Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-2-GA-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-2-GA-P1.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-2-GA-P1.pdf")) % (defun e () (interactive) (find-LATEX "2016-2-GA-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-2-GA-P1")) % (find-xpdfpage "~/LATEX/2016-2-GA-P1.pdf") % (find-xdvipage "~/LATEX/2016-2-GA-P1.dvi") % (find-sh0 "cp -v ~/LATEX/2016-2-GA-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-2-GA-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-2-GA-P1.pdf % file:///tmp/2016-2-GA-P1.pdf % file:///tmp/pen/2016-2-GA-P1.pdf % http://angg.twu.net/LATEX/2016-2-GA-P1.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\V(#1){\VEC{#1}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2016.2 \par P1 - 16/nov/2016 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. % \par Versão: 14/mar/2016 % \par Links importantes: % \par \url{http://angg.twu.net/2015.2-C2.html} (página do curso) % \par \url{http://angg.twu.net/2015.2-C2/2015.2-C2.pdf} (quadros) % \par \url{http://angg.twu.net/LATEX/2015-2-C2-material.pdf} % \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar % (find-angg "LATEX/2015-2-GA-P2.tex") 1) \T(Total: 1.0 pts) Sejam % $$\begin{array}{rcl} r &=& \setofst {(1,2)+t\V(-1,2))} {t∈\R}, \\ s &=& \setofst {(0,4)+u\V(2,-4))} {u∈\R}. \\ \end{array} $$ a) \B(0.2 pts) Represente $r$ e $s$ graficamente. b) \B(0.8 pts) Escolha dois pontos diferentes de $r=s$ e dê as coordenadas e os valores de $t$ e $u$ associados a cada um. \bsk \bsk 2) \T(Total: 2.0 pts) Sejam % $$\begin{array}{rcl} r &=& \setofst {(1,2)+t\V(3,4)} {t∈\R}, \\ s_a &=& \setofxyst {y=5+ax}. \\ \end{array} $$ a) \B(1.0 pts) Encontre o valor de $a$ que faz com que $r$ e $s_a$ sejam ortogonais. b) \B(1.0 pts) Calcule $P∈r∩s_a$, onde o $a$ é o do item anterior. Represente tudo graficamente. \bsk \bsk 3) \T(Total: 2.0 pts) Verdadeiro ou falso? Justifique. a) \B(1.0 pts) $\Pr_{2\uu} (\ww) = 2(\Pr_{\uu} \ww)$ b) \B(1.0 pts) $\Pr_{\uu} (3\ww) = 3(\Pr_{\uu} \ww)$ \bsk \bsk 4) \T(Total: 3.0 pts) Sejam % $$\begin{array}{rcl} r &=& \setofxyst{y=1+\frac34 x}, \\ s &=& \setofexprt{(0,1)+t\VEC{2,1}}. \\ \end{array} $$ a) \B(0.3 pts) Calcule $d((0,3),r)$. b) \B(1.2 pts) Encontre os dois pontos $P_1,P_2∈s$ que estão a distância 1 de $r$. c) \B(1.5 pts) Encontre as duas retas, $r'$ e $r''$, que são paralelas a $r$ e tais que $d(r,r') = d(r,r'') = 1$. \bsk \bsk 5) \T(Total: 2.0 pts) Sejam $C$ o círculo de com $C_0=(0,5)$ e $R=5$, e $C'$ o círculo de com $C'_0=(1,0)$ e $R'=1$. a) \B(0.2 pts) Obtenha as equações dos dois círculos. b) \B(0.2 pts) Subtraia as duas equações para obter a equação de uma reta $r$. Defina $r$ formalmente (como conjunto). c) \B(1.0 pts) Encontre as coordenadas dos dois pontos $\{I,I'\}=C \cap C' = C \cap r = C' \cap r$. d) \B(0.6 pts) Verifique que os seus $I$ e $I'$ pertencem a $C$ e $C'$. \newpage {\bf Mini-gabarito:} {\footnotesize (Complementa o que foi discutido em sala em 21/nov/2016: \par \url{http://angg.twu.net/2016.2-GA/20161121_GA1.jpg} \par \url{http://angg.twu.net/2016.2-GA/20161121_GA2.jpg}) } \msk 2a) $a=-\frac34$ 2b) $t = \frac{9}{25} = 0.36$, $(x,y) = (\frac{52}{25}, \frac{86}{25}) = (2.08, 3.44)$ \msk 4a) $d((0,3),r) = \frac 8 5$ 4b) $P_1 = (-5,-\frac32)$, $P_1 = (5,\frac72)$ 4c) $r': y = \frac34 x + \frac94$, $r'': y = \frac34 x - \frac14$ \msk 5c) $I=(0,0)$, $I'=(\frac{25}{13}, \frac{5}{13})$ \bsk \bsk \bsk {\footnotesize \par Links importantes: \par \url{http://angg.twu.net/2016.2-GA.html} (página do curso) \par \url{http://angg.twu.net/2016.2-GA/2016.2-GA.pdf} (quadros) \par \url{http://angg.twu.net/LATEX/2016-2-GA-algebra.pdf} (material extra) \par \url{http://angg.twu.net/LATEX/2016-2-GA-P1.pdf} (esta prova) \par {\tt eduardoochs@gmail.com} (meu e-mail) } \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: