Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-1-C2-material.tex") % (find-angg "LATEX/2016-1-C2-material.lua") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-C2-material.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-1-C2-material.pdf")) % (defun e () (interactive) (find-LATEX "2016-1-C2-material.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-1-C2-material")) % (defun z () (interactive) (find-zsh "flsfiles-tgz 2016-1-C2-material.fls 2016-1-C2-material.tgz") % (find-xpdfpage "~/LATEX/2016-1-C2-material.pdf") % (find-sh0 "cp -v ~/LATEX/2016-1-C2-material.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-1-C2-material.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-1-C2-material.pdf % file:///tmp/2016-1-C2-material.pdf % file:///tmp/pen/2016-1-C2-material.pdf % http://angg.twu.net/LATEX/2016-1-C2-material.pdf % (code-etex "c2m161" "2016-1-C2-material") % «.graficos» (to "graficos") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %\catcode`\^^J=10 %\directlua{dednat6dir = "dednat6/"} %\directlua{dofile(dednat6dir.."dednat6.lua")} %\directlua{texfile(tex.jobname)} %\directlua{verbose()} % %\directlua{output(preamble1)} %\def\expr#1{\directlua{output(tostring(#1))}} %\def\eval#1{\directlua{#1}} %\def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \pu % tikz % mygrid % (find-angg ".emacs.papers" "tikz") \tikzset{mycurve/.style=very thick} \tikzset{axis/.style=semithick} \tikzset{tick/.style=semithick} \tikzset{grid/.style=gray!20,very thin} \tikzset{anydot/.style={circle,inner sep=0pt,minimum size=1mm}} \tikzset{opdot/.style={anydot, draw=black,fill=white}} \tikzset{cldot/.style={anydot, draw=black,fill=black}} % \def\mygrid(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); \draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-10,0) -- (10,0); \draw[axis] (0,-10) -- (0,10); \foreach \x in {-10,...,10} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-10,...,10} \draw[tick] (-0.2,\y) -- (0.2,\y); } \def\tikzp#1{\mat{\begin{tikzpicture}#1\end{tikzpicture}}} % (find-LATEX "edrxtikz.lua" "drawdots0") \def\drawdots#1{\directlua{output(drawdots0("#1"))}} {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2016.1 \par Material para exercícios - Eduardo Ochs %\par Versão: 7/dez/2015 \par Links importantes: \par \url{http://angg.twu.net/2016.1-C2.html} (página do curso) \par \url{http://angg.twu.net/2016.1-C2/2016.1-C2.pdf} (quadros) \par \url{http://angg.twu.net/LATEX/2016-1-C2-material.pdf} (lista, atualizada) \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk % (find-LATEX "edrxgac2.tex") % (find-LATEXgrep "grep --color -nH -e rigonom *.tex") \def\ddx{\frac{d}{dx}} \def\ddth{\frac{d}{d\theta}} \def\arcsen{\operatorname{arcsen}} \def\sen{\operatorname{sen}} \def\sec{\operatorname{sec}} \def\ln{\operatorname{ln}} \def\subst#1{\left[\sm{#1}\right]} \def\prims #1{∫#1\,ds} \def\primth#1{∫#1\,dθ} \def\ints #1#2#3{∫_{s=#1}^{s=#2}#3\,ds} \def\intu #1#2#3{∫_{u=#1}^{u=#2}#3\,du} \def\intx #1#2#3{∫_{x=#1}^{x=#2}#3\,dx} \def\intth#1#2#3{∫_{θ=#1}^{θ=#2}#3\,dθ} \def\difs #1#2#3{\left. #3 \right|_{s=#1}^{s=#2}} \def\difu #1#2#3{\left. #3 \right|_{u=#1}^{u=#2}} \def\difx #1#2#3{\left. #3 \right|_{x=#1}^{x=#2}} \def\difth#1#2#3{\left. #3 \right|_{θ=#1}^{θ=#2}} Substituição: $\begin{array}{l} \difx a b {g(h(x))} = \intx a b {g'(h(x))h'(x)} \\ \phantom{mmm}|\,| \\ \difu {h(a)} {h(b)} {g(u))} = \intu {h(a)} {h(b)} {g'(u)} \\ \end{array} $ \msk $\intx a b {f(g(x))g'(x)} = \intu {g(a)} {g(b)} {f(u)}$ % Substituição inversa: % % $ % \begin{array}{rcl} % \intx {g¹(α)} {g¹(β)} {f(g(x))g'(x)} = \intu {α} {β} {f(u)} \\ \\ % \int {f(g(x))g'(x)} \,dx = \int {f(u)} \,du \quad \subst{u = g(x)} \\ \\ % \int {f(u)\frac{du}{dx}} \,dx = \int {f(u)} \,du \quad \subst{u = g(x)} \\ % \end{array} % $ \bsk Um exemplo de substituição: $\begin{array}[t]{l} \primth {s^3 c^3} \\ = \primth {s^3 c^2 c} \\ = \primth {s^3 (1-s^2) \frac{ds}{dθ}} \\ = \primth {(s^3 - s^5) \frac{ds}{dθ}} \\ = \prims {s^3 - s^5} \\ = \frac{s^4}{4} - \frac{s^6}{6} \\ \end{array} % \qquad % \def\intthab{\intthαβ◻} \def\intsab {\ints{\senα}{\senβ}◻} \def\difthab{\difthαβ◻} \def\difsab {\difs{\senα}{\senβ}◻} % \def\intthab{(\intthαβ◻)} \def\intsab {(\ints{\senα}{\senβ}◻)} \def\difthab{(\difthαβ◻)} \def\difsab {(\difs{\senα}{\senβ}◻)} % \begin{array}[t]{lll} \primth {\sen^3θ \cos^3θ} & \intthab \\ = \primth {\sen^3θ \cos^2θ \cosθ} & \intthab \\ = \primth {\sen^3θ (1-\sen^2θ) \frac{d\senθ}{dθ}} & \intthab \\ = \primth {(\sen^3θ - \sen^5θ) \frac{d\senθ}{dθ}} & \intthab \\ = \prims {s^3 - s^5} & \intsab \\ = \frac{s^4}{4} - \frac{s^6}{6} & \difsab \\ = \frac{\sen^4θ}{4} - \frac{\sen^6θ}{6} & \difthab \\ \end{array} $ \bsk \bsk \newpage % Indefinite integrals \def\ints #1{∫#1\,ds} \def\intt #1{∫#1\,dt} \def\intu #1{∫#1\,du} \def\intx #1{∫#1\,dx} \def\intz #1{∫#1\,dz} \def\intth#1{∫#1\,dθ} % Definite integrals \def\Ints #1#2#3{∫_{s=#1}^{s=#2}#3\,ds} \def\Intt #1#2#3{∫_{t=#1}^{t=#2}#3\,dt} \def\Intu #1#2#3{∫_{u=#1}^{u=#2}#3\,du} \def\Intx #1#2#3{∫_{x=#1}^{x=#2}#3\,dx} \def\Intz #1#2#3{∫_{z=#1}^{z=#2}#3\,dz} \def\Intth#1#2#3{∫_{θ=#1}^{θ=#2}#3\,dθ} % Difference \def\Difs #1#2#3{\left. #3 \right|_{s=#1}^{s=#2}} \def\Difu #1#2#3{\left. #3 \right|_{u=#1}^{u=#2}} \def\Difx #1#2#3{\left. #3 \right|_{x=#1}^{x=#2}} \def\Difth#1#2#3{\left. #3 \right|_{θ=#1}^{θ=#2}} Substituição: \msk $\begin{array}{l} \Difx a b {g(h(x))} = \Intx a b {g'(h(x))\frac{d\,h(x)}{dx}} \\ \phantom{mmm}|\,| \\ \Difu {h(a)} {h(b)} {g(u))} = \Intu {h(a)} {h(b)} {g'(u)} \\ \end{array} $ \msk Fórmulas: \msk $\begin{array}{l} \Intx a b {f(g(x))\frac{d\,g(x)}{dx}} \\ = \Intx a b {f(u)\frac{du}{dx}} \\ = \Intu {g(a)} {g(b)} {f(u)} \end{array} \qquad \begin{array}{ll} \intx {f(g(x))\frac{d\,g(x)}{dx}} \\ = \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)} \\ = \intu {f(u)} & \subst{u=g(x)} \end{array} $ \bsk Substituição inversa: $\def\a{{h¹(α)}} \def\b{{h¹(β)}} \begin{array}{l} \Difx \a \b {g(h(x))} = \Intx \a \b {g'(h(x))\frac{d\,h(x)}{dx}} \\ \phantom{mmm}|\,| \\ \Difu {h(\a)} {h(\b)} {g(u))} = \Intu {h(\a)} {h(\b)} {g'(u)} \\ \phantom{mmm}|\,| \\ \Difu α β {g(u))} = \Intu α β {g'(u)} \\ \end{array} $ \msk Fórmulas: \msk $\def\a{{g¹(α)}} \def\b{{g¹(β)}} \begin{array}{l} \Intu α β {f(u)} \\ = \Intx \a \b {f(u)\frac{du}{dx}} \\ = \Intx \a \b {f(g(x))\frac{d\,g(x)}{dx}} \end{array} \qquad \begin{array}{ll} \intu {f(u)} \\ = \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)\\x=g¹(u)} \\ = \intx {f(g(x))\frac{d\,g(x)}{dx}} & \subst{x=g¹(u)} \\ \end{array} $ \bsk Substituição trigonométrica: \msk $ \begin{array}{ll} \Ints a b {F(s, \sqrt{1-s^2})} \\ = \Intth {\arcsen a} {\arcsen b} {F(\senθ, \sqrt{1-\sen^2θ}) \frac{d\senθ}{dθ}} \\ = \Intth {\arcsen a} {\arcsen b} {F(\senθ, \cosθ) \cosθ} \\ \end{array} \qquad \begin{array}{ll} \ints {F(s, \sqrt{1-s^2})} \\ = \intth {F(s, \sqrt{1-s^2}) \frac{ds}{dθ}} & \subst{s=\senθ \\ θ=\arcsenθ} \\ = \intth {F(s, c) c} & \subst{s=\senθ \\ c=\cosθ \\ θ=\arcsenθ} \\ \end{array} $ \msk $ \begin{array}{ll} \Intz a b {F(z, \sqrt{z^2-1})} \\ = \Intth {\arcsec a} {\arcsec b} {F(\secθ, \sqrt{\sec^2θ-1}) \frac{d\secθ}{dθ}} \\ = \Intth {\arcsec a} {\arcsec b} {F(\secθ, \tanθ) \secθ \tanθ} \\ \end{array} \qquad \begin{array}{ll} \intz {F(z, \sqrt{z^2-1})} \\ = \intth {F(z, \sqrt{z^2-1}) \frac{dz}{dθ}} & \subst{z=\secθ \\ θ=\arcsec z} \\ = \intth {F(z, t) zt} & \subst{z=\secθ \\ θ=\arcsec z \\ t=\tanθ} \\ \end{array} $ \msk $ \begin{array}{ll} \Intt a b {F(t, \sqrt{1+t^2})} \\ = \Intth {\arctan a} {\arctan b} {F(\tanθ, \sqrt{1+\tan^2θ}) \frac{d\tanθ}{dθ}} \\ = \Intth {\arctan a} {\arctan b} {F(\tanθ, \secθ) \sec^2θ} \\ \end{array} \qquad \begin{array}{ll} \intt {F(t, \sqrt{1+t^2})} \\ = \intth {F(t, \sqrt{1+t^2}) \frac{dt}{dθ}} & \subst{t=\tanθ \\ θ=\arctan t} \\ = \intth {F(t, z) z^2} & \subst{t=\tanθ \\ θ=\arctan t \\ z=\secθ} \\ \end{array} $ % & \subst{u = g(x)} \newpage % (find-LATEX "2010-1-C2-prova-1.tex") Algumas fórmulas: Integração por partes: $\int_{x=a}^{x=b} f'(x)g(x)\,dx = f(x)g(x) \big|_{x=a}^{x=b} - \int_{x=a}^{x=b} f(x)g'(x)\,dx$ \msk % Mudança de variável: % % $\int_{x=a}^{y=b} \frac{dg}{du} \frac{du}{dx} \,dx = \int_{u=u(a)}^{u=u(b)} \frac{dg}{du} \, du$ % % $\int_{x=a}^{y=b} g'(u(x))u'(x)\,dx = \int_{u=u(a)}^{u=u(b)} g'(u) \, du$ % % $\int_{x=a}^{y=b} f(u(x))u'(x)\,dx = \int_{u=u(a)}^{u=u(b)} f(u) \, du$ % % \msk Integrais de $(\sen θ)^m (\cos θ)^n$ com um expoente ímpar ($s = \sen θ$, $c= \cos θ$): $\int s^n c^{2k+1} dθ = \int s^n c^{2k} · c \,dθ = \subst{\sen θ = s \\ \cos^2 θ = 1 - s^2 \\ \cos θ\,dθ = ds \\ θ = \arcsen s} \int s^n (1-s^2)^k \, ds$ $\int c^n s^{2k+1} dθ = \int c^n s^{2k} · s \,dθ = \subst{\cos θ = c \\ \sen^2 θ = 1 - c^2 \\ - \sen θ\,dθ = dc \\ θ = \arccos s} - \int c^n (1-c^2)^k \, dc$ \msk Substituição trigonométrica: $\int F(s, \sqrt{1 - s^2})\,ds = \subst{s = \sen θ \\ \sqrt{1-s^2} = \cos θ \\ ds = \cos θ \, dθ \\ θ = \arcsen s} \int F(\sen θ, \cos θ) \cos θ \, dθ$ $\int F(t, \sqrt{1 + t^2})\,dt = \subst{t = \tan θ \\ \sqrt{1+t^2} = \sec θ \\ dt = \sec^2 θ \, dθ \\ θ = \arctan t} \int F(\tan θ, \sec θ) \sec^2 θ \, dθ$ $\int F(z, \sqrt{z^2 - 1})\,dz = \subst{z = \sec θ \\ \sqrt{z^2-1} = \tan θ \\ dz = \tan θ \sec θ\, dθ \\ θ = \arcsec z} \int F(\sec θ, \tan θ) \tan θ \sec θ \, dθ$ \ssk $\int\sqrt{1-x^2}\,dx = \frac{\arcsen x}{2} + \frac{x\,\sqrt{1-x^2}}{2}$ \msk Método de Heaviside: Se $f(x) = \frac{\aa}{x-a} + \frac{\bb}{x-b} + \frac{\cc}{x-c} = \frac{p(x)}{(x-a)(x-b)(x-c)}$, então $\lim_{x \to a} f(x)(x-a) = \aa = \frac{p(a)}{(a-b)(a-c)}$. % \end{document} \newpage % «graficos» (to ".graficos") % (c2m161p 4 "graficos") % (c2m161 "graficos") Funções usadas nas aulas de 30/nov e 2/dez/2015: \msk % (find-djvupage "~/2015.2-C2/2015.2-C2.djvu") $f_1(x) = \tikzp{[scale=0.3,auto] \mygrid (-1,-2) (5,2); \drawdots{ (-2,1)--(2,1)c (2,-1)o--(3,-1)o (3,0)c--(6,0) }; } $ % (find-fline "~/2015.2-C2/20151130_C23.jpg") $f_2(x) = \tikzp{[scale=0.3,auto] \mygrid (-1,-2) (4,3); \drawdots{ (-3,0)--(0,0)o (0,2)c--(1,0)c (1,-1)o--((5,-1) }; } $ % (find-fline "~/2015.2-C2/20151130_C23.jpg") $f_3(x) = \tikzp{[scale=0.3,auto] \mygrid (-1,-2) (5,3); \drawdots{ (-2,0)--(1,0)c--(2,2)c--(6,2) }; } $ $f_4(x) = \tikzp{[scale=0.3,auto] \mygrid (-1,-1) (6,5); \drawdots{ (-2,0)--(0,0)c--(1,3)c--(2,4)c--(3,3)c--(4,0)c--(7,0) }; } $ $f_6(x) = \tikzp{[scale=0.3,auto] \mygrid (-1,-2) (8,3); \drawdots{ (-2,0)--(1,0)o (1,1)c--(2,1)c (2,2)o--(3,2)o (3,1)c--(4,1)c (4,0)o--(5,0)o (5,-1)c--(6,-1)c (6,0)o--(10,0) }; } $ \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "c2m161" % End: