Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-1-C2-VR.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-C2-VR.tex" :end)) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-1-C2-VR.pdf")) % (defun e () (interactive) (find-LATEX "2016-1-C2-VR.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-1-C2-VR")) % (find-xpdfpage "~/LATEX/2016-1-C2-VR.pdf") % (find-sh0 "cp -v ~/LATEX/2016-1-C2-VR.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-1-C2-VR.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-1-C2-VR.pdf % file:///tmp/2016-1-C2-VR.pdf % file:///tmp/pen/2016-1-C2-VR.pdf % http://angg.twu.net/LATEX/2016-1-C2-VR.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-dn4ex "edrxgac2.tex") % \begin{document} % \catcode`\^^J=10 % \directlua{dednat6dir = "dednat6/"} % \directlua{dofile(dednat6dir.."dednat6.lua")} % \directlua{texfile(tex.jobname)} % \directlua{verbose()} % %\directlua{output(preamble1)} % \def\expr#1{\directlua{output(tostring(#1))}} % \def\eval#1{\directlua{#1}} % \def\pu{\directlua{pu()}} % % \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") % %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2016.1 \par VR - 1$°$/ago/2016 - Eduardo Ochs \par Links importantes: \par \url{http://angg.twu.net/2016.1-C2.html} (página do curso) \par \url{http://angg.twu.net/2016.1-C2/2016.1-C2.pdf} (quadros) \par \url{http://angg.twu.net/LATEX/2016-1-C2-VR.pdf} (esta prova) \par {\tt eduardoochs@gmail.com} (meu e-mail) } \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} \bsk \bsk % (find-es "ipython" "2015.2-C2-P1") 1) \T(Total: 6.0 pts) Calcule: $$a) \quad \B(2.0 pts) \quad \Intx 2 3 {x^4 \ln x}$$ $$b) \quad \B(2.0 pts) \quad \intx {x^3 \sqrt{1-x^2}}$$ $$c) \quad \B(2.0 pts) \quad \intx {\frac {x^2} {x^2 - x - 6}}$$ \bsk 2) \T(Total: 2.0 pts) Seja (*) esta EDO: $f'' - f' - 6f = 0$. a) \B(1.0 pts) Encontre as soluções básicas de $(*)$. b) \B(1.0 pts) Encontre uma solução de $(*)$ que obedeça $f(0)=0$ e $f(1)=1$. \bsk 3) \T(Total: 2.0 pts) Seja (**) esta EDO: $f'(x) = -2(x+3) / f(x)$. a) \B(1.0 pts) Encontre a solução geral de (**). b) \B(1.0 pts) Encontre uma solução de (**) que obedeça $f(0)=10$. \newpage Método de Heaviside: Se $f(x) = \frac{\aa}{x-a} + \frac{\bb}{x-b} + \frac{\cc}{x-c} = \frac{p(x)}{(x-a)(x-b)(x-c)}$, então $\lim_{x \to a} f(x)(x-a) = \aa = \frac{p(a)}{(a-b)(a-c)}$. \bsk Substituição: \msk $\begin{array}{l} \difx a b {g(h(x))} = \Intx a b {g'(h(x))\frac{d\,h(x)}{dx}} \\ \phantom{mmm}|\,| \\ \difu {h(a)} {h(b)} {g(u))} = \Intu {h(a)} {h(b)} {g'(u)} \\ \end{array} $ \msk Fórmulas: \msk $\begin{array}{l} \Intx a b {f(g(x))\frac{d\,g(x)}{dx}} \\ = \Intx a b {f(u)\frac{du}{dx}} \\ = \Intu {g(a)} {g(b)} {f(u)} \end{array} \qquad \begin{array}{ll} \intx {f(g(x))\frac{d\,g(x)}{dx}} \\ = \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)} \\ = \intu {f(u)} & \subst{u=g(x)} \end{array} $ \bsk Substituição inversa: $\def\a{{h¹(α)}} \def\b{{h¹(β)}} \begin{array}{l} \Difx \a \b {g(h(x))} = \Intx \a \b {g'(h(x))\frac{d\,h(x)}{dx}} \\ \phantom{mmm}|\,| \\ \Difu {h(\a)} {h(\b)} {g(u))} = \Intu {h(\a)} {h(\b)} {g'(u)} \\ \phantom{mmm}|\,| \\ \Difu α β {g(u))} = \Intu α β {g'(u)} \\ \end{array} $ \msk Fórmulas: \msk $\def\a{{g¹(α)}} \def\b{{g¹(β)}} \begin{array}{l} \Intu α β {f(u)} \\ = \Intx \a \b {f(u)\frac{du}{dx}} \\ = \Intx \a \b {f(g(x))\frac{d\,g(x)}{dx}} \end{array} \qquad \begin{array}{ll} \intu {f(u)} \\ = \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)\\x=g¹(u)} \\ = \intx {f(g(x))\frac{d\,g(x)}{dx}} & \subst{x=g¹(u)} \\ \end{array} $ \bsk Substituição trigonométrica: \msk $ \begin{array}{ll} \Ints a b {F(s, \sqrt{1-s^2})} \\ = \Intth {\arcsen a} {\arcsen b} {F(\senθ, \sqrt{1-\sen^2θ}) \frac{d\senθ}{dθ}} \\ = \Intth {\arcsen a} {\arcsen b} {F(\senθ, \cosθ) \cosθ} \\ \end{array} \qquad \begin{array}{ll} \ints {F(s, \sqrt{1-s^2})} \\ = \intth {F(s, \sqrt{1-s^2}) \frac{ds}{dθ}} & \subst{s=\senθ \\ θ=\arcsenθ} \\ = \intth {F(s, c) c} & \subst{s=\senθ \\ c=\cosθ \\ θ=\arcsenθ} \\ \end{array} $ \msk $ \begin{array}{ll} \Intz a b {F(z, \sqrt{z^2-1})} \\ = \Intth {\arcsec a} {\arcsec b} {F(\secθ, \sqrt{\sec^2θ-1}) \frac{d\secθ}{dθ}} \\ = \Intth {\arcsec a} {\arcsec b} {F(\secθ, \tanθ) \secθ \tanθ} \\ \end{array} \qquad \begin{array}{ll} \intz {F(z, \sqrt{z^2-1})} \\ = \intth {F(z, \sqrt{z^2-1}) \frac{dz}{dθ}} & \subst{z=\secθ \\ θ=\arcsec z} \\ = \intth {F(z, t) zt} & \subst{z=\secθ \\ θ=\arcsec z \\ t=\tanθ} \\ \end{array} $ \msk $ \begin{array}{ll} \Intt a b {F(t, \sqrt{1+t^2})} \\ = \Intth {\arctan a} {\arctan b} {F(\tanθ, \sqrt{1+\tan^2θ}) \frac{d\tanθ}{dθ}} \\ = \Intth {\arctan a} {\arctan b} {F(\tanθ, \secθ) \sec^2θ} \\ \end{array} \qquad \begin{array}{ll} \intt {F(t, \sqrt{1+t^2})} \\ = \intth {F(t, \sqrt{1+t^2}) \frac{dt}{dθ}} & \subst{t=\tanθ \\ θ=\arctan t} \\ = \intth {F(t, z) z^2} & \subst{t=\tanθ \\ θ=\arctan t \\ z=\secθ} \\ \end{array} $ \newpage Mini-gabarito: \bsk 1a) $\intx{x^4 \ln x} = \frac{1}{25} x^5 (5 \ln x - 1)$ $\Intx 2 3 {x^4 \ln x} = \difx 2 3 {\frac{1}{25} x^5 (5 \ln x - 1)} = -\frac{211}{25} - \frac{32}{5} \ln 2 + \frac{243}{5} \ln 3 $ \msk 1b) $\intx {x^3 \sqrt{1-x^2}} = \frac{1}{15} (3x^4 - x^2 - 2) \sqrt{1-x^2}$ % Expr2 = (3 * x**4 - x**2 - 2) / 15 * sqrt(1 - x**2) \msk 1c) $\frac {x^2} {x^2 - x - 6} = 1 - \frac 4 {5(x+2)} + \frac 9 {5(x-3)}$ $\intx {\frac {x^2} {x^2 - x - 6}} = x - \frac45 \ln |x+2| + \frac95 \ln |x-3|$ \bsk 2) $f'' - f' - 6f = (D^2 - D - 6)f = (D-3)(D+2)f$ 2a) $f_1(x) = e^{3x}$, $f_2(x) = e^{-2x}$ 2b) $f_3(x) = ae^{3x} + be^{-2x}$, onde $a = \frac {e^2} {e^5-1}$, $b = \frac {e^2} {1-e^5}$. \bsk 3a) $f(x) = \pm \sqrt{2} \sqrt{C - (x+3)^2}$ 3b) $f(x) = \sqrt{2} \sqrt{59 - (x+3)^2}$ \end{document} % Local Variables: % coding: utf-8-unix % End: