Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-2-GA-VR.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-2-GA-VR.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-2-GA-VR.pdf")) % (defun e () (interactive) (find-LATEX "2016-2-GA-VR.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-2-GA-VR")) % (find-xpdfpage "~/LATEX/2016-2-GA-VR.pdf") % (find-sh0 "cp -v ~/LATEX/2016-2-GA-VR.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-2-GA-VR.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-2-GA-VR.pdf % file:///tmp/2016-2-GA-VR.pdf % file:///tmp/pen/2016-2-GA-VR.pdf % http://angg.twu.net/LATEX/2016-2-GA-VR.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-angg ".emacs.papers" "latexgeom") % (find-latexgeomtext "total={6.5in,8.75in},") \usepackage[%total={6.5in,4in}, %textwidth=4in, paperwidth=4.5in, %textheight=5in, paperheight=4.5in, a4paper, top=1.5in, left=1.5in%, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\V(#1){\VEC{#1}} \def\pla{{\mathsf{pla}}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2016.2 \par VR - 23/jan/2017 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. % \par Versão: 14/mar/2016 % \par Links importantes: % \par \url{http://angg.twu.net/2015.2-C2.html} (página do curso) % \par \url{http://angg.twu.net/2015.2-C2/2015.2-C2.pdf} (quadros) % \par \url{http://angg.twu.net/LATEX/2015-2-C2-material.pdf} % \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar \unitlength=5pt \def\closeddot{\circle*{0.6}} \def\pictline#1{{\linethickness{1.0pt}\expr{Line.new(#1):pict()}}} 1) \T(Total: 2.0 pts) Verdadeiro ou falso? Justifique. a) \B(1.0 pts) $\Pr_{\uu} (3\uu) = 3\uu$. b) \B(1.0 pts) Se $\uu⊥\vv$ então $\Pr_{\uu} (4\uu+5\vv) + \Pr_{\vv} (4\uu+5\vv) = (4\uu+5\vv)$. \bsk \bsk 2) \T(Total: 2.0 pts) Sejam $r=\setofxyst{y=-2-2x}$, $A=(-1,5)$, $B=(-1,4)$, $C=(-1,3)$, $D=(-1,2)$, $E=(-1,1)$, $F=(-1,0)$, $G=(-1,-1)$, $H=(-1,-2)$, e sejam $A'$ o ponto de $r$ mais próximo de $A$, $B'$ o ponto de $r$ mais próximo de $B$, e assim por diante. a) \B(0.5 pts) Encontre $A'$. b) \B(0.7 pts) Encontre $B'$. c) \B(0.8 pts) Calcule $d(A,r)$, $d(B,r)$, $d(C,r)$, $d(D,r)$, $d(E,r)$, $d(F,r)$, $d(G,r)$, $d(H,r)$. \bsk \bsk 3) \T(Total: 2.0 pts) Represente graficamente as cônicas com as equações abaixo. Algumas são degeneradas. \begin{tabular}[t]{lcl} a) \B(0.2 pts) $(x-3)^2=1$ \\ b) \B(0.2 pts) $(x+y)^2=1$ \\ c) \B(0.3 pts) $(x-3)^2 + (x+y)^2 = 0$ \\ d) \B(1.0 pts) $(x-3)^2 + (x+y)^2 = 1$ \\ \end{tabular} \quad \begin{tabular}[t]{lcl} e) \B(0.3 pts) $(x-3)(x+y)=0$ \\ f) \B(1.0 pts) $(x-3)(x+y) = 1$ \\ \end{tabular} \bsk \bsk 4) \T(Total: 2.0 pts) Uma aplicação do `$×$' que não foi mencionada na p.35 é a seguinte. Se $A,B,C∈\R^3$, definimos: % $$\begin{array}{c} \pla(A,B,C) \;:=\; \setofxyzst{w_1x+w_2y+w_3z = w_1A_1 + w_2A_2 + w_3A_3} \\[5pt] \text{(onde $\ww := \Vec{AB}×\Vec{AC}$)} \\ \end{array} $$ % \noindent A aplicação é: {\sl se $A,B,C$ não são colineares então $\pla(A,B,C)$ é o plano contendo $A$, $B$, e $C$.} \ssk a) \B(0.2 pts) Sejam $A=(2,0,0)$, $B=(0,3,0)$, $C=(0,0,4)$, $π=\pla(A,B,C)$. Expresse $π$ na forma $\setofxyzst{ax+by+cz=d}$. Quem são $a$, $b$, $c$, $d$? b) \B(0.8 pts) Encontre o valor de $z$ que faz com que o ponto $(1,1,z)$ pertença ao $π$ do item anterior. c) \B(0.2 pts) Teste se $(2,3,4) ∈ \pla((1,0,0),\,(2,0,0),\,(3,0,0))$. d) \B(0.8 pts) Explique o que acontece quando $A,B,C$ são colineares. O que é $\pla(A,B,C)$ neste caso? \bsk \bsk 5) \T(Total: 2.0 pts) Calcule a distância entre $r=\setofst{(x,4-2x,0)}{x∈\R}$ e $r'=\setofst{(3-z,3-z,z)}{z∈\R}$. % \newpage % % $\vcenter{\hbox{\beginpicture(-2,-2)(2,2)% % \pictaxes% % \pictline{v(-1,0), v(1,-2), -2, 2} % \end{picture}% % }}$ % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: