Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017-1-GA-VR.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017-1-GA-VR.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017-1-GA-VR.pdf")) % (defun e () (interactive) (find-LATEX "2017-1-GA-VR.tex")) % (defun u () (interactive) (find-latex-upload-links "2017-1-GA-VR")) % (find-xpdfpage "~/LATEX/2017-1-GA-VR.pdf") % (find-sh0 "cp -v ~/LATEX/2017-1-GA-VR.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017-1-GA-VR.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017-1-GA-VR.pdf % file:///tmp/2017-1-GA-VR.pdf % file:///tmp/pen/2017-1-GA-VR.pdf % http://angg.twu.net/LATEX/2017-1-GA-VR.pdf % «.gab-2» (to "gab-2") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \pu \def\V(#1){\VEC{#1}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2017.1 \par VR - 18/jul/2017 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk { \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar % (find-angg "LATEX/2015-2-GA-P2.tex") % (find-angg "LATEX/2015-2-GA-P2.tex") 1) \T(Total: 2.5 pts) Sejam $A=(-5,0)$, $B=(5,0)$, $\vv_m=\VEC{1,m}$, $\ww_m=\VEC{1,-1/m}$, $r_m=\setofst{A+t\vv_m}{t∈\R}$, $s_m=\setofst{A+t\ww_m}{t∈\R}$, $P_m=r_m∩s_m$. $C_α=\setofxyst{x^2+y^2=α}$. a) \B(0.2 pts) Represente graficamente $A, B, r_1, s_1, P_1$. b) \B(0.3 pts) Represente graficamente $A, B, r_2, s_2, P_2$. c) \B(1.0 pts) Dê as coordenadas de $P_m$ para $m=1,2,3,-1,-2,-3, \frac12, \frac13, -\frac12, -\frac13$. d) \B(1.0 pts) Para que valor de $α$ o círculo $C_α$ fica tangente a $r_2$? \bsk \bsk 2) \T(Total: 3.0 pts) Faça esboços das cônicas com as equações abaixo. Algumas delas são degeneradas. Em todos os itens abaixo considere que $u=(x-4)/2$ e $v=y-x/2$ --- ou que $u$ e $v$ são {\sl abreviações} para $(x-4)/2$ e $y-x/2$. % $$ \begin{tabular}[t]{rl} a) (0.5 pts) & $u(u-1)=0$ \\ b) (0.5 pts) & $v(v-1)=0$ \\[4pt] c) (0.2 pts) & $u^2+v^2=0$ \\ d) (0.3 pts) & $u^2+v^2=1$ \\[4pt] \end{tabular} \quad \begin{tabular}[t]{rl} e) (0.2 pts) & $uv=0$ \\ f) (0.4 pts) & $uv=1$ \\ g) (0.4 pts) & $uv=-1$ \\[4pt] h) (0.5 pts) & $u^2=v$ \\ i) (0.5 pts) & $u=v^2$ \\ \end{tabular} $$ \bsk 3) \T(Total: 5.5 pts) Sejam $π=\setofxyzst{2x+2y+z=4}$, $O=(0,0,0)$ e $r=\setofst{(1,2,3)+t\VEC{2,1,0}}{t∈\R}$. a) \B(0.2 pts) Dê as coordenadas do ponto $F∈π∩r$. b) \B(1.0 pts) Encontre o ponto $G∈r$ mais próximo do ponto $(0,0,0)$. c) \B(1.0 pts) Encontre o ponto $H∈π$ mais próximo do ponto $(0,0,0)$. d) \B(1.0 pts) Calcule $d(π,(0,0,0))$ usando `$×$'. e) \B(0.3 pts) Verifique se os resultados dos seus itens (b) e (c) são coerentes. f) \B(1.0 pts) Dê a equação de um plano $π'$ paralelo a $π$ e tal que $d(π,π')=1$. g) \B(0.5 pts) Encontre um ponto $J∈r$ tal que $d(π,J)=1$. h) \B(0.5 pts) Encontre um ponto $K∈r$ tal que $d(π,K)=2$. \newpage {\bf Gabarito:} (não revisado) \bsk % _ % / | % | | % | | % |_| % 1a) (desenho) 1b) (desenho) 1c) $P_1=(0,5)$, $P_2=(3,4)$, $P_3=(4,3)$, $P_{-1}=(0,-5)$, $P_{-2}=(3,-4)$, $P_{-3}=(4,-3)$, $P_{1/2}=(-3,4)$, $P_{1/3}=(-4,3)$, $P_{-1/2}=(-3,-4)$, $P_{-1/3}=(-4,-3)$. 1d) $α=20$ \bsk % ____ % |___ \ % __) | % / __/ % |_____| % % «gab-2» (to ".gab-2") \unitlength=5pt \def\closeddot{\circle*{0.6}} \def\pictpoint#1{\put(#1){\closeddot}} \def\pictline#1{{\linethickness{1.0pt}\expr{Line.new(#1):pict()}}} \def\pictlinethin#1{{\linethickness{0.2pt}\expr{Line.new(#1):pict()}}} \def\pictLine(#1)(#2)#3{% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictline{#3} \end{picture}% }}% } \def\pictellipse#1{{\linethickness{1.0pt}\expr{Ellipse.new(#1):pict()}}} \def\pictEllipse(#1)(#2)#3{% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictellipse{#3} \end{picture}% }}% } \def\pictEllipseF(#1)(#2)#3(#4)(#5){% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictellipse{#3} \put(#4){\closeddot} \put(#5){\closeddot} \end{picture}% }}% } \def\picthyperbole#1#2{{\linethickness{1.0pt}\expr{Hyperbole.new(#1):pict(#2)}}} \def\pictparabola #1#2{{\linethickness{1.0pt}\expr{Parabola .new(#1):pict(#2)}}} \def\mygrid{ \pictlinethin{v(2, 0), v(0, 1), -1.5, 3} % u = -1 \pictlinethin{v(4, 0), v(0, 1), -0.5, 4} % u = 0 \pictlinethin{v(6, 0), v(0, 1), 0.5, 5} % u = 0 \pictlinethin{v(0, 1), v(1,.5), -2, 8} % v = 1 \pictlinethin{v(0, 0), v(1,.5), -2, 8} % v = 0 \pictlinethin{v(0,-1), v(1,.5), -2, 8} % v = -1 } 2a) % a) u(u-1)=0 $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \pictline{v(4, 0), v(0,1), -0.5, 4} % u = 0 \pictline{v(6, 0), v(0,1), 0.5, 5} % u = 1 \end{picture}% }}$ \; 2b) % b) v(v-1)=0 $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \pictline{v(0, 0), v(1, .5), -2, 8} % v = 0 \pictline{v(0, 1), v(1, .5), -2, 8} % v = 1 \end{picture}% }}$ \; 2c) % c) u^2+v^2=0 $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \put(4,2){\closeddot} \end{picture}% }}$ \; 2d) % d) u^2+v^2=1 $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \pictellipse{v(4,2), v(2,1), v(0,1)} % \picthyperbole{v(2,-2), v(1,0), v(-1,1), 1}{10, -4, -1/2, 1/4, 4} % \put(2,-2){\closeddot} % \pictline{v(0,-2), v(1,0), -1, 5} % y-2 = 0 % \pictline{v(0, 0), v(1,-1), -2, 4} % x+y = 0 \end{picture}% }}$ \msk 2e) % e) uv=0 $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \pictline{v(4, 0), v(0,1), -0.5, 4} % u = 0 \pictline{v(0, 0), v(1,.5), -2, 8} % v = 0 \end{picture}% }}$ \quad 2f) % f) uv=1 $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \picthyperbole{v(4,2), v(2,1), v(0,1), 1}{10, -3, -1/3, 1/3, 3} \end{picture}% }}$ \; 2g) % g) uv=-1 $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \picthyperbole{v(4,2), v(-2,-1), v(0,1), 1}{10, -3, -1/3, 1/3, 3} \end{picture}% }}$ 2h) % h) u^2=v $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \pictparabola{v(4,2), v(2,1), v(0,1), 2}{10, -1.6, 1.4} \end{picture}% }}$ \; 2i) $\vcenter{\hbox{% \beginpicture(-2,-2)(8,5)% \pictaxes% \mygrid \pictparabola{v(4,2), v(0,1), v(2,1), 2}{10, -1.4, 1.4} % \pictellipse{v(4,6), v(2,0), v(0,3)} \end{picture}% }}$ \bsk 3) Sejam $\nn=\VEC{2,2,1}$, $\nn'=\VEC{\frac23,\frac23,\frac13}$, $A=(1,2,3)$, $\vv=\VEC{2,1,0}$. 3a) $\begin{array}[t]{l} F=(1+2t, 2+t, 3), \\ F∈π \quad⇒\quad 2(1+2t) + 2(2+t) + 3 = 4 \quad⇒\quad 9 + 6t = 4 \\ ⇒\quad t = -\frac 56 \quad⇒\quad F=(1-2\frac56, 2-\frac56, 3)=(-\frac46, \frac76, 3) \\ \end{array} $ 3b) $\begin{array}[t]{rcl} \Pr_\vv \Vec{AO} &=& \Pr_{\VEC{2,1,0}} \VEC{-1,-2,-3} \\ &=& \frac{\VEC{2,1,0}·\VEC{-1,-2,-3}}{\VEC{2,1,0}·\VEC{2,1,0}} \VEC{2,1,0} \\ &=& -\frac45 \VEC{2,1,0} \\ &=& \VEC{-\frac85, -\frac45, 0} \\ G &=& A + \Pr_\vv \Vec{AO} \\ &=& (1,2,3) + \VEC{-\frac85, -\frac45, 0} \\ &=& (-\frac35, \frac65, 3) \\ \end{array} $ Repare que $\Vec{GO} = \VEC{\frac35, -\frac65, -3}$ é ortogonal a $\vv$. 3c) Seja $s = \setofst{O+t\nn}{t∈\R} = \setofst{(2t,2t,t)}{t∈\R}$; $O∈s$ e $s⊥π$. Seja $H∈s∩s$; $(2t,2t,t)∈π$ quando $9t=4 \;⇒\; t=\frac49 \;⇒\; H=(\frac89, \frac89, \frac49)$. 3d) Sejam $A=(2,0,0)$, $B=(0,2,0)$, $C=(0,0,4)$; $A,B,C∈π$. Sejam $\uu=\Vec{AB}=\VEC{-2,2,0}$, $\vv=\Vec{AC}=\VEC{-2,0,4}$, $\ww=\Vec{AO}=\VEC{-2,0,0}$. Então $\uu×\vv = \VEC{8,8,4}$, $\area(\uu,\vv) = ||\uu×\vv|| = 12$, $|[\uu,\vv,\ww]| = \vsm{-2 & 2 & 0 \\ -2 & 0 & 4 \\ -2 & 0 & 0} = -16$, $\frac{|[\uu,\vv,\ww]|}{\area(\uu,\vv)} = \frac{-16}{12} = -\frac43$, $d(π,O) = |-\frac43| = \frac43$. 3e) $d(H,O) = ||\VEC{-\frac89, -\frac89, -\frac49}|| = ||\frac19 \VEC{8, 8, 4}|| = \frac19 ||\VEC{8, 8, 4}|| = \frac{12}{9} = \frac43$; ou seja, $d(H,O)=d(π,O)$. \newpage % _____ __ _ % |___ / / _| __ _ __ _| |__ % |_ \| |_ / _` |/ _` | '_ \ % ___) | _| | (_| | (_| | |_) | % |____/|_| \__, |\__,_|_.__/ % |___/ 3f) O modo mais rápido é aproveitar que $\nn'=\VEC{\frac23,\frac23,\frac13}$ é um vetor normal a $π$ com $||\nn'|| = 1$. Como $A=(2,0,0)∈π$, $d(A+\nn',π) = d(A-\nn',π) = 1$; generalizando: $d(A+k\nn',π) = ||k\nn'|| = |k|$. {\sl Vou fazer umas contas que vão resolver este item e os próximos dois de uma vez só.} Seja $A_k = A+k\nn' = (2,0,0)+k\VEC{\frac23,\frac23,\frac k3} = (\frac{6+2k}{3}, \frac{2k}{3}, \frac k3)$. As soluções deste item são o plano paralelo a $π$ que contêm $A_1$ e o plano paralelo a $π$ que contém $A_{-1}$. Os planos paralelos a $π$ são da forma $\setofxyzst{2x+2y+z=α}$, então vamos definir $π_α=\setofxyzst{2x+2y+z=α}$; repare que $π=π_4$, $A=A_0$, $A_0∈π_4$. % $$\begin{array}{rcl} (x,y,z) ∈ π_α &⇒& α = 2x+2y+z \\ A_k ∈ π_α &⇒& α = 2\frac{6+2k}{3} + 2\frac{2k}{3} + \frac k3 \\ &⇒& α = \frac{12+4k+4k+k}{3} = \frac{12+9k}{3} = 4+3k \\ &⇒& π_α = \setofxyzst{2x+2y+z=4+3k}, \\ A_1∈π_α &⇒& π_α = \setofxyzst{2x+2y+z=7}, \\ A_{-1}∈π_α &⇒& π_α = \setofxyzst{2x+2y+z=1}. \\ \end{array} $$ 3g) Seja $R_t = (1,2,3)+t\VEC{2,1,0} = (1+2t, 2+t, 3)$. Temos: % $$\begin{array}{rcl} R_t∈π_α &⇒& (1+2t, 2+t, 3)∈π_α \\ &⇒& α = 2(1+2t) + 2(2+t) + 3 = 2+4t+4+2t+3 = 9+6t \\ &⇒& t = \frac{α-9}{6} \\ &⇒& R_t = (1+2\frac{α-9}{6}, 2+\frac{α-9}{6}, 3) = (\frac{6+2α-9}{6}, \frac{12+α-9}{6}, 3) \\ &⇒& r∩π_α = R_t = (\frac{2α-3}{6}, \frac{α+3}{6}, 3) \\ \end{array} $$ % As soluções são % $$\begin{array}{rcl} r∩π_7 &=& (\frac{2·7-3}{6}, \frac{7+3}{6}, 3) = (\frac{11}{6}, \frac{10}{6}, 3), \\ r∩π_1 &=& (\frac{2·1-3}{6}, \frac{1+3}{6}, 3) = (\frac{-1}{6}, \frac{4}{6}, 3). \\ \end{array} $$ 3f) As soluções são % $$\begin{array}{rcl} r∩π_{10} &=& (\frac{2· 10-3}{6}, \frac{10+3}{6}, 3) = (\frac{17}{6}, \frac{13}{6}, 3), \\ r∩π_{-2} &=& (\frac{2·(-2)-3}{6}, \frac{-2+3}{6}, 3) = (\frac{-7}{6}, \frac {1}{6}, 3). \\ \end{array} $$ \bsk \bsk \bsk Obs: se $π=\setofst{A + t\uu + t'\vv}{t,t'∈\R}$ então: $d(π,A+\ww) = \left| \frac{|[\uu,\vv,\ww|}{||\uu×\vv||} \right| = \left| \frac{(\uu×\vv)·\ww}{||\uu×\vv||} \right| = \frac{|(\uu×\vv)·\ww|}{||\uu×\vv||}$. Usando o $\uu$ e o $\vv$ do item 3d, temos $\uu×\vv=\VEC{8,8,4}$ e $d(π,A+\ww) = \frac{|\VEC{8,8,4}·\ww|}{12} = \frac{|\VEC{2,2,1}·\ww|}{3}$. Isto também vale para planos paralelos a $π$: se $π_α=\setofxyzst{2x+2y+z=α}$ e $(x_0,y_0,z_0)∈π_α$ então $d(π_α,A_α+\ww) = \frac{|\VEC{2,2,1}·\ww|}{3}$, $d(π_α,(x,y,z)) = \frac{|\VEC{2,2,1}·\VEC{x-x_0, y-y_0, z-z_0}|}{3}$. % % % $π_α = \setofxyzst{2x+2y+z=α}$. A interseção de $r$ com $π_α$ é: % % $$\begin{array}{rcl} % (1+2t, 2+t, 3) ∈ π_α &=& 2(1+2t) + 2(2+t) + 3 = α \\ % &=& 2 + 4t + 4 + 2t + 3 = α \\ % &=& 6t + 9 = α \\ % &=& t = \frac{α-9}{6} \\ % (1+2t, 2+t, 3) &=& (1+2\frac{α-9}{6}, 2+\frac{α-9}{6}, 3) \\ % &=& (\frac{-3+2α}{6}, \frac{3+α}{6}, 3) \\ % r∩π_α &=& (\frac{-3+2α}{6}, \frac{3+α}{6}, 3) \\ % \end{array} % $$ % % % % % \newpage % % % \bsk % \bsk % \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: