\VEC{3,2}$ $F := D + 2\VEC{3,2} + \VEC{-2,3}$ \end{document} % Local Variables: % coding: utf-8-unix % End: