Classical logic:
Idea:
0 means "false"
1 means "true"
Operations:

```
\(\begin{array}{cclllll}P & Q & P \& Q & P \vee Q & P \rightarrow Q & P \leftrightarrow Q & \end{array} \quad P \quad \neg P\)
\(0 \quad 1 \quad 0 \& 1=0 \quad 0 \vee 1=1 \quad 0 \rightarrow 1=1 \quad 0 \leftrightarrow 1=0 \quad 1 \quad \neg 1=0\)
\(1 \quad 0 \quad 1 \& 0=0 \quad 1 \vee 0=1 \quad 1 \rightarrow 0=0 \quad 1 \leftrightarrow 0=0\)
\(1 \quad 1 \quad 1 \& 1=1 \quad 1 \vee 1=1 \quad 1 \rightarrow 1=1 \quad 1 \leftrightarrow 1=1\)
```

We will use a more compact form.
If $P=1$ and $Q=0$, then

So:

P	Q	$P \& Q$	$P \vee Q$	$P \rightarrow Q$	$P \leftrightarrow Q$		P	$\neg P$
0	0	0	0	1	1			
0	1	0	1	1	0			
1	0	0	1	0	0		1	0
1	1	1	1	1	1			

Constants:
$T=1$
$\perp=0$

Our first non-classical logic:
Idea:
00 means "false"
11 means "true"
01 is something intermediate between true and false
Operations:

P	Q	$P \& Q$	$P \vee Q$	$P \rightarrow Q$	$P \leftrightarrow Q$		P	$\neg P$
00	00	00	00	11	11		00	11
00	01	00	01	11	00		01	00
00	11	00	11	11	00		11	00
01	00	00	01	00	00			
01	01	01	01	11	11			
01	11	01	11	11	01			
11	00	00	11	00	00			
11	01	01	11	01	01			
11	11	11	11	11	11			

Constants:
$\top=11$
$\perp=00$

