Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-2-LA-zhas.tex") % (find-angg "LATEX/2016-2-LA-zhas.lua") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-2-LA-zhas.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-2-LA-zhas.pdf")) % (defun e () (interactive) (find-LATEX "2016-2-LA-zhas.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-2-LA-zhas")) % (find-xpdfpage "~/LATEX/2016-2-LA-zhas.pdf") % (find-sh0 "cp -v ~/LATEX/2016-2-LA-zhas.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-2-LA-zhas.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-2-LA-zhas.pdf % file:///tmp/2016-2-LA-zhas.pdf % file:///tmp/pen/2016-2-LA-zhas.pdf % http://angg.twu.net/LATEX/2016-2-LA-zhas.pdf % «.comprehension» (to "comprehension") % «.comprehension-2» (to "comprehension-2") % «.comprehension-3» (to "comprehension-3") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} \directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \pu \unitlength=9pt \def\closeddot{\circle*{0.3}} \def\opendot {\circle*{0.3}\color{white}\circle*{0.2}} % ____ _ _ % / ___|___ _ __ ___ _ __ _ __ ___| |__ ___ _ __ ___(_) ___ _ __ % | | / _ \| '_ ` _ \| '_ \| '__/ _ \ '_ \ / _ \ '_ \/ __| |/ _ \| '_ \ % | |__| (_) | | | | | | |_) | | | __/ | | | __/ | | \__ \ | (_) | | | | % \____\___/|_| |_| |_| .__/|_| \___|_| |_|\___|_| |_|___/_|\___/|_| |_| % |_| % % «comprehension» (to ".comprehension") % (find-LATEX "2016-2-GA-algebra.tex" "comprehension") % (laz162p 1 "comprehension") % (lalp 8) \def\und#1#2{\underbrace{#1}_{#2}} \def\und#1#2{\underbrace{#1}_{\text{#2}}} \def\ug#1{\und{#1}{gen}} \def\uf#1{\und{#1}{filt}} \def\ue#1{\und{#1}{expr}} \def\uv#1{\und{#1}{var}} {\bf Set comprehensions} \ssk In the (non-standard) explicit notation for set comprehensions we have generators and filters separated by commas, then a ``;'', then the output expression: \ssk $\begin{array}{lll} \{\ug{a∈\{1,2,3,4\}}; \ue{10a}\} &=& \{10,20,30,40\} \\ \{\ug{a∈\{1,2,3,4\}}; \ue{a}\} &=& \{1,2,3,4\} \\ \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{a}\} &=& \{3,4\} \\ \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{10a}\} &=& \{30,40\} \\ \{\ug{a∈\{10,20\}}, \ug{b∈\{3,4\}}; \ue{a+b}\} &=& \{13,14,23,24\} \\ \{\ug{a∈\{1,2\}}, \ug{b∈\{3,4\}}; \ue{(a,b)}\} &=& \{(1,3),(1,4),(2,3),(2,4)\} \\ \end{array} $ \bsk We can calculate set comprehensions using tables. Here are two examples. \def\tbl#1#2{\fbox{$\begin{array}{#1}#2\end{array}$}} \def\tbl#1#2{\fbox{$\sm{#2}$}} \def\V{\mathbf{T}} \def\F{\mathbf{F}} % "Stop": \def\S{\omit$|$\hss} \def\S{\omit\vrule\hss} \def\S{\omit\vrule$($\hss} \def\S{\omit\vrule$\scriptstyle($\hss} \def\S{\omit\vrule\phantom{$\scriptstyle($}\hss} % stop % strut: \def\s{\mathstrut} \def\s{\phantom{$|$}} \def\s{\phantom{|}} \def\s{} \msk $\{\ug{x∈\{1,2,3\}}, \ug{y∈\{3,4\}}, \uf{x+y<6}; \ue{(x,y)}\} = \{(1,3),(1,4),(2,3)\} $ \tbl{ccc}{ \s x & y & x+y<6 & (x,y) \\\hline \s 1 & 3 & \V & (1,3) \\ \s 1 & 4 & \V & (1,4) \\ \s 2 & 3 & \V & (2,3) \\ \s 2 & 4 & \F & \S \\ \s 3 & 3 & \F & \S \\ \s 3 & 4 & \F & \S \\ } \bsk $\{\ug{(x,y)∈\{1,2,3\}^2}, \uf{x>y}; \ue{(x,y)}\} = \{(2,1), (3,1), (3,2)\} $ \tbl{ccc}{ \s (x,y) & x & y & x>y & (x,y) \\\hline \s (1,1) & 1 & 1 & \F & \S \\ \s (1,2) & 1 & 2 & \F & \S \\ \s (1,3) & 1 & 3 & \F & \S \\ \s (2,1) & 2 & 1 & \V & (2,1) \\ \s (2,2) & 2 & 2 & \F & \S \\ \s (2,3) & 2 & 3 & \F & \S \\ \s (3,1) & 3 & 1 & \V & (3,1) \\ \s (3,2) & 3 & 2 & \V & (3,2) \\ \s (3,3) & 3 & 3 & \F & \S \\ } \newpage % «comprehension-2» (to ".comprehension-2") % (laz162p 2 "comprehension-2") % (lazp 2) {\bf Set comprehensions (2)} There are {\sl two} standard notations for set comprehensions -- they both use ``$|$'', but one is ``$\setofst{\text{generator}}{\text{filters}}$'' (``g$|$f'') the other ``$\setofst{\text{expr}}{\text{generators and filters}}$'' (``e$|$gf'')... Here are some examples of translations standard$↔$explicit: \msk $\begin{array}{llll} & \text{(standard)} & & \text{(explicit)} \\[5pt] & \setofst{\ue{10a}}{\ug{a∈\{1,2,3,4\}}} &=& \{\ug{a∈\{1,2,3,4\}}; \ue{10a}\} \\ & \setofst{\ue{a}}{\ug{a∈\{1,2,3,4\}}} &=& \{\ug{a∈\{1,2,3,4\}}; \ue{a}\} \\ & \setofst{\ug{a∈\{1,2,3,4\}}}{\uf{a≥3}} &=& \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{a}\} \\ & \setofst{\ue{a}}{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}} &=& \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{a}\} \\ & \setofst{\ue{10a}}{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}} &=& \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{10a}\} \\ % & \{\ug{a∈\{10,20\}}, \ug{b∈\{3,4\}}; \ue{a+b}\} \\ % & \{\ug{a∈\{1,2\}}, \ug{b∈\{3,4\}}; \ue{(a,b)}\} \\ \end{array} $ \msk \msk In the ``g$|$f'' case the trick is that the ``expr'' is the variable of the generator... examples: \msk $\begin{array}{llll} & \text{(standard)} & & \text{(explicit)} \\[5pt] & \setofst{\ug{\uv{a}∈\{1,2,3,4\}}}{\uf{a≥3}} &=& \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{a}\} \\ & \setofst {\ug{\uv{(x,y)}∈\{1,2,3\}^2}} {\uf{x>y}} &=& \{\ug{(x,y)∈\{1,2,3\}^2}, \uf{x>y}; \ue{(x,y)}\} \\ \end{array} $ \bsk {\bf Exercises} \msk $\begin{array}{rcl} A &:=& \{x∈\{0,1,2,3\}; (x,3-x)\} \\ % 2C B &:=& \{x∈\{1,2,3\}, y∈\{3,4\}; (x,y)\} \\ % 2E C &:=& \{x∈\{3,4\}, y∈\{1,2,3\}; (y,x)\} \\ % 2G D &:=& \{x∈\{3,4\}, y∈\{1,2,3\}; (x,2)\} \\ % 2H E &:=& \{x∈\{1,2,3\}, y∈\{3,4\}, x+y>4; (x,y)\} \\ % 2J F &:=& \{x,y∈\{0,1,2,3,4\}; (x,y)\} \\ % 2L G &:=& \{x,y∈\{0,1,2,3,4\}, y=3; (x,y)\} \\ % 2M H &:=& \{x,y∈\{0,1,2,3,4\}, x=2; (x,y)\} \\ % 2N I &:=& \{x,y∈\{0,1,2,3,4\}, x+y=3; (x,y)\} \\ % 2O J &:=& \{x,y∈\{0,1,2,3\};(x,y)\} \\ % 5A K &:=& \{x,y∈\{0,1,2,3\}, y=2; (x,y)\} \\ % 5B L &:=& \{x,y∈\{0,1,2,3,4\}, y=2x; (x,y)\} \\ % 5E M &:=& \{(x,y)∈\{0,1,2,3,4\}^2, y=2x; (x,y)\} \\ % 5F \end{array} $ \newpage % «comprehension-3» (to ".comprehension-3") % (laz162p 3 "comprehension-3") $\begin{array}{rcl} N &:=& \setofst{(x,x)}{x∈\{0,1,2,3\}} \\ % 3C O &:=& \setofst{(x,2)}{x∈\{0,1,2,3\}} \\ % 3M P &:=& \setofst {(x,y)∈\{0,1,2,3,4\}^2} {y=2x} \\ % 5J Q &:=& \setofst {(x,y)∈\{1,2,3\}^2} {0x+0y=0} \\ % 5N R &:=& \setofst {(x,y)∈\{1,2,3\}^2} {0x+0y=2} \\ % 5O S &:=& \setofst {(x,y)∈\{1,2,3\}^2} {x≥y} \\ % 5P \end{array} $ %$\picturepiecewise(-1,-2)(5,2){ % (-2,1)--(2,1)c (2,-1)o--(3,-1)o (3,0)c--(6,0) % } %$ % (find-angg ".emacs" "find-planarhas") % (find-LATEX "2015planar-has.tex" "connectives") \bsk \bsk \def∧{\mathbin{\&}} $$\def\o#1{\mathop{\mathsf{#1}}} \def\o#1{\mathbin{\mathsf{#1}}} \def\a#1#2{\ang{#1,#2}} \def\ab{\a ab} \def\cd{\a cd} \begin{array}{rcl} % \ab ≤ \cd &:=& a≤c∧b≤d \\ \ab ≥ \cd &:=& a≥c∧b≥d \\[5pt] % \ab \o{above} \cd &:=& a≥c∧b≥d \\ \ab \o{below} \cd &:=& a≥c∧b≥d \\ \ab \o{leftof} \cd &:=& a≥c∧b≤d \\ \ab \o{rightof} \cd &:=& a≤c∧b≥d \\[5pt] % \o{ne}(\ab) &:=& \o{if} \o{valid}(\a a{b+1}) \o{then} \o{ne}(\a a{b+1}) \o{else} \ab \o{end} \\ \o{nw}(\ab) &:=& \o{if} \o{valid}(\a {a+1}b) \o{then} \o{nw}(\a {a+1}b) \o{else} \ab \o{end} \\\\ % \ab ∧ \cd &:=& \a{\o{min}(a,c)}{\o{min}(b,d)} \\ \ab ∨ \cd &:=& \a{\o{max}(a,c)}{\o{max}(b,d)} \\[5pt] % \ab \to \cd &:=& \begin{array}[t]{llll} \o{if} & \ab \o{below} \cd & \o{then} & ⊤ \\ \o{elseif} & \ab \o{leftof} \cd & \o{then} & \o{ne}(\ab∧\cd) \\ \o{elseif} & \ab \o{rightof} \cd & \o{then} & \o{nw}(\ab∧\cd) \\ \o{elseif} & \ab \o{above} \cd & \o{then} & \cd \\ \o{end} \end{array} \\\\ % ⊥ &:=& \a00 \\ ¬\ab &:=& \ab→⊥ \\ \end{array} $$ \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: