Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015-2-GA-VR.tex") % (find-angg "LATEX/2015-2-GA-VR.lua") % (defun c () (interactive) (find-LATEXsh "lualatex 2015-2-GA-VR.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2015-2-GA-VR.pdf")) % (defun e () (interactive) (find-LATEX "2015-2-GA-VR.tex")) % (defun u () (interactive) (find-latex-upload-links "2015-2-GA-VR")) % (defun z () (interactive) (find-zsh "flsfiles-tgz 2015-2-GA-VR.fls 2015-2-GA-VR.tgz") % (find-xpdfpage "~/LATEX/2015-2-GA-VR.pdf") % (find-sh0 "cp -v ~/LATEX/2015-2-GA-VR.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2015-2-GA-VR.pdf /tmp/pen/") % file:///home/edrx/LATEX/2015-2-GA-VR.pdf % file:///tmp/2015-2-GA-VR.pdf % file:///tmp/pen/2015-2-GA-VR.pdf % http://angg.twu.net/LATEX/2015-2-GA-VR.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input istanbuldefs % (find-LATEX "istanbuldefs.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\setofet #1{\setofst{#1}{t∈\R}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2015.2 \par VR - 28/mar/2016 - Eduardo Ochs \par Links importantes: \par \url{http://angg.twu.net/2015.2-GA.html} (página do curso) \par \url{http://angg.twu.net/2015.2-GA/2015.2-GA.pdf} (quadros) \par \url{http://angg.twu.net/LATEX/2015-2-GA-VR.pdf} (esta prova) %\par \url{http://angg.twu.net/LATEX/2015-2-GA-material.pdf} \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} 1) \T(Total: 3.5 pts) Sejam $r:y=\frac34x-2$ e $s:y=2x-7$. a) \B(0.5 pts) Seja $A∈r∩s$. Dê as coordenadas de $A$. b) \B(0.5 pts) Encontre um ponto $P∈s$ tal que $d(P,r)=2$. c) \B(0.5 pts) Dê a equação do círculo $C$ centrado em $P$ que passa por $A$. d) \B(0.5 pts) Encontre o ponto $B∈r$ mais próximo de $P$. e) \B(0.5 pts) Dê as coordenadas dos dois pontos de $C∩r$. f) \B(0.5 pts) Dê as coordenadas dos dois pontos de $C∩s$. g) \B(0.5 pts) Represente tudo graficamente. \bsk 2) \T(Total: 1.5 pts) Sejam $E:16x^2 - 160x + 25y^2 - 300y + 900 = 0$. a) \B(0.5 pts) Dê a equação reduzida da elipse $E$. b) \B(0.5 pts) Encontre quatro pontos $P_0, P_1, P_2, P_3 ∈ E$. c) \B(0.5 pts) Encontre os focos $F_1$ e $F_2$ de $E$. \bsk 3) \T(Total: 2.0 pts) Sejam $A=(6,0,0)$, $B=(0,6,0)$, $C=(0,0,6)$, $D=(2,4,5)$, $P=(4,4,4)$, $r=\setofet{A+\Vec{AB}}$, $π'$ o plano que contém $r$ e $C$, e $π''$ o plano que contém $r$ e $D$. a) \B(0.5 pts) Encontre o ponto $Q∈r$ mais próximo de $P$. b) \B(0.5 pts) Encontre o ponto $P'∈π'$ mais próximo de $P$. c) \B(0.5 pts) Encontre o ponto $P''∈π''$ mais próximo de $P$. d) \B(1.0 pts) Mostre que $P$, $P'$, $P''$ e $Q$ são coplanares. \bsk 4) \T(Total: 2.5 pts) Sejam $A=(4,0,0)$, $B=(0,4,0)$, $C=(0,0,7)$, $D=(0,7,0)$. Sejam $r$ uma reta que passa por $A$ e $B$, $r'$ uma reta que passa por $C$ e $D$, e $s$ uma reta ortogonal a $r$ e $r'$ que corta ambas. Dê uma parametrização para $s$. % \newpage % _ _ _ % | |_(_) | __ ____ % | __| | |/ /|_ / % | |_| | < / / % \__|_|_|\_\/___| % % Dots, labels, vectors % \def\uu{\vec u} \def\vv{\vec v} \def\ww{\vec w} \def\nn{\vec n} \def\VEC#1{{\overrightarrow{(#1)}}} \def\nm#1{\|#1\|} \def\Reg#1{(#1)} \def\setofxyst #1{\setofst{(x,y) ∈\R^2}{#1}} \def\setofxyzst#1{\setofst{(x,y,z)∈\R^3}{#1}} \def\setofet #1{\setofst{#1}{t∈\R}} \def\setofeu #1{\setofst{#1}{u∈\R}} \def\setofpt #1 #2 #3 #4 {\setofet{(#1,#2)+t\VEC{#3,#4}}} \def\setofpu #1 #2 #3 #4 {\setofeu{(#1,#2)+u\VEC{#3,#4}}} \def\setofeaa #1{\setofst{#1}{α∈\R}} \def\setofebb #1{\setofst{#1}{β∈\R}} % \mygrid and \myaxes % (find-es "tikz" "mygrid") \tikzset{mycurve/.style=very thick} \tikzset{axis/.style=semithick} \tikzset{tick/.style=semithick} \tikzset{grid/.style=gray!20,very thin} \tikzset{anydot/.style={circle,inner sep=0pt,minimum size=1.2mm}} \tikzset{opdot/.style={anydot, draw=black,fill=white}} \tikzset{cldot/.style={anydot, draw=black,fill=black}} % \def\mygrid(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); \draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-10,0) -- (10,0); \draw[axis] (0,-10) -- (0,10); \foreach \x in {-10,...,10} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-10,...,10} \draw[tick] (-0.2,\y) -- (0.2,\y); } \def\myaxes(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); %\draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-30,0) -- (30,0); \draw[axis] (0,-30) -- (0,30); \foreach \x in {-30,...,30} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-30,...,30} \draw[tick] (-0.2,\y) -- (0.2,\y); } % Grid color \tikzset{grid/.style=gray!50,very thin} \def\tikzp#1{\mat{\begin{tikzpicture}#1\end{tikzpicture}}} \def\mydraw #1;{\draw [mycurve] \expr{#1};} \def\mydot #1;{\node [cldot] at \expr{#1} [] {};} \def\myldot #1 #2 #3;{\node [cldot] at \expr{#1} [label=#2:${#3}$] {};} \def\myseg #1 #2;{\draw [mycurve] \expr{#1} -- \expr{#2};} \def\mylabel #1 #2 #3;{\node [] at \expr{#1} [label=#2:${#3}$] {};} \def\myseggrid #1 #2;{\draw [grid] \expr{#1} -- \expr{#2};} \def\e{\expr} % (find-dn6 "picture.lua" "V") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end %L V.__div = function (v, k) return v*(1/k) end %L V.__index.tow = function (A, B, t) return A+(B-A)*t end -- towards %L V.__index.mid = function (A, B) return A+(B-A)*0.5 end -- midpoint \newpage % _ _ _ % __ _ __ _| |__ __ _ _ __(_) |_ ___ % / _` |/ _` | '_ \ / _` | '__| | __/ _ \ % | (_| | (_| | |_) | (_| | | | | || (_) | % \__, |\__,_|_.__/ \__,_|_| |_|\__\___/ % |___/ Mini-gabarito: \msk 1a) $A=(4,1)$ 1b) $P = A+\VEC{2,4} = (6,5)$ 1c) $C = \setofxyst{(x-6)^2 + (y-5)^2 = \sqrt{20}}$ 1d) $B = A+\VEC{3.2, 2.4} = (7.2, 3.4)$ 1e) $B' = A+2\Vec{AB}$; $C∩r = \{A, B'\}$ 1f) $P' = A+2\Vec{AP}$; $C∩s = \{A, P'\}$ \msk Tem uma segunda solução, com: 1b) $P = A-\VEC{2,4} = (2,-3)$ 1c) $C = \setofxyst{(x-2)^2 + (y+3)^2 = \sqrt{20}}$ 1d) $B = A-\VEC{3.2, 2.4} = (0.8, -1.4)$ Ela está desenhada abaixo à direita. \msk %L r = Line.new(v(0, -2), v(1, 3/4), -3, 12) %L s = Line.new(v(0, -7), v(1, 2), -3, 12) %L A = v(4, 1) %L P = A + v(2.0, 4.0) %L B = A + v(3.2, 2.4) %L PP = A:tow(P, 2) %L BB = A:tow(B, 2) %L C = Ellipse.newcircle(P, math.sqrt(20)) \pu $\tikzp{[scale=0.3,auto] \mygrid (-1,-7) (12,10); % \draw [mycurve] \e{A} -- \e{B} -- \e{C} -- \e{D} -- \e{A}; \mydraw r:draw(); \mydraw s:draw(); \mydraw C:draw(); \mylabel r:t(1) 270 r; \mylabel s:t(1) 0 s; \myldot A 180 A; \myldot P 135 P; \myldot B 270 B; \myldot PP 0 P'; \myldot BB 0 B'; \myseg B P; } $ \quad %L r = Line.new(v(0, -2), v(1, 3/4), -3, 12) %L s = Line.new(v(0, -7), v(1, 2), -3, 12) %L A = v(4, 1) %L P = A - v(2.0, 4.0) %L B = A - v(3.2, 2.4) %L PP = A:tow(P, 2) %L BB = A:tow(B, 2) %L C = Ellipse.newcircle(P, math.sqrt(20)) \pu $\tikzp{[scale=0.3,auto] \mygrid (-5,-9) (8,6); % \draw [mycurve] \e{A} -- \e{B} -- \e{C} -- \e{D} -- \e{A}; \mydraw r:draw(); \mydraw s:draw(); \mydraw C:draw(); \mylabel r:t(6) 270 r; \mylabel s:t(6) 0 s; \myldot A 90 A; \myldot P 0 P; \myldot B 135 B; \myldot PP 315 P'; \myldot BB 135 B'; \myseg B P; } $ % Segunda solução: % 1b) $P = A-\VEC{2,4} = (2,-3)$ % 1d) $B = A-\VEC{3.2, 2.4} = (2.8, 1.6)$ \bsk 2a) $(\frac{x-5}{5})^2 + (\frac{y-6}{4})^2 = 1$ 2b) $(5-5,6)$, $(5+5,6)$, $(5,6+4)$, $(5,6-4)$ 2c) $(5-3,6)$, $(5+3,6)$ \bsk 3) $π'=\setofxyzst{x+y+z=6}$, $π''=\setofxyzst{x+y=6}$ 3a) $Q=(3,3,0)$ 3b) $P'=(2,2,2)$ 3c) $P''=(3,3,4)$ 3d) $[\Vec{PP'}, \Vec{PP''}, \Vec{PQ}] = 0$ \bsk 4) $s = \setofet{(-1,5,0) + t\VEC{1,1,1}}$ \end{document} % Local Variables: % coding: utf-8-unix % End: