Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017adjunctions.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017adjunctions.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017adjunctions.pdf")) % (defun e () (interactive) (find-LATEX "2017adjunctions.tex")) % (defun u () (interactive) (find-latex-upload-links "2017adjunctions")) % (find-xpdfpage "~/LATEX/2017adjunctions.pdf") % (find-sh0 "cp -v ~/LATEX/2017adjunctions.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017adjunctions.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017adjunctions.pdf % file:///tmp/2017adjunctions.pdf % file:///tmp/pen/2017adjunctions.pdf % http://angg.twu.net/LATEX/2017adjunctions.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end %:*->*\to * \newpage \def\Sets{\mathsf{Sets}} $π$ and $π'$ are natural transformations $(×):\Set×\Set→\Set$ $(→):\Set^\op×\Set→\Set$ \msk $(×):\Set×\Set→\Set$ $A,B,A',B':\Objs(\Set)$ $(A,B),(A',B'):\Objs(\Set×\Set)$ $(α,β):(A,B)→(A',B')$ $(α,β):\Hom_{\Set×\Set}((A,B),(A',B'))$ %D diagram foo %D 2Dx 100 +45 +55 +45 %D 2D 100 A1 |--> A2 B1 |--> B2 %D 2D | | | | %D 2D | |--> | | |--> | %D 2D v v v v %D 2D +30 A3 |--> A4 B3 |--> B4 %D 2D %D ren A1 A2 ==> (A,B) (×)_0(A,B) %D ren A3 A4 ==> (A',B') (×)_0(A',B') %D ren B1 B2 ==> (A,B) A×B %D ren B3 B4 ==> (A',B') A'×B' %D (( A1 A2 |-> .plabel= a (×)_0 %D A1 A3 -> .plabel= l (α,β) %D A2 A4 -> .plabel= r (×)_1(α,β) %D A3 A4 |-> .plabel= b (×)_0 %D A1 A4 harrownodes nil 20 nil |-> .plabel= a (×)_1 %D B1 B2 |-> .plabel= a (×)_0 %D B1 B3 -> .plabel= l (α,β) %D B2 B4 -> .plabel= r \color{red}{α×β} %D B3 B4 |-> .plabel= b (×)_0 %D B1 B4 harrownodes nil 20 nil |-> .plabel= a (×)_1 %D )) %D enddiagram %D $$\pu \diag{foo} $$ %D diagram bar %D 2Dx 100 +45 +55 +45 %D 2D 100 A1 |--> A2 B1 |--> B2 %D 2D | | | | %D 2D | |--> | | |--> | %D 2D v v v v %D 2D +30 A3 |--> A4 B3 |--> B4 %D 2D %D ren A1 A2 ==> (A^\op,B) (→)_0(A^\op,B) %D ren A3 A4 ==> ({A'}^\op,B') (→)_0({A'}^\op,B') %D ren B1 B2 ==> (A^\op,B) A{→}B %D ren B3 B4 ==> ({A'}^\op,B') A'{→}B' %D (( A1 A2 |-> .plabel= a (→)_0 %D A1 A3 -> .plabel= l (α^\op,β) %D A2 A4 -> .plabel= r (→)_1(α^\op,β) %D A3 A4 |-> .plabel= b (→)_0 %D A1 A4 harrownodes nil 20 nil |-> .plabel= a (→)_1 %D B1 B2 |-> .plabel= a (→)_0 %D B1 B3 -> .plabel= l (α^\op,β) %D B2 B4 -> .plabel= r \color{red}{α→β} %D B3 B4 |-> .plabel= b (→)_0 %D B1 B4 harrownodes nil 20 nil |-> .plabel= a (→)_1 %D )) %D enddiagram %D $$\pu \diag{bar} $$ %: %: α:A->A' β:B->B' %: ---------------- %: α×β:A×B->A'×B' %: %: ^dp1 %: %: A B A B %: ------π -----π' %: :A×B->A α:A->A' :A×B->B β:B->B' %: -----------------; -----------------; %: :A×B->A' :A×B->B' %: ---------------------------\ang{,} %: :A×B->A'×B' %: %: ^dp2 %: \pu $$\ded{dp1}$$ $$\ded{dp2}$$ $$α×β \;\;:=\;\; \ang{(π;α),(π';β)}$$ $$(×)_1(α,β) \;\;:=\;\; α×β$$ $$(×)_1(γ) \;\;:=\;\; (πγ)×(π'γ)$$ %: %: α^\op:A^\op->{A'}^\op %: --------------------- %: α:A'->A β:B->B' %: ------------------------------- %: α{→}β:(A{→}B)->(A'→B') %: %: ^di1 %: %: α:A'->A [f:A→B]^1 β:B->B' %: ---------------------------------;; %: α;f;β:A'→B' %: ---------------------------------------λ %: λf{:}A{→}B.(α;f;β):(A{→}B)→(A'{→}B') %: %: ^di2 %: \pu $$\ded{di1}$$ $$\ded{di2}$$ $$α{→}β \;\;:=\;\; λf{:}A{→}B.(α;f;β)$$ $$(→)_1(α^\op,β) \;\;:=\;\; α{→}β$$ $$(×)_1(δ) \;\;:=\;\; (πδ)^\op{}→(π'δ)$$ %: %: A:\Objs(\catA) B:\Objs(\catB) %: -------------------------------(×)_0 %: (A,B):\Objs(\catA×\catB) %: %: ^da %: %: A:\Objs(\Set) B:\Objs(\Set) %: -------------------------------(×)_0 %: (A,B):\Objs(\Set×\Set) %: %: ^db %: %: A:\Sets B:\Sets %: -----------------× %: A×B:\Sets %: %: ^dc \pu $$\ded{da}$$ $$\ded{db}$$ $$\ded{dc}$$ \newpage %: %: A'\ton{α}A A\ton{f}RB A'\ton{α}A A\ton{f}RB %: -----------------------; ----------L_1 ----------♭ %: A'->RB LA'->LA LA->B %: ------♭ = ---------------------; %: LA'->B LA'->B %: %: ^nat-fl-1 ^nat-fl-2 %: %: LA\ton{g}B B\ton{β}B' LA\ton{g}B B\ton{β}B' %: -----------------------; ----------♭ ----------R_1 %: LA->B' A->RB RB->RB' %: ------♯ = -------------------♯ %: A->RB' A->RB' %: %: ^nat-sh-1 ^nat-sh-2 %: Naturalities: % $$\pu \begin{array}{lcrcl} (α;f)^♭ = Lα;f^♭ && \ded{nat-fl-1} &=& \ded{nat-fl-2} \\\\ (g;β)^♯ = g^♯;Rβ && \ded{nat-sh-1} &=& \ded{nat-sh-2} \\\\ \end{array} $$ \bsk %: Interdefinabilities: %: %: A %: --L_0 %: LA %: ------\id %: A LA->LA %: ------η = ------♯ %: A->RLA A->RLA η_A = (\id_{LA})^♯ %: %: ^idef-eta-1 ^idef-eta-2 %: %: B %: --R_0 %: RB %: ------\id %: B RB->RB %: ------ε = ------♭ ε_B = (\id_{RB})^♭ %: LRB->B LRB->B %: %: ^idef-eps-1 ^idef-eps-2 %: %: A %: ------η %: A'\ton{α}A A->RLA %: -------------------; %: A'\ton{α}A A'->RLA %: ----------L_1 = -------♭ %: LA'->LA LA'->LA %: %: ^idef-L1-1 ^idef-L1-2 Lα = (α;η_A)^♭ %: %: B %: ------ε %: LRB->B B\ton{β}B' %: -------------------; %: B\ton{β}B' LRB->B' %: ----------R_1 = -------♭ %: RB->RB' RB->RB' Rβ = (η_B;β)^♯ %: %: ^idef-R1-1 ^idef-R1-2 %: %: %: A\ton{g}RB B %: ----------L_1 ------ε %: A\ton{g}RB LA->LRB LRB->B %: ----------♭ = --------------------; %: LA->B LA->B g^♭ = Lg;ε_B %: %: ^idef-fl-1 ^idef-fl-2 %: %: A LA\ton{f}B %: ------η ----------R_1 %: LA\ton{f}B A->RLA RLA->RB %: ----------♯ = -------------------; %: A->RB A->RB f^♯ = η_A;Rf %: %: ^idef-sh-1 ^idef-sh-2 %: Interdefinabilities: % $$\pu \begin{array}{lcrcl} η_A = (\id_{LA})^♯ && \ded{idef-eta-1} &=& \ded{idef-eta-2} \\\\ Lα = (α;η_A)^♭ && \ded{idef-L1-1} &=& \ded{idef-L1-2} \\\\ g^♭ = Lg;ε_B && \ded{idef-fl-1} &=& \ded{idef-fl-2} \\\\ f^♯ = η_A;Rf && \ded{idef-sh-1} &=& \ded{idef-sh-2} \\ Rβ = (η_B;β)^♯ && \ded{idef-R1-1} &=& \ded{idef-R1-2} \\\\ ε_B = (\id_{RB})^♭ && \ded{idef-eps-1} &=& \ded{idef-eps-2} \\\\ \end{array} $$ \newpage \def\p{\phantom} Expensive adjunction: $(\catA, \catB, L, R, ♭, ♯, η, ε)$ Cheap adjunction 1: $\;\;\;(\catA, \catB, L, R, \, ♭, ♯ \p{, η, ε})$ Cheap adjunction 2: $\;\;\;(\catA, \catB, L, R, \p{♭, ♯,} η, ε)$ Cheap adjunction 3: $\;\;\;(\catA, \catB, L, R_0, \p{β,} ♯, η \p{,ε}\!)$ Cheap adjunction 4: $\;\;\;(\catA, \catB, L_0, R, ♭, \p{♯, η,} ε)$ \bsk Bijection: $f = (f^♯)^♭ = L(η_A;Rf);ε_B = Lη_A;LRf;ε_B$ $g = (g^♭)^♯ = η_A;R(Lg;ε_B) = η_A;RLg;Rε_B$ \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: