Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016optativa-1.tex") % (find-angg "LATEX/2016optativa-1.lua") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016optativa-1.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016optativa-1.pdf")) % (defun e () (interactive) (find-LATEX "2016optativa-1.tex")) % (defun l () (interactive) (find-LATEX "2016optativa-1.lua")) % (defun u () (interactive) (find-latex-upload-links "2016optativa-1")) % (defun z () (interactive) (find-zsh "flsfiles-tgz 2016optativa-1.fls 2016optativa-1.tgz") % (find-xpdfpage "~/LATEX/2016optativa-1.pdf") % (find-sh0 "cp -v ~/LATEX/2016optativa-1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016optativa-1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016optativa-1.pdf % file:///tmp/2016optativa-1.pdf % file:///tmp/pen/2016optativa-1.pdf % http://angg.twu.net/LATEX/2016optativa-1.pdf \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} %\usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-angg "LATEX/edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} \directlua{loadluarepl()} % (find-angg "LUA/lua50init.lua" "loadluarepl") \directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \def\repl{\directlua{sync:run()}} %\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end %\directlua{print "11111"} %\repl %\directlua{print "22222"} % _____ _ _ _ % |_ _|_ _ _ _| |_ ___ | | ___ __ _(_) ___ ___ % | |/ _` | | | | __/ _ \| |/ _ \ / _` | |/ _ \/ __| % | | (_| | |_| | || (_) | | (_) | (_| | | __/\__ \ % |_|\__,_|\__,_|\__\___/|_|\___/ \__, |_|\___||___/ % |___/ \def\und#1#2{\underbrace{#1}_{#2}} \def\und#1#2{\underbrace{#1}_{\textstyle #2}} \def\subf#1{\underbrace{#1}_{}} \def\p{\phantom{(}} We can calculate the result of $¬¬P→P$ when $P=0$ (left) and when $P=1$ (right) with: \msk $\und {{\und {¬ {\und {¬ \und P 0} 1}} 0} → {\und P 0}} 1 \qquad \und {{\und {¬ {\und {¬ \und P 1} 0}} 1} → {\und P 1}} 1 $ \bsk The {\it subformulas} of $¬¬P→P$ are: \msk $\subf{\subf{¬ \subf{¬ \subf P}} → {\subf P}}$ \bsk If we write the result of each subformula under its central connective we get: \msk $\begin{array}{ccccc} ¬ & ¬ & P & → & P \\ \hline & & 0 & & 0 \\ & 1 & & & \\ 0 & & & & \\ & & & 1 & \\ \end{array} \qquad \begin{array}{ccccc} ¬ & ¬ & P & → & P \\ \hline & & 1 & & 1 \\ & 0 & & & \\ 1 & & & & \\ & & & 1 & \\ \end{array} $ \msk We can write all results in the same line... We get something more compact but harder to read, \msk $\begin{array}{ccccc} ¬ & ¬ & P & → & P \\ \hline 0 & 1 & 0 & 1 & 0 \\ \end{array} \qquad \begin{array}{ccccc} ¬ & ¬ & P & → & P \\ \hline 1 & 0 & 1 & 1 & 1 \\ \end{array} $ \bsk We can put each case in a single line. Here we also add a column at the left with the values of $P$. \msk $\begin{array}{ccccccc} P & & ¬ & ¬ & P & → & P \\ \hline % (¬\p & (¬\p & \p\p P)) & → & P \\ \hline 0 & & 0 & 1 & 0 & 1 & 0 \\ 0 & & 1 & 0 & 1 & 1 & 1 \\ \end{array} $ \msk \newpage % ____ _ _ % / ___|___ _ __ ___ _ __ _ __ ___| |__ ___ _ __ ___(_) ___ _ __ % | | / _ \| '_ ` _ \| '_ \| '__/ _ \ '_ \ / _ \ '_ \/ __| |/ _ \| '_ \ % | |__| (_) | | | | | | |_) | | | __/ | | | __/ | | \__ \ | (_) | | | | % \____\___/|_| |_| |_| .__/|_| \___|_| |_|\___|_| |_|___/_|\___/|_| |_| % |_| Let $A = \{x:\{-1,...,4\}; x^2\}$ and $B = \{x:\{-1,...,4\}; x^2≤5; x\}$. Then $A$ and $B$ can be calculated by: \msk $\begin{array}{cc} x & x^2 \\ \hline -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ \end{array} \qquad \begin{array}{cccc} x & x^2 & x^2≤5 & x \\ \hline -1 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 4 & 1 & 2 \\ 3 & 9 & 0 & \\ 4 & 16 & 0 & \\ \end{array} $ \msk We get: $A = \{1,0,1,4,9,16\}$, $B = \{-1,0,1,2\}$. \bsk Let $A = \{x:\{1,...,5\}, y:\{1,...,x\}, x+y≤6; (x,y)\}$ and $B = \{y:\{1,...,5\}, x:\{y,...,5\}, x+y≤6; (x,y)\}$. Then $A$ and $B$ can be calculated by: \msk $\begin{array}{ccccc} x & y & x+y & x+y≤6 & (x,y) \\ \hline 1 & 1 & 2 & 1 & (1,1) \\ 2 & 1 & 3 & 1 & (2,1) \\ & 2 & 4 & 1 & (2,2) \\ 3 & 1 & 4 & 1 & (3,1) \\ & 2 & 5 & 1 & (3,2) \\ & 3 & 6 & 1 & (3,3) \\ 4 & 1 & 5 & 1 & (4,1) \\ & 2 & 6 & 1 & (4,2) \\ & 3 & 7 & 0 & \\ & 4 & 8 & 0 & \\ 5 & 1 & 6 & 1 & (5,1) \\ & 2 & 7 & 1 & \\ & 3 & 8 & 0 & \\ & 4 & 9 & 0 & \\ & 5 & 10 & 0 & \\ \end{array} \qquad \begin{array}{ccccc} y & x & x+y & x+y≤6 & (x,y) \\ \hline 1 & 1 & 2 & 1 & (1,1) \\ & 2 & 3 & 1 & (2,1) \\ & 3 & 4 & 1 & (3,1) \\ & 4 & 5 & 1 & (4,1) \\ & 5 & 6 & 1 & (5,1) \\ 2 & 2 & 4 & 1 & (2,2) \\ & 3 & 5 & 1 & (3,2) \\ & 4 & 6 & 1 & (4,2) \\ & 5 & 7 & 0 & \\ 3 & 3 & 6 & 1 & (3,3) \\ & 4 & 7 & 0 & \\ & 5 & 8 & 0 & \\ 4 & 4 & 8 & 0 & \\ & 5 & 9 & 0 & \\ 5 & 5 & 10 & 0 & \\ \end{array} $ \msk We get: $A = \{ (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1)\}$ and $B = \{ (1,1), (2,1), (3,1), (4,1), (5,1), (2,2), (3,2), (4,2), (3,3)\}$. \newpage \end{document} * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) lualatex 2016optativa-1 % Local Variables: % coding: utf-8-unix % End: