Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015-2-GA-P2.tex") % (find-angg "LATEX/2015-2-GA-P2.lua") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2015-2-GA-P2.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2015-2-GA-P2.pdf")) % (defun e () (interactive) (find-LATEX "2015-2-GA-P2.tex")) % (defun u () (interactive) (find-latex-upload-links "2015-2-GA-P2")) % (defun z () (interactive) (find-zsh "flsfiles-tgz 2015-2-GA-P2.fls 2015-2-GA-P2.tgz") % (find-xpdfpage "~/LATEX/2015-2-GA-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2015-2-GA-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2015-2-GA-P2.pdf /tmp/pen/") % file:///home/edrx/LATEX/2015-2-GA-P2.pdf % file:///tmp/2015-2-GA-P2.pdf % file:///tmp/pen/2015-2-GA-P2.pdf % http://angg.twu.net/LATEX/2015-2-GA-P2.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input istanbuldefs % (find-LATEX "istanbuldefs.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2015.2 \par P2 - 21/mar/2016 - Eduardo Ochs % \par Versão: 14/mar/2016 % \par Links importantes: % \par \url{http://angg.twu.net/2015.2-C2.html} (página do curso) % \par \url{http://angg.twu.net/2015.2-C2/2015.2-C2.pdf} (quadros) % \par \url{http://angg.twu.net/LATEX/2015-2-C2-material.pdf} % \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} 1) \T(Total: 3.0 pts) Sejam $F=(9,0)$ e $r: x=25$. a) \B(0.5 pts) Encontre 4 pontos de $\R^2$ tais que $d(P,F) = \frac35 d(P,r)$. b) \B(2.0 pts) Seja $E$ o conjunto dos pontos que obedecem $d(P,F) = \frac35 d(P,r)$. Dê a equação reduzida da elipse $E$, as coordenadas dos seus focos, os comprimentos dos seus semi-eixos maior e menor e a sua excentricidade. c) \B(0.5 pts) Represente graficamente tudo o que você obteve nos itens anteriores. \bsk 2) \T(Total: 1.0 pts) Represente graficamente a hipérbole $(2(x-3) + (y-4)) (2(x-3) - (y-4)) = 4$ e suas assíntotas. \bsk 3) \T(Total: 3.0 pts) Seja $π_1$ o plano com equação $2x+3y+4z=6$. a) \B(0.5 pts) Dê uma parametrização para a reta $r$ que passa pelo ponto $A=(1,1,0)$ e é ortogonal a $π_1$. b) \B(0.5 pts) Dê as coordenadas do ponto $B∈π_1∩r$. c) \B(1.0 pts) Dê as coordenadas de um ponto $C∈r$ tal que $d(C,π_1)=1$. d) \B(1.0 pts) Dê a equação de um plano $π_2 \parallel π_1$ tal que $d(π_1,π_2)=2$. \bsk 4) \T(Total: 3.0 pts) Sejam $A=(2,0,0)$, $B=(0,2,0)$, $C=(0,0,5)$, $D=(0,5,0)$. Sejam $r$ uma reta que passa por $A$ e $B$, $r'$ uma reta que passa por $C$ e $D$, e $s$ uma reta ortogonal a $r$ e $r'$ que corta ambas. a) \B(0.5 pts) Calcule a distância entre $r$ e $r'$. b) \B(1.5 pts) Dê uma parametrização para $s$. c) \B(1.0 pts) Dê a equação de um plano $π$ paralelo a $r$ e $r'$ e equidistante de ambas. \bsk \newpage % _ _ _ % | |_(_) | __ ____ % | __| | |/ /|_ / % | |_| | < / / % \__|_|_|\_\/___| % % Dots, labels, vectors % \def\uu{\vec u} \def\vv{\vec v} \def\ww{\vec w} \def\nn{\vec n} \def\VEC#1{{\overrightarrow{(#1)}}} \def\nm#1{\|#1\|} \def\Reg#1{(#1)} \def\setofxyst #1{\setofst{(x,y) ∈\R^2}{#1}} \def\setofxyzst#1{\setofst{(x,y,z)∈\R^3}{#1}} \def\setofet #1{\setofst{#1}{t∈\R}} \def\setofeu #1{\setofst{#1}{u∈\R}} \def\setofpt #1 #2 #3 #4 {\setofet{(#1,#2)+t\VEC{#3,#4}}} \def\setofpu #1 #2 #3 #4 {\setofeu{(#1,#2)+u\VEC{#3,#4}}} \def\setofeaa #1{\setofst{#1}{α∈\R}} \def\setofebb #1{\setofst{#1}{β∈\R}} % \mygrid and \myaxes % (find-es "tikz" "mygrid") \tikzset{mycurve/.style=very thick} \tikzset{axis/.style=semithick} \tikzset{tick/.style=semithick} \tikzset{grid/.style=gray!20,very thin} \tikzset{anydot/.style={circle,inner sep=0pt,minimum size=1.2mm}} \tikzset{opdot/.style={anydot, draw=black,fill=white}} \tikzset{cldot/.style={anydot, draw=black,fill=black}} % \def\mygrid(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); \draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-10,0) -- (10,0); \draw[axis] (0,-10) -- (0,10); \foreach \x in {-10,...,10} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-10,...,10} \draw[tick] (-0.2,\y) -- (0.2,\y); } \def\myaxes(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); %\draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-30,0) -- (30,0); \draw[axis] (0,-30) -- (0,30); \foreach \x in {-30,...,30} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-30,...,30} \draw[tick] (-0.2,\y) -- (0.2,\y); } % Grid color \tikzset{grid/.style=gray!50,very thin} \def\tikzp#1{\mat{\begin{tikzpicture}#1\end{tikzpicture}}} \def\mydraw #1;{\draw [mycurve] \expr{#1};} \def\mydot #1;{\node [cldot] at \expr{#1} [] {};} \def\myldot #1 #2 #3;{\node [cldot] at \expr{#1} [label=#2:${#3}$] {};} \def\myseg #1 #2;{\draw [mycurve] \expr{#1} -- \expr{#2};} \def\mylabel #1 #2 #3;{\node [] at \expr{#1} [label=#2:${#3}$] {};} \def\myseggrid #1 #2;{\draw [grid] \expr{#1} -- \expr{#2};} % (find-dn6 "picture.lua" "V") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end %L V.__div = function (v, k) return v*(1/k) end %L V.__index.tow = function (A, B, t) return A+(B-A)*t end -- towards %L V.__index.mid = function (A, B) return A+(B-A)*0.5 end -- midpoint % _ _ _ % __ _ __ _| |__ __ _ _ __(_) |_ ___ % / _` |/ _` | '_ \ / _` | '__| | __/ _ \ % | (_| | (_| | |_) | (_| | | | | || (_) | % \__, |\__,_|_.__/ \__,_|_| |_|\__\___/ % |___/ Gabarito: (Primeira versão, não revisada) \bsk %L e = Ellipse.new(v(0,0), v(15,0), v(0,12)) \pu 1) \quad $\tikzp{[scale=0.2,auto] \myaxes(-23,-15) (32,15) \draw [mycurve] (-9,0) -- (0,12) -- (9,0); \draw [mycurve] (0,12) -- (25,12); \draw [mycurve] (25,-14) -- (25,14); \myldot v(0,12) 45 (0,12); \myldot v(0,-12) 315 (0,-12); \myldot v(9,0) 270 (9,0); \myldot v(-9,0) 270 (-9,0); \myldot v(-15,0) 225 (-15,0); \myldot v(15,0) 315 (15,0); \myldot v(25,0) 315 (25,0); \myldot v(25,12) 0 (25,12); \mydraw e:draw(); } $ \bsk \bsk %L h = Hyperbole.new(v(3,4), v(1,-2)/2, v(1,2)/2, 8) \pu 2) Sejam $u = 2(x-3)$, $v=y-4$. Então $\begin{array}[t]{rcl} H &=& \setofxyst{(2(x-3) + (y-4)) (2(x-3) - (y-4)) = 4=4} \\ &=& \setofxyst{(u+v)(u-v)=4} \\ \end{array} $. $H$ tem assíntotas em $u+v=0$ e em $u-v=0$, e $H$ passa pelo ponto que tem $(u+v)=(u-v)=2$, ou seja, $u=2$ e $v=0$. \msk $\def\s#1{{\tiny#1}} \def\s#1{{\scriptscriptstyle#1}} \def\s#1{{\scriptstyle#1}} % \tikzp{[scale=0.4,auto] \myaxes(-2,-4) (14,12) \draw [grid] (2,-10) -- (2,11); \mylabel v(2,11) 90 \s{u{=}-2}; \draw [grid] (3,-10) -- (3,10.5); \mylabel v(3,10.5) 90 \s{u{=}0}; \draw [grid] (4,-10) -- (4,10); \mylabel v(4,10) 90 \s{u{=}2}; \draw [grid] (-10,2) -- (10,2); \mylabel v(10,2) 0 \s{v{=}-2}; \draw [grid] (-10,4) -- (10,4); \mylabel v(10,4) 0 \s{v{=}0}; \draw [grid] (-10,6) -- (10,6); \mylabel v(10,6) 0 \s{v{=}2}; \myaxes(-2,-4) (14,12) \mydraw h:draw(10); \mydraw h:drawau(-8,8); \mydraw h:drawav(-8,8); } $ \newpage 3) $\begin{array}[t]{rcl} π_1 &=& \setofxyzst{2x + 3y + 4z = 6} \\ \nn &=& \VEC{2,3,4} \\ A &=& (1,1,0) \\ \end{array} $ 3a) $\begin{array}[t]{rcl} r &=& \setofet{A+t\nn} \\ &=& \setofet{(1+2t, 1+3t, 4t)} \\ \end{array} $ 3b) Se $B∈π_1∩r$ então $\begin{array}[t]{rcl} 6 &=& 2(1+2t) + 3(1+3t) + 4(4t) \\ &=& 2+4t+3+9t+16t \\ &=& 29t+5 \\ % 29t &=& 6 - 5 = 1 \\ t &=& \frac{1}{29} \\ B &=& (1+\frac{2}{29}, 1+\frac{3}{29}, \frac{4}{29}) = (\frac{31}{29}, \frac{32}{29}, \frac{4}{29}) \end{array} $ 3c) Seja $\nn' = \frac{\nn}{||\nn||} = \VEC{2,3,4}/\sqrt{4+9+16} = \VEC{2,3,4}/\sqrt{29}$. Seja $C = B+\nn'$. 3d) Seja $D = B+2\nn'$. Seja $π_2 = \setofxyzst{2x + 3y + 4z = a}$, onde $a$ é tal que $D∈π_2$. Então $a = 2D_1 + 3D_2 + 4D_3$. \bsk \bsk 4) Sejam $\begin{array}[t]{rcl} \uu &=& \Vec{AB} = \VEC{-2,2,0}, \\ \vv &=& \Vec{CD} = \VEC{0,5,-5}, \\ r &=& \setofeaa{A+α\uu} \\ &=& \setofeaa{(2,0,0)+α\VEC{-2,2,0}} \\ &=& \setofeaa{(2-2α,2α,0)}, \\ r' &=& \setofebb{C+β\vv} \\ &=& \setofebb{(0,0,5)+β\VEC{0,5,-5}} \\ &=& \setofebb{(0,5β,5-5β)}, \\ P_α &=& (2-2α,2α,0), \\ Q_β &=& (0,5β,5-5β), \\ \end{array} $ Então $\uu×\vv = \VEC{-10,-10,-10}$. 4a) $\begin{array}[t]{rcl} \uu×\vv &=& \VEC{-10,-10,-10} \\ \Vec{AC} &=& \VEC{-2,0,5} \\ \end{array} $ $ \frac{[\uu,\vv,\Vec{AC}]}{||\uu×\vv||} = \frac{(\uu×\vv)·\Vec{AC}]}{||\uu×\vv||} = \frac{\VEC{-10,-10,-10}·\VEC{-2,0,5}}{10\sqrt{3}} = \frac{20-50}{10\sqrt{3}} = - \sqrt{3} $ $d(r,r') = \left| \frac{[\uu,\vv,\Vec{AC}]}{||\uu×\vv||} \right | = \sqrt{3}$ \newpage \def\PaQb{\Vec{P_αQ_β}} 4b) Queremos que $s$ passe por $P_α$ e $Q_β$ e que $\PaQb⊥\uu$ e $\PaQb⊥\vv$. $\begin{array}[t]{rcl} \PaQb &=& \VEC{2α-2, 5β-2α, 5-5β} \\ \PaQb·\uu &=& (4-4α)+(10β-4α) = 4 - 8α + 10β = 0 \\ \PaQb·\vv &=& (25β-10α)+(25β-25) = 25 - 10α + 50β = 0\\ 10α &=& 50β-25 \\ α &=& 5β-\frac52 \\ 4 - 8α + 10β &=& 4 - 8(5β-\frac52) + 10β \\ &=& 4 - 40β + 20 + 10β \\ &=& 24 - 30β = 0 \\ β &=& \frac{24}{30} = \frac45 \\ α &=& 5\frac45 - \frac52 = \frac82 - \frac52 = \frac32 \\ P_α &=& (2-2\frac32, 2\frac32, 0) = (-1, 3, 0) \\ Q_β &=& (0, 5\frac45, 5 - 5\frac45, 0) = (0, 4, 1) \\ \PaQb &=& \VEC{1,1,1} \\ s &=& \setofet{P_α + t \PaQb} \\ &=& \setofet{(-1,3,0) + t\VEC{1,1,1}} \\ \end{array} $ \msk 4c) Seja $M = \frac{P_α+Q_β}{2} = (-\frac12, \frac72, \frac12).$ Seja $π = \setofxyzst{x+y+z=a}$, onde $a$ é tal que $M∈π$. Temos $-\frac12 + \frac72 + \frac12 = a = \frac72$, $π = \setofxyzst{x+y+z=\frac72}$. $\begin{array}[t]{l} \end{array} $ \end{document} \end{document} % Local Variables: % coding: utf-8-unix % End: