Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017-2-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017-2-C2-P1.tex" :end)) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017-2-C2-P1.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2017-2-C2-P1; makeindex 2017-2-C2-P1")) % (defun e () (interactive) (find-LATEX "2017-2-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2017-2-C2-P1")) % (find-xpdfpage "~/LATEX/2017-2-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2017-2-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017-2-C2-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017-2-C2-P1.pdf % file:///tmp/2017-2-C2-P1.pdf % file:///tmp/pen/2017-2-C2-P1.pdf % http://angg.twu.net/LATEX/2017-2-C2-P1.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2017.2 \par P1 - 13/nov/2017 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar % \bsk % \bsk % (c2q) 1) \T(Total: 2.0 pts) Calcule $$\intx {(\cos x)^6}.$$ \bsk 2) \T(Total: 3.0 pts) Calcule $$\intx {\sqrt{1-x^2}}.$$ \bsk 3) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x^3}{x^2 + 3x - 10}}.$$ \bsk 4) \T(Total: 2.0 pts) Sejam $F(a,b) = \Intx{a}{b}{|1-x^4|}$ e $G(b) = F(0,b)$. a) \B(0.5 pts) Calcule $F(0,2)$. b) \B(1.5 pts) Dê uma definição por casos para $G(b)$. \bsk 5) \T(Total: 1.5 pts) Sejam $(SD)$ e $(SI)$ as fórmulas para integração por substituição na integral definida e na integral indefinida, e $(WI)$ uma integração por substituição que demonstramos no curso usando ``bloquinhos de substituições'': % $$\begin{array}{ccccc} {(SD)} && \left( \Intx {a}{b}{f(g(x))g'(x)} = \Intu {g(a)}{g(b)}{f(u)} \right) \\ {(SI)} && \left( \intx {f(g(x))g'(x)} = \intu {f(u)} \right) \\ {(WI)} && \left( \intth {(\senθ)^3(\cosθ)^2\cosθ} = \ints {s^3(1-s^2)} \right) && \bsm{s=\senθ \\ \senθ→s \\ \frac{ds}{dθ}=\cosθ \\ \cosθ\,dθ→ds \\ (\cosθ)^2→(1-s^2)} \\ \end{array} $$ a) \B(0.1 pts) O que é $(SD)\bsm{f(u):=\sen u \\ g(x):=x^2 \\ a:=3 \\ b:=4}$? b) \B(0.4 pts) Adicione limites de integração na fórmula $(WI)$ para obter uma fórmula ``$(WD)$'' que calcula (ou melhor, ``simplifica'') a integral definida $(WDL)$ abaixo; note que falta pôr os limites de integração no ``lado direito'' (``$(WDR)$''). % $$\begin{array}{ccc} (WDL) && \Intth{a}{b} {(\senθ)^3(\cosθ)^2\cosθ}. \end{array} $$ c) \B(1.0 pts) Encontre uma substituição simultânea que aplicada a $(SD)$ demonstra $(WD)$. \newpage {\bf Mini-gabarito (não revisado):} \bsk 1) $(\cosθ)^6 = (\frac{E+E¹}{2})^6 = \frac{1}{64} (E^6 + 6 E^4 + 15 E^2 + 20 + 15 E^{-2} + 6 E^{-4} + E^{-6})$ $= \frac{1}{32} \frac{1}{2} (E^6 + E^{-6} + 6 (E^4 + E^{-4}) + 15 (E^2 + E^{-2}) + 20)$ $= \frac{1}{32} (\cos6θ + 6\cos4θ + 15\cos2θ + 10)$ $\intx{(\cos x)^6} = \frac{1}{32} \intx {(\cos6x + 6\cos4x + 15\cos2x + 10)}$ $= \frac{1}{32} (\frac{\sen6x}{6} + \frac{6\sen4x}{4} + \frac{15\sen2x}{2} + 10x)$ \bsk 2) $\intx {\sqrt{1-x^2}} = \frac{1}{2}(\arcsen(x) + x\sqrt{1-x^2})$ \bsk 3) $\intx {\frac{x^3}{x^2 + 3x - 10}} = \frac{x^2}{2} - 3x + \frac{8}{7} \ln|x-2| + \frac{125}{7}\ln|x+5|$ \bsk 4) Sejam $f(x)=|1-x^4|$, $h(x)=1-x^4$. Então $f(x)=h(x)$ em $[-1,1]$, $f(x)=-h(x)$ em $(-∞,-1]∪[1,∞)$. Seja $H(x)=∫h(x)\,dx = x-\frac{x^5}{5}$; $H(x)$ é uma primitiva de $f(x)$ em $[-1,1]$, e no resto da reta podemos usar $-H(x)$ como primitiva de $f(x)$. 4a) $F(0,2) = \Intx{0}{1}{f(x)} + \Intx{1}{2}{f(x)} = \difx{0}{1}{H(x)} + \difx{1}{2}{(-H(x))}$ $= (H(1)-H(0))+(-H(2)+H(1)) = -H(0) + 2H(1) -H(2)$ $= 2(1 - \frac15) - (2-\frac{32}5) = \frac{33}5$ 4b) $G(b)= \begin{cases} \difx{0}{-1}{H(x)} + \difx{-1}{b}{(-H(x))} & \text{se $b≤-1$} \\ \difx{0}{b}{H(x)} & \text{se $1≤b≤-1$} \\ \difx{0}{1}{H(x)} + \difx{1}{b}{(-H(x))} & \text{se $1≤b$} \\ \end{cases} $ $= \begin{cases} (H(-1)-H(0)) + (-H(b)+H(-1)) & \text{se $b≤-1$} \\ H(b)-H(0) & \text{se $1≤b≤-1$} \\ (H(1)-H(0)) + (-H(b)+H(1)) & \text{se $1≤b$} \\ \end{cases} $ $= \begin{cases} 2H(-1)-H(b) & \text{se $b≤-1$} \\ H(b) & \text{se $1≤b≤-1$} \\ 2H(1)-H(b) & \text{se $1≤b$} \\ \end{cases} $ \quad $= \begin{cases} -\frac85-b+\frac{b^5}{5} & \text{se $b≤-1$} \\ b-\frac{b^5}{5} & \text{se $1≤b≤-1$} \\ \frac85-b+\frac{b^5}{5} & \text{se $1≤b$} \\ \end{cases} $ \bsk 5a) $\left( \Intx {a}{b}{f(g(x))g'(x)} = \Intu {g(a)}{g(b)}{f(u)} \right) \bsm{f(u):=\sen u \\ g(x):=x^2 \\ a:=3 \\ b:=4}$ $= \left( \Intx {3}{4}{\sen(x^2)·2x} = \Intu {3^2}{4^2}{\sen(u)} \right)$ 5b) $\Intth{a}{b} {(\senθ)^3(\cosθ)^2\cosθ} = \Ints{\sen a}{\sen b} {s^3(1-s^2)}$ \msk 5c) $\left( \Intth {a}{b}{f(g(θ))g'(θ)} = \Ints {g(a)}{g(b)}{f(s)} \right) \bsm{f(s):=s^3(1-s^2) \\ g(θ):=\senθ \\}$ $= \left( \Intth{a}{b} {(\senθ)^3(1-\sen^2θ)\cosθ} = \Ints{\sen a}{\sen b} {s^3(1-s^2)} \right)$ \end{document} % Local Variables: % coding: utf-8-unix % End: