|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-1-GA-P2.tex")
% (find-angg "LATEX/2016-1-GA-P2.lua")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-GA-P2.tex"))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-1-GA-P2.pdf"))
% (defun e () (interactive) (find-LATEX "2016-1-GA-P2.tex"))
% (defun u () (interactive) (find-latex-upload-links "2016-1-GA-P2"))
% (defun z () (interactive) (find-zsh "flsfiles-tgz 2016-1-GA-P2.fls 2016-1-GA-P2.tgz"))
% (find-xpdfpage "~/LATEX/2016-1-GA-P2.pdf")
% (find-sh0 "cp -v ~/LATEX/2016-1-GA-P2.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2016-1-GA-P2.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2016-1-GA-P2.pdf
% file:///tmp/2016-1-GA-P2.pdf
% file:///tmp/pen/2016-1-GA-P2.pdf
% http://angg.twu.net/LATEX/2016-1-GA-P2.pdf
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{tikz}
%
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\input edrxgac2.tex % (find-angg "LATEX/edrxgac2.tex")
%
\begin{document}
% \catcode`\^^J=10
% \directlua{dednat6dir = "dednat6/"}
% \directlua{dofile(dednat6dir.."dednat6.lua")}
% \directlua{texfile(tex.jobname)}
% \directlua{verbose()}
% %\directlua{output(preamble1)}
% \def\expr#1{\directlua{output(tostring(#1))}}
% \def\eval#1{\directlua{#1}}
% \def\pu{\directlua{pu()}}
%
% \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua")
% %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end
% ____ _ _ _
% / ___|__ _| |__ ___ ___ __ _| | |__ ___
% | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \
% | |__| (_| | |_) | __/ (_| (_| | | | | | (_) |
% \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/
%
{\setlength{\parindent}{0em}
\footnotesize
\par Geometria Analítica
\par PURO-UFF - 2016.1
\par P2 - 28/jul/2016 - Eduardo Ochs
\par Respostas sem justificativas não serão aceitas.
\par Proibido usar quaisquer aparelhos eletrônicos.
\ssk
\par Links importantes:
\par \url{http://angg.twu.net/2016.1-GA.html} (página do curso)
\par \url{http://angg.twu.net/2016.1-GA/2016.1-GA.pdf} (quadros)
\par \url{http://angg.twu.net/LATEX/2016-1-GA-P2.pdf} (esta prova, com gabarito)
% \par \url{http://angg.twu.net/LATEX/2016-1-GA-material.pdf}
\par {\tt eduardoochs@gmail.com} (meu e-mail)
}
\bsk
\bsk
\setlength{\parindent}{0em}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\B (#1 pts){{\bf(#1 pts)}}
% Usage:
% 1) \T(Total: 2.34 pts) Foo
% a) \B(0.45 pts) Bar
1) \T(Total: 1.5 pts) Em cada um dos itens abaixo encontre 3 pontos,
$P_1$, $P_2$, $P_3$, da parábola $S=\setofst{P∈\R^2}{d(P,F)=d(P,d)}$ e
a equação de {\sl alguma} parábola que passa por estes pontos.
a) \B(0.2 pts) $F=(0,1)$, $d:y=-1$
b) \B(0.3 pts) $F=(0,2)$, $d:y=-2$
c) \B(1.0 pts) $F=(4,2)$, $d:x=0$
\bsk
2) \T(Total: 1.5 pts) Em cada um dos itens abaixo encontre 4 pontos
$P_1$, $P_2$, $P_3$, $P_4$ da elipse
$E=\setofst{P∈\R^2}{d(P,d)=2d(P,F)}$ e a equação de alguma elipse que
passa por estes pontos.
a) \B(0.5 pts) $F=(0.5,0)$, $d:x=2$
b) \B(1.0 pts) $F=(0,0)$, $d:y=3$
\bsk
% (find-es "ipython" "2016.1-GA-P2")
3) \T(Total: 1.0 pts) Faça um esboço da cônica com equação $(x-3)^2 -
(3y+3)^2 - 1 = 0$.
\bsk
% (find-es "ipython" "2016.1-GA-P2")
4) \T(Total: 4.0 pts) Sejam $r : (2+t, 1+2t, 11-4t)$ e $r' : (1+3u, 2-u, 6+9u)$.
a) \B(1.0 pts) Mostre que $r$ e $r'$ são coplanares.
b) \B(1.0 pts) Encontre a equação do plano $π$ contendo $r$ e $r'$.
c) \B(1.0 pts) Sejam $P=(4,0,4)$, $P'$ o ponto de $π$ mais próximo de
$P$, e $P''$ o ponto simétrico a $P$ com relação a $π$. Dê as
coordenadas de $P'$ e $P''$.
d) \B(1.0 pts) Calcule $d(P,π)$.
\bsk
% (find-es "ipython" "2016.1-GA-P2")
5) \T(Total: 2.0 pts) Sejam $π : x+y+2z = 4$, $π' : z-4y=8$.
a) \B(1.0 pts) Encontre uma reta paralela a $π$ e $π'$ que passa por $P=(2,3,4)$.
b) \B(1.0 pts) Dê a equação da reta $r=π∩π'$.
\bsk
\bsk
Algumas fórmulas:
$[\uu,\vv,\ww] = \psm{u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \\}
\qquad
\vsm{a & b & c \\ d & e & f \\ g & h & i \\} =
\sm{aei + bfg + cdh \\ - afh - bdi - ceg}
\qquad |[\uu,\vv,\ww]| = (\uu×\vv)·\ww
$
$\uu×\vv = \vsm{u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \ii & \jj & \kk \\}
= {\scriptstyle \VEC{u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1}}
$
\newpage
% ____ _ _ _
% / ___| __ _| |__ __ _ _ __(_) |_ ___
% | | _ / _` | '_ \ / _` | '__| | __/ _ \
% | |_| | (_| | |_) | (_| | | | | || (_) |
% \____|\__,_|_.__/ \__,_|_| |_|\__\___/
%
Mini-gabarito:
(incompleto e ainda não revisado - contém erros!)
\bsk
% _
% / |
% | |
% | |
% |_|
%
1a) $\bsm{P_{-1}=(-2,1) & & P_1=(2,1) \\ & P_0=(0,0) & \\}$; $S:y=x^2/2$
1b) $\bsm{P_{-1}=(-4,2) & & P_1=(4,2) \\ & P_0=(0,0) & \\}$; $S:y=x^2/8$
1c) $\bsm{ & P_{-1}=(4,6) \\ P_0=(2,2) & \\ & P_1=(4,-2) & \\}$; $S:(x-2)=(y-2)^2/8$
\bsk
\bsk
% ____
% |___ \
% __) |
% / __/
% |_____|
%
2a) $\bsm{ & P_2=(0,√3/2) & \\
P_2=(-1,0) & & P_3=(1,0) \\
& P_4=(0,-√3/2) & \\
}; \quad E:x^2+(\frac y {√3/2})^2 = 1$
2b) $\bsm{ & P_2=(-1,√3) & \\
P_2=(-3,0) & & P_3=(1,0) \\
& P_4=(-1,√3) & \\
}; \quad E:(\frac{x+1}2)^2+(\frac y {√3})^2 = 1$
\bsk
\bsk
% _____
% |___ /
% |_ \
% ___) |
% |____/
%
3) $H: (x-3)^2 - (3y+3)^2 = 1$ é uma hipérbole.
$H_0: (x-3)^2 - (3y+3)^2 = 0$ são as assíntotas de $H$.
Como $(x-3)^2 - (3y+3)^2 = ((x-3) + (3y+3)) ((x-3) - (3y+3))$, sejam
$r:(x-3) + (3y+3) = 0$ e
$r':(x-3) - (3y+3) = 0$; temos
$H_0 = r∪r'$,
$r: x+3y=0$ \;\;\;\;\;\;\;\;\;\; (ou: $r:y=-\frac x3$),
$r': x-3y-6=0$ \;\;\; (ou: $r':y=\frac x3 - 2$).
$r$ e $r'$ se intersectam em $x-3=0$ e $3y+3=0$, ou seja, em $(x,y)=(3,-1)$.
Pontos óbvios de $H$: $(x-3)^2=1$, $(3y+3)=0$; $x-3=\pm1$, $x=3\pm1$, $y=-1$.
$(2,-1)∈H$, $(4,-1)∈H$.
\newpage
% _ _
% | || |
% | || |_
% |__ _|
% |_|
%
4a) $r = \setofexpron{A+t\vv}{t}$ e $r' = \setofexpron{B+u\vv'}{u}$, onde
$A = (2, 1, 11)$, $\vv = \VEC{1,2,-4}$,
$B = (1, 2, 6)$, $\vv' = \VEC{3, -1, 9}$.
$r$ e $r'$ são coplanares se $\uu$, $\vv$ e $\vec{AB}$ são coplanares.
$|[\uu, \vv, \vec{AB}]| = \vsm{1 & 2 & -4 \\ 3 & -1 & 9 \\ -1 & 1 & -5}
= \sm{1·(-1)·(-5) + 2·9·(-1) + (-4)·3·1 \\ - (-4)·(-1)·(-1) - 2·3·(-5) - 1·9·1}
= \sm{5 - 18 - 12 \\ + 4 + 30 - 9} = 0
$.
4b) Sejam
$\nn = \uu×\vv = \sm{\VEC{1,2,-4} \\ × \VEC{3,-1,9}} = \VEC{14, -21, -7}
= 7\VEC{2,-3,-1}
$
Então $π=\setofxyzst{2x-3y-z=d}$,
e como $A∈π$ temos $d=2·2-3·1-11=-10$,
e portanto $π=\setofxyzst{2x-3y-z=-10}$.
4c) Sejam $\nn' = \frac17\nn =\VEC{2,-3,-1}$, $s = \setofexpron{P+t\nn'}{t}$. Então $P'∈s∩π$.
$P'=(4,0,4)+t\VEC{2,-3,-1} = (4+2t,-3t,4-t)$ obedece $2x-3y-z=-10$,
portanto $-10 = 2(4+2t)-3(-3t)-(4-t) = 8+4t +9t -4 + t = 14t+4$,
$14t=-14$, $t=-1$,
$P' = (4+2(-1),-3(-1),4-(-1)) = (2,3,5)$,
$\vec{PP'} = \VEC{-2,3,1}$,
$P'' = P'+\vec{PP'} = (2,3,5) + \VEC{-2,3,1} = (0,6,6)$.
4d) $d(P,π) = d(P,P') = ||\VEC{-2,3,1}|| = \sqrt{4+9+1} = \sqrt{14}$.
\bsk
\bsk
5a) Vetor normal a $π$: $\nn = \VEC{1,1,2}$.
Vetor normal a $π'$: $\nn' = \VEC{0,-4,1}$.
Vetor paralelo a $π$ e $π'$: $\vv = \nn×\nn' = \VEC{9, -1, -4}$.
Reta que queremos: $\setofexpron{(2,3,4)+t\VEC{9, -1, -4}}{t}$.
5b) Se $Q=(x,y,0)$ pertence a $r=π∩π'$, então $x+y=4$, $-4y=8$,
$y=-2$, $x=6$, $Q=(6,-2,0)$,
$r=\setofexpron{(6,-2,0)+t\VEC{9, -1, -4}}{t}$.
\end{document}
% Local Variables:
% coding: utf-8-unix
% End: