
1

Abstract

This paper shows a way to interpret (propositional) intuitionistic logic
visually using finite Planar Heyting Algebras (“ZHAs”), that are certain
subsets of Z2. The “for children” of the title means “for people without
mathematical maturity”, i.e., for people who are not able to understand
structures that are too abstract straight away, they need particular cases
first; everything in the paper is constructive and easy to visualize using
finite diagrams.

We also show the connection between ZHAs and the familiar semantics
for IPL where the truth-values are open sets in a finite topological space
(P,O(P)), and we show how each closure operator J : H → H on a ZHA
H ⊆ Z2 corresponds to a) a way to “slash” H using diagonal cuts, and
b) a choice of a subset S ⊆ P ; J can be recovered from S as a restriction
map O(P) → O(S) followed by a map O(S) → O(P) that reconstructs
the missing information “in the biggest way possible”.

2017planar-has June 16, 2017 19:15

Planar Heyting Algebras for Children

Eduardo Ochs

June 16, 2017

This paper shows a way to interpret (propositional) intuitionistic logic vi-
sually (sec.8) using finite Planar Heyting Algebras (“ZHAs”, sec.5), that are
certain subsets of Z2. The “for children” of the title means “for people without
mathematical maturity” (sec.1).

In sections 12–17 we show the connection between ZHAs and the familiar
semantics for IPL where the truth-values are open sets in a topological space
(P,O(P)), and in sections 18–34 we discuss how each closure operator on a ZHA
H ⊆ Z2 corresponds to a way to “slash” H using diagonal cuts; in sections
35–40 we show how each closure operator correspond to a subset S ⊆ P , or
rather to a restriction map O(P) → O(S) followed by a map O(S) → O(P)
that reconstructs the missing information “in the biggest way possible”.

1 Children

The “children” in the title of this paper means: “people without mathematical
maturity”. “Children” in this sense are not able to understand structures that
are too abstract straight away, they need particular cases first; and they also
don’t deal well with infinite objects or with expressions like “for every proposi-
tion P (x)”, or even with theorems...

In my experience what works best with “children” is to teach them first that
“basic mathematical objects” are things built from numbers, sets, and lists —
like this (our first logic!):

CL = (Ω,>,⊥,∧,∨,→,↔,¬) =({
0,
1

}
,1,0,

((0,0),0),
((0,1),0),
((1,0),0),
((1,1),1)

,

((0,0),0),
((0,1),1),
((1,0),1),
((1,1),1)

,

((0,0),1),
((0,1),1),
((1,0),0),
((1,1),1)

,

((0,0),1),
((0,1),0),
((1,0),0),
((1,1),1)

,

{
(0,1),
(1,0)

}) ,

and then teach them how to calculate with functions, set comprehension, quan-
tification and λ-notation when the domains are all finite; only after they acquire
some practice, speed and intuition about calculations we can state some theo-
rems as propositions whose results can be calculated by brute force, and then
discuss why some of these propositions-theorems always yield “true”.

Except for two last sections all the rest of this paper has been written to
be readable by “children” in the sense above, and huge parts of it have been

2

3

tested on “real children” of mainly two kinds: a group of “older children”,
who are Computer Science students who had already completed a course on
Discrete Mathematics, and some “little children”, who are friends of mine who
are students of Psychology or Social Sciences. The text has benefited enormously
from they feedback — especially their puzzled looks at some points, that made
me modify my presentation and the exercises I was giving to them. Those
exercises are not included here, though, and neither the rationale behind most
style decisions.

2 Positional notations

Definition: a ZSet is a finite, non-empty subset of N2 that touches both axes,
i.e., that has a point of the form (0,) and a point of the form (, 0). We
will often represent ZSets using a bullet notation, with or without the axes and
ticks. For example:

K =

{
(1,3),

(0,2), (2,2),
(1,1),
(1,0)

}
= =

We will use the ZSet above a lot in examples, so let’s give it a short name:
K (“kite”).

The condition of touching both axes is what lets us represent ZSets unam-
biguously using just the bullets:

 =(=)

We can use a positional notation to represent functions from a ZSet. For
example, if

f : K → N
(x, y) 7→ x

then

f =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

We will sometimes use λ-notation to represent functions compactly. For
example:

λ(x, y):K.x =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

λ(x, y):K.y =

{
((1,3),3),

((0,2),2), ((2,2),2),
((1,1),1),
((1,0),0)

}
=

3
2 2
1
0

2017planar-has June 16, 2017 19:15

4

The “reading order” on the points of a ZSet S “lists” the points of S starting
from the top and going from left to right in each line. More precisely, if S has
n points then rS : S → {1, . . . , n} is a bijection, and for example:

rK =
1

2 3
4
5

Subsets of a ZSet are represented with a notation with ‘•’s and ‘·’, and partial
functions from a ZSet are represented with ‘·’s where they are not defined. For
example:

•
· •
•
·

1
· 3
4
·

The characteristic function of a subset S′ of a ZSet S is the function χS′ :

S → {0, 1} that returns 1 exactly on the points of S′; for example,
1

0 1
1
0

is

the characteristic function of
•

· •
•
·
⊂

•
• •
•
•
. We will sometimes denote subsets by

their characteristic functions because this makes them easier to “pronounce” by

reading aloud their digits in the reading order — for example,
1

0 1
1
0

is “one-zero-

one-one-zero” (see sec.13).

3 ZDAGs

We will sometimes use the bullet notation for a ZSet S as a shorthand for one
of the two DAGs induced by S: one with its arrows going up, the other one
with them going down. For example: sometimes

•
• •
•
•

will stand for:

•

• •

•

•

↙ ↘

↘ ↙

↓

=

(1, 3)

(0, 2) (2, 2)

(1, 1)

(1, 0)

↙ ↘

↘ ↙

↓

=

({
(1,3),

(0,2), (2,2),
(1,1),
(0,0)

}
,

{
((1,3),(0,2)),((1,3),(2,2)),
((0,2),(1,1)),((2,2),(1,1)),

((1,1),(0,0))

})

Let’s formalize this.
Consider a game in which black and white pawns are placed on points of Z2,

and they can move like this:

•
↙↓↘
• • •

◦ ◦ ◦
↖↑↗
◦

Black pawns can move from (x, y) to (x + k, y − 1) and white pawns from
(x, y) to (x+k, y+1), where k ∈ {−1, 0, 1}. The mnemonic is that black pawns

2017planar-has June 16, 2017 19:15

5

are “solid”, and thus “heavy”, and they “sink”, so they move down; white pawns
are “hollow”, and thus “light”, and they “float”, so they move up.

Let’s now restrict the board positions to a ZSet S. Black pawns can move
from (x, y) to (x+ k, y− 1) and white pawns from (x, y) to (x+ k, y+1), where
k ∈ {−1, 0, 1}, but only when the starting and ending positions both belong to
S. The sets of possible black pawn moves and white pawn moves on S can be
defined formally as:

BPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y − 1 }
WPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y + 1 }

...and now please forget everything else you expect from a game — like starting
position, capturing, objective, winning... the idea of a “game” was just a tool
to let us explain BPM(S) and WPM(S) quickly.

A ZDAG is a DAG of the form (S,BPM(S)) or (S,WPM(S)), where S is a
ZSet.

A ZPO is partial order of the form (S,BPM(S)∗) or (S,WPM(S)∗), where S
is a ZSet and the ‘∗’ denotes the transitive-reflexive closure of the relation.

Sometimes, when this is clear from the context, a bullet diagram like
•• •••

will

stand for either the ZDAGs (
•• •••
,BPM(

•• •••
)) or (

•• •••
,WPM(

•• •••
)), or for the ZPOs

(
•• •••
,BPM(

•• •••
)∗) or (

•• •••
,WPM(

•• •••
)∗) (sec.5).

4 LR-coordinates

The lr-coordinates are useful for working on quarter-plane of Z2 that looks like
N2 turned 45◦ to the left. Let 〈l, r〉 := (−l+ r, l+ r); then (the bottom part of)
{ 〈l, r〉 | l, r ∈ N } is:

〈4, 0〉 〈3, 1〉 〈2, 2〉 〈1, 3〉 〈0, 4〉

〈3, 0〉 〈2, 1〉 〈1, 2〉 〈0, 3〉

〈2, 0〉 〈1, 1〉 〈0, 2〉

〈1, 0〉 〈0, 1〉

〈0, 0〉

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Sometimes we will write lr instead of 〈l, r〉. So:

40 31 22 13 04

30 21 12 03

20 11 02

10 01

00

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Let LR = { 〈l, r〉 | l, r ∈ N }.

2017planar-has June 16, 2017 19:15

6

5 ZHAs

A ZHA is a subset of LR “between a left and a right wall”, as we will see.

A triple (h,L,R) is a “height-left-right-wall” when:
1) h ∈ N
2) L : {0, . . . , h} → Z and R : {0, . . . , h} → Z
3) L(h) = R(h) (the top points of the walls are the same)
4) L(0) = R(0) = 0 (the bottom points of the walls are the same, 0)
5) ∀y ∈ {0, . . . , h}. L(y) ≤ R(y) (“left” is left of “right”)
6) ∀y ∈ {1, . . . , h}. L(y)− L(y − 1) = ±1 (the left wall makes no jumps)
7) ∀y ∈ {1, . . . , h}. R(y)−R(y − 1) = ±1 (the right wall makes no jumps)

The ZHA generated by a height-left-right-wall (h,L,R) is the set of all points
of LR with valid height and between the left and the right walls. Formally:

ZHAG(h,L,R) = { (x, y) ∈ LR | y ≤ h,L(y) ≤ x ≤ R(y) }.

A ZHA is a set of the form ZHAG(h,L,R), where the triple (h,L,R) is a
height-left-right-wall.

Here is an example of a ZHA (with the white pawn moves on it):

(−4, 8)

(−3, 9)

(−3, 7)

(−2, 8)

(−2, 6)

(−3, 3)

(−2, 4)

(−1, 5)

(−2, 2)

(−1, 3)

(0, 4)

(−1, 1)

(0, 2)

(1, 3)

(0, 0)

(1, 1)

↗ ↖

↖ ↗

↖

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗ ↖

↖ ↗
L(0) = 0 R(0) = 0

L(1) = −1 R(1) = 1

L(2) = −2 R(2) = 0

L(3) = −3 R(3) = 1

L(4) = −2 R(4) = 0

L(5) = −1 R(5) = −1

L(6) = −2 R(6) = −2

L(7) = −3 R(7) = −3

L(8) = −4 R(8) = −2

L(9) = −3 R(9) = −3 h = 9L(9) = R(9)

L(0) = R(0) = 0

We will see later (section 8) that ZHAs (with white pawn moves) are Heyting
Algebras.

6 Conventions on diagrams without axes

We can use a bullet notation to denote ZHAs, but look at what happens when
we start with a ZHA, erase the axes, and then add the axes back using the

2017planar-has June 16, 2017 19:15

7

convention from sec.2:

The new, restored axes are in a different position — the bottom point of the
original ZHA at the left was (0, 0), but in the ZSet at the right the bottom point
is (2, 0).

The convention from sec.2 is not adequate for ZHAs.
Let’s modify it!
From this point on, the convention on where to draw the axes will be this

one: when it is clear from the context that a bullet diagram represents a ZHA,
then its (unique) bottom point has coordinate (0, 0), and we use that to draw
the axes; otherwise we apply the old convention, that chooses (0, 0) as the point
that makes the diagram fit in N2 and touch both axes.

The new convention with two cases also applies to functions from ZHAs, and
to partial functions and subsets. For example:

B =

•

•
•
•

•
•
•

•
•
• (a ZHA) λ(x, y):B.x =

-1

-2
-1
0

-1
0
1

0
1
2

λ〈l, r〉:B.l =

3

2
2
2

1
1
1

0
0
0 λ〈l, r〉:B.r =

2

0
1
2

0
1
2

0
1
2

We will often denote ZHAs by the identity function on them:

λ〈l, r〉:B.〈l, r〉 = λlr:B.lr =

32

20
21
22

10
11
12

00
01
02 B =

32

20
21
22

10
11
12

00
01
02

Note that we are using the compact notation from the end of section 4: ‘lr’
instead of ‘〈l, r〉’.

7 Propositional calculus

A PC-structure is a tuple

L = (Ω,≤,>,⊥,∧,∨,→,↔,¬),

where:
Ω is the “set of truth values”,
≤ is a relation on Ω,
> and ⊥ are two elements of Ω,

2017planar-has June 16, 2017 19:15

8

∧, ∨, →, ↔ are functions from Ω× Ω to Ω,
¬ is a function from Ω to Ω.

Classical Logic “is” a PC-structure, with Ω = {0, 1}, > = 1, ⊥ = 0, ≤=
{(0, 0), (0, 1), (1, 0)}, ∧ =

{
((0,0),0),((0,1),0),
((1,0),0),((1,1),1)

}
, etc.

PC-structures let us interpret expressions from Propositional Calculus, and
let us define a notion of tautology. For example, in Classical Logic,

• ¬¬P ↔ P is a tautology because it is valid (i.e., it yields >) for all values
of P in Ω,

• ¬(P ∧Q) → (¬P ∨ ¬Q) s a tautology because it is valid for all values of
P and Q in Ω,

• but P ∨ Q → P ∧ Q is not a tautology, because when P = 0 and Q = 1
the result is not >:

P︸︷︷︸
0

∨ Q︸︷︷︸
1︸ ︷︷ ︸

1

→ P︸︷︷︸
0

∧ Q︸︷︷︸
1︸ ︷︷ ︸

0︸ ︷︷ ︸
0

8 Propositional calculus in a ZHA

Let Ω be the set of points of a ZHA and ≤ the default partial order on it. The
default meanings for >,⊥,∧,∨,→,↔,¬ are these ones:

〈a, b〉 ≤ 〈c, d〉 := a ≤ c ∧ b ≤ d
〈a, b〉 ≥ 〈c, d〉 := a ≥ c ∧ b ≥ d

〈a, b〉 above 〈c, d〉 := a ≥ c ∧ b ≥ d
〈a, b〉 below 〈c, d〉 := a ≤ c ∧ b ≤ d
〈a, b〉 leftof 〈c, d〉 := a ≥ c ∧ b ≤ d
〈a, b〉 rightof 〈c, d〉 := a ≤ c ∧ b ≥ d

valid(〈a, b〉) := 〈a, b〉 ∈ Ω
ne(〈a, b〉) := if valid (〈a, b+ 1〉) then ne(〈a, b+ 1〉) else 〈a, b〉 end
nw(〈a, b〉) := if valid (〈a+ 1, b〉) then nw(〈a+ 1, b〉) else 〈a, b〉 end

〈a, b〉 ∧ 〈c, d〉 := 〈min(a, c),min(b, d)〉
〈a, b〉 ∨ 〈c, d〉 := 〈max(a, c),max(b, d)〉
〈a, b〉 → 〈c, d〉 := if 〈a, b〉 below 〈c, d〉 then >

elseif 〈a, b〉 leftof 〈c, d〉 then ne(〈c, d〉)
elseif 〈a, b〉 rightof 〈c, d〉 then nw(〈c, d〉)
elseif 〈a, b〉 above 〈c, d〉 then 〈c, d〉
end

> := sup(Ω)
⊥ := 〈0, 0〉

¬〈a, b〉 := 〈a, b〉 → ⊥
〈a, b〉 ↔ 〈c, d〉 := (〈a, b〉 → 〈c, d〉) ∧ (〈c, d〉 → 〈a, b〉)

2017planar-has June 16, 2017 19:15

9

Let Ω be the ZHA at the top left in the figure below. Then, with the default
meanings for the connectives neither ¬¬P → P nor ¬(P ∧Q)→ (¬P ∨¬Q) are
tautologies, as there are valuations that make them yield results different than
> = 32:

32

20
21
22

10
11
12

00
01
02

>
·
· →

P ′′ · P ′

P ·
⊥

(¬¬ P︸︷︷︸
10︸ ︷︷ ︸

02︸ ︷︷ ︸
20

)→ P︸︷︷︸
10

︸ ︷︷ ︸
12

>
∨
· ·

Q′ · P ′

P Q
∧

¬(P︸︷︷︸
10

∧ Q︸︷︷︸
01︸ ︷︷ ︸

00

)

︸ ︷︷ ︸
32

→ (¬ P︸︷︷︸
10︸ ︷︷ ︸

02

∨¬ Q︸︷︷︸
01︸ ︷︷ ︸

20︸ ︷︷ ︸
22

)

︸ ︷︷ ︸
22

So: some classical tautologies are not tautologies in this ZHA.
The somewhat arbitrary-looking definition of ‘→’ will be explained at the

end of the next section.

9 Heyting Algebras

A Heyting Algebra is a PC-structure

H = (Ω,≤H ,>H ,⊥H ,∧H ,∨H ,→H ,↔H ,¬H),

in which:
1) (Ω,≤H) is a partial order
2) >H is the top element of the partial order
3) ⊥H is the bottom element of the partial order
4) P ↔H Q is the same as (P →H Q) ∧H (Q→H P)
5) ¬HP is the same as P →H ⊥H

6) ∀P,Q,R ∈ Ω. (P ≤H (Q ∧H R))↔ ((P ≤H Q) ∧ (P ≤H R))
7) ∀P,Q,R ∈ Ω. ((P ∨H Q) ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8) ∀P,Q,R ∈ Ω. (P ≤H (Q→H R))↔ ((P ∧H Q) ≤H R)
6’) ∀Q,R ∈ Ω.∃!Y ∈ Ω.∀P ∈ Ω. (P ≤H Y)↔ ((P ≤H Q) ∧ (P ≤H R))
7’) ∀P,Q ∈ Ω.∃!X ∈ Ω.∀R ∈ Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8’) ∀Q,R ∈ Ω.∃!Y ∈ Ω.∀P ∈ Ω. (P ≤H Y)↔ ((P ∧H R) ≤H R)

The conditions 6’, 7’, 8’ say that there are unique elements in Ω that “behave
as” Q ∧H R, P ∨H Q and Q→H R for given P , Q, R; the conditions 6,7,8 say
that Q∧H R, P ∨H Q and Q→H R are exactly the elements with this behavior.

2017planar-has June 16, 2017 19:15

10

The positional notation on ZHAs is very helpful for visualizing what the
conditions 6’,7’,8’,6,7,8 mean. Let Ω be the ZDAG on the left below:

40
41
42
43
44

30
31
32
33
34

20
21
22
23

24

10
11
12

13
14

00
01

02
03
04

>
· ·

· · ·
· · · (→)
· Q · · ·
· · R ·
· (∧) ·
· ·
⊥

>
· ·
· · ·

· (∨) · ·
· P · · ·
· · Q ·
· · ·
· ·
⊥

we will see that
a) if Q = 31 and R = 12 then Q ∧H R = 11,
b) if P = 31 and Q = 12 then P ∨H Q = 32,
c) if Q = 31 and R = 12 then Q→H R = 14.

Let’s see each case separately — but, before we start, note that in 6, 7, 8, 6’,
7’, 8’ we work part with truth values in Ω and part with standard truth values.
For example, in 6, with P = 20, we have:

(P︸︷︷︸
20

≤H (Q︸︷︷︸
31

∧H R︸︷︷︸
12︸ ︷︷ ︸

11

)

︸ ︷︷ ︸
0

)↔ ((P︸︷︷︸
20

≤H Q︸︷︷︸
31︸ ︷︷ ︸

1

) ∧ (P︸︷︷︸
20

≤H R︸︷︷︸
12︸ ︷︷ ︸

0

)

︸ ︷︷ ︸
0

)

︸ ︷︷ ︸
1

a) Let Q = 31 and R = 12. We want to see that Q ∧H R = 11, i.e., that

∀P ∈ Ω. (P ≤H Y)↔ ((P ≤H Q) ∧ (P ≤H R))

holds for Y = 11 and for no other Y ∈ Ω. We can visualize the behavior of
P ≤H Q for all ‘P ’s by drawing λP :Ω.(P ≤H Q) in the positional notation; then
we do the same for λP :Ω.(P ≤H R) and for λP :Ω.((P ≤H Q) ∧ (P ≤H R)).
Suppose that the full expression, ‘∀P :Ω. ’, is true; then the behavior of the
left side of the ‘↔’, λP :Ω.(P ≤H Y), has to be a copy of the behavior of the
right side, and that lets us find the only adequate value for Y .

The order in which we calculate and draw things is below, followed by the
results themselves:

(P ≤H Y︸︷︷︸
(7)︸ ︷︷ ︸

(6)

)↔ ((P ≤H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ∧ (P ≤H R︸︷︷︸
(2)︸ ︷︷ ︸

(4)

)

︸ ︷︷ ︸
(5)

)

2017planar-has June 16, 2017 19:15

11

(P ≤H Y︸︷︷︸
11︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)↔ ((P ≤H Q︸︷︷︸
31︸ ︷︷ ︸

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

) ∧ (P ≤H R︸︷︷︸
12︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
0
0

1
1
1
0
0

)

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)

b) Let P = 31 and Q = 12. We want to see that P ∨H Q = 32, i.e., that

∀R:Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))

holds for X = 32 and for no other X ∈ Ω. We do essentially the same as
we did in (a), but now we calculate λR:Ω.(P ≤H R), λR:Ω.(Q ≤H R), and
λR:Ω.((P ≤H R) ∧ (Q ≤H R)). The order in which we calculate and draw
things is below, followed by the results themselves:

(X︸︷︷︸
(7)

≤H R

︸ ︷︷ ︸
(6)

)↔ ((P︸︷︷︸
(1)

≤H R

︸ ︷︷ ︸
(3)

) ∧ (Q︸︷︷︸
(2)

≤H R

︸ ︷︷ ︸
(4)

)

︸ ︷︷ ︸
(5)

)

(X︸︷︷︸
32

≤H R︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)↔ ((P︸︷︷︸
31

≤H R︸ ︷︷ ︸
0
1
1
1
1

0
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

) ∧ (Q︸︷︷︸
12

≤H R

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

)

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)

c) Let Q = 31 and R = 12. We want to see that Q→H R = 14, i.e., that

∀P :Ω. (P ≤H Y)↔ ((P ∧H Q) ≤H R)

holds for Y = 14 and for no other Y ∈ Ω. Here the strategy is slightly different.
We start by visualizing λP :Ω.(P ∧H Q), which is a function from Ω to Ω, not

2017planar-has June 16, 2017 19:15

12

a function from Ω to {0, 1} like the ones we were using before. The order in
which we calculate and draw things is below, followed by the results:

(P ≤H Y︸︷︷︸
(6)︸ ︷︷ ︸

(5)

)↔ ((P ∧H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ≤H R︸︷︷︸
(2)

︸ ︷︷ ︸
(4)

)

(P ≤H Y︸︷︷︸
14︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)↔ ((P ∧H Q︸︷︷︸
31︸ ︷︷ ︸

30
31
31
31
31

30
31
31
31
31

20
21
21
21
21

10
11
11
11
11

00
01
01
01
01

) ≤H R︸︷︷︸
12

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)

10 The two implications are equivalent

In sec.8 we gave a definition of ‘→’ that is easy to calculate, and in sec.9 we saw
a way to find by brute force1 a value for Q→ R that obeys

(P ≤ (Q→ R))↔ (P ≤ Q ∧R)

for all P . In this section we will see that these two operations — called ‘
C→’ and

‘
HA→ ’ from here on — always give the same results. We will do that by checking
that for any ZHA H and Q,R ∈ H this holds

(P ≤ (Q
C→ R))↔ (P ≤ Q ∧R)

for all P ∈ H.

In ‘
C→’ the order of the cases is very important. For example, if cd = 21 and

ef = 23 then both “cd below ef” and “cd leftof ef” are true, but “cd below ef”

takes precedence and so cd
C→ ef = >. We can fix this by creating variants of

below, leftof, righof and above that make the four cases disjoint. Abbreviating
below, leftof, righof and above as b, l, r and a, we have:

cd b ef := c ≤ e ∧ d ≤ f cd b′ ef := c ≤ e ∧ d ≤ f
cd l ef := c ≤ e ∧ d ≥ f cd l′ ef := c ≤ e ∧ d > f
cd r ef := c ≥ e ∧ d ≤ f cd r′ ef := c > e ∧ d ≤ f
cd a ef := c > e ∧ d > f cd a′ ef := c > e ∧ d > f

1“When in doubt use brute force” — Ken Thompson

2017planar-has June 16, 2017 19:15

13

visually the regions are these, for R fixed:

R

Q a′ R

Q b′ R

Q l′ R Q r′ R

We clearly have:

Q
C→ R =

if Q bR then >
elseif Q lR then ne(R)
elseif Q r R then nw(R)
elseif Q aR then R
end

 =

if Q b′ R then >
elseif Q l′ R then ne(R)
elseif Q r′ R then nw(R)
elseif Q a′ R then R
end

and P ≤ Q

C→ R can be expressed as a conjunction of the four cases:

((P ≤ Q
C→ R)↔ (P ∧Q ≤ R))

↔

Q b′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q l′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q r′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q a′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R))

↔

Q b′ R→ ((P ≤ >)↔ (P ∧Q ≤ R)) ∧
Q l′ R→ ((P ≤ ne(R))↔ (P ∧Q ≤ R)) ∧
Q r′ R→ ((P ≤ nw(R))↔ (P ∧Q ≤ R)) ∧
Q a′ R→ ((P ≤ R)↔ (P ∧Q ≤ R))

Let’s introduce a notation: a “â” means “make this digit as big possible

without leaving the ZHA”. So,

in

53
54

42
43
44

31
32
33
34

20
21
22
23
24

10
11
12
13

00
01
02
03

we have

1̂2̂ = 54 = >,
12̂ = 13 = ne(12),

1̂2 = 42 = nw(12);

This lets us rewrite > as êf̂ , ne(ef) as ef̂ , and nw(ef) as êf .
Making P = ab, Q = cd, R = ef , we have:

2017planar-has June 16, 2017 19:15

14

((ab ≤ cd
C→ ef)↔ (ab ∧ cd ≤ ef))

↔

cd b′ ef → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ ef)) ∧
cd l′ ef → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ef)) ∧
cd r′ ef → ((ab ≤ êf)↔ (ab ∧ cd ≤ ef)) ∧
cd a′ ef → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))

↔

c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ ef)) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ef)) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ (ab ∧ cd ≤ ef)) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))

↔

c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ cd)) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ed)) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ (ab ∧ cd ≤ cf)) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))

↔

c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ >) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ a ≤ e) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ b ≤ f) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (a ≤ e ∧ b ≤ f))

In the last conjunction the four cases are trivial to check.

11 Logic in a Heyting Algebra

In sec.9 we saw a set of conditions — called 1 to 8’ — that characterize the
“Heyting-Algebra-ness” of a PC-structure. It is easy to see that Heyting-
Algebra-ness, or “HA-ness”, is equivalent to this set of conditions:

1 ∀P. (P ≤ P) id
∀P,Q,R. (P ≤ R) ← (P ≤ Q) ∧ (Q ≤ R) comp

2 ∀P. (P ≤ >) >1

3 ∀Q. (⊥ ≤ Q) ⊥1

6 ∀P,Q,R. (P ≤ Q ∧R) → (P ≤ Q) ∧1
∀P,Q,R. (P ≤ Q ∧R) → (P ≤ R) ∧2
∀P,Q,R. (P ≤ Q ∧R) ← (P ≤ Q) ∧ (P ≤ R) ∧3

7 ∀P,Q,R. (P ∨Q ≤ R) → (P ≤ R) ∨1
∀P,Q,R. (P ∨Q ≤ R) → (Q ≤ R) ∨2
∀P,Q,R. (P ∨Q ≤ R) ← (P ≤ R) ∧ (Q ≤ R) ∨3

8 ∀P,Q,R. (P ≤ Q→R) → (P ∧Q ≤ R) →1

∀P,Q,R. (P ≤ Q→R) ← (P ∧Q ≤ R) →2

We omitted the conditions 4 and 5, that defined ‘↔’ and ‘¬’ in terms of the
other operators. The last column gives a name to each of these new conditions.

2017planar-has June 16, 2017 19:15

15

These new conditions let us put (some) proofs about HAs in tree form, as
we shall see soon.

Let us introduce two new notations. The first one,

(expr)
[
v1:=repl1
v2:=repl2

]
indicates simultaneous substitution of all (free) occurrences of the variables v1
and v2 in expr by repl1 and repl2. For example,

((x+ y) · z)
[
x:=a+y
y:=b+z
z:=c+x

]
= ((a+ y) + (b+ z)) · (c+ x).

The second is a way to write ‘→’s as horizontal bars. In

A B C

D
α

E F

G
β

H

I
γ

J
δ

K
ε

L M

N
ζ

O

P
η

the trees mean:

• if A, B, C are true then D is true (by α),

• if E, F , are true then G is true (by β),

• if H is true then I is true (by γ),

• J is true (by δ, with no hypotheses),

• K is true (by ε); if L and M then N (by ζ); if K, N , O, then P (by η);
combining all this we get a way to prove that if L, M , O, then P ,

where α, β, γ, δ, ε, ζ, η are usually names of rules.

The implications in the table in the beginning of this section can be rewritten
as “tree rules” as:

P ≤ P
id

P ≤ Q Q ≤ R

P ≤ R
comp

P ≤ > >1 ⊥ ≤ Q
⊥1

P ≤ Q ∧R

P ≤ Q
∧1

P ≤ Q ∧R

P ≤ R
∧2

P ≤ Q P ≤ R

P ≤ Q ∧R
∧3

P ∨Q ≤ R

P ≤ R
∨1

P ∨Q ≤ R

Q ≤ R
∨2

P ≤ R Q ≤ R

P ∨Q ≤ R
∨3

P ≤ Q→R

P ∧Q ≤ R
→1

P ∧Q ≤ R

P ≤ Q→R
→2

2017planar-has June 16, 2017 19:15

16

Note that the ‘∀P,Q,R ∈ Ω’s are left implicit in the tree rules, which means
that every substitution instance of the tree rules hold; sometimes — but rarely
— we will indicate the substitution explicitly, like this,(

P ∧Q ≤ R

P ≤ Q→R
→2

)[
Q:=P→⊥

R:=⊥
]

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥)

→2

(→2)
[
Q:=P→⊥

R:=⊥
]

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥)

→2

[
Q:=P→⊥

R:=⊥
]

Usually we will only say ‘→2’ instead of ‘→2

[
Q:=P→⊥

R:=⊥
]
’ at the right of a bar,

and the task of discovering which substitution has been used is left to the reader.

The tree rules can be composed in a nice visual way. For example, this,

P ∧Q ≤ P ∧Q
id

P ∧Q ≤ P
∧1

P ≤ R

P ∧Q ≤ R
comp

P ∧Q ≤ P ∧Q
id

P ∧Q ≤ Q
∧2

Q ≤ S

P ∧Q ≤ S
comp

P ∧Q ≤ R ∧ S
∧3

“is” a proof for:

∀P,Q,R, S ∈ Ω. (P ≤ R) ∧ (Q ≤ S)→ ((P ∧Q) ≤ (R ∧ S)).

11.1 Derived rules

Note: in this section we will ignore the operators ‘↔’ and ‘¬’ in PC-structures;
we will think that every ‘P ↔ Q’ is as abbreviation for ‘(P→Q)∧ (Q→P)’ and
every ‘¬P ’ is an abbreviation for ‘P→>’.

We’ll write [>1], . . . , [→2] for the “linear” versions of the rules in last section
— for example, [→2] is (∀P,Q,R ∈ Ω. (P ∧Q ≤ R) → (P ≤ Q→R)) — and if
S = {r1, . . . , rn} is a set of rules, each in tree form, then [S] = [r1] ∧ . . . ∧ [rn],
and an “S-tree” is a proof in tree form that only uses rules that are in the set
S.

Let HA-ness1, HA-ness2, HA-ness3, be these sets, with the rules from sec.11:

HA-ness1 = {id, comp,>1,⊥1,∧3,∨3,→2},
HA-ness2 = {∧1,∧2,∨1,∨2,→1},
HA-ness3 = HA-ness1 ∪ HA-ness2

and let HA-ness4, HA-ness5 and HA-ness7 be these ones, where the new rules are
the ones at the left column of fig.1:

HA-ness4 = {∧4,∧5,∨4,∨5,MP0,MP}
HA-ness5 = HA-ness1 ∪ HA-ness4
HA-ness7 = HA-ness1 ∪ HA-ness2 ∪ HA-ness4

2017planar-has June 16, 2017 19:15

17

Q ∧R ≤ Q
∧4

:=

Q ∧R ≤ Q ∧R
id [P :=Q∧R]

Q ∧R ≤ Q
∧1 [P :=Q∧R]

Q ∧R ≤ R
∧5

:=

Q ∧R ≤ Q ∧R
id [P :=Q∧R]

Q ∧R ≤ R
∧2 [P :=Q∧R]

P ≤ P ∨Q
∨4

:=

P ∨Q ≤ P ∨Q
id [P :=P∨Q]

P ≤ P ∨Q
∨1 [R:=P∨Q]

Q ≤ P ∨Q
∨5

:=

P ∨Q ≤ P ∨Q
id [P :=P∨Q]

Q ≤ P ∨Q
∨2 [R:=P∨Q]

Q ∧ (Q→R) ≤ R
MP0

:=

Q→R ≤ Q→R
id

(Q→R) ∧Q ≤ R
→1

P ≤ Q P ≤ Q→R

P ≤ R
MP

:=

P ≤ Q P ≤ Q→R

P ≤ Q ∧ (Q→R) Q ∧ (Q→R) ≤ R
MP0

P ≤ R
comp

Figure 1: Derived rules

2017planar-has June 16, 2017 19:15

18

P ≤ Q ∧R

P ≤ Q
∧1

:=

P ≤ Q ∧R Q ∧R ≤ Q
∧4

P ≤ Q
comp

P ≤ Q ∧R

P ≤ R
∧2

:=

P ≤ Q ∧R Q ∧R ≤ R
∧5

P ≤ R
comp

P ∨Q ≤ R

P ≤ R
∨1

:=

P ≤ P ∨Q
∨4

P ∨Q ≤ R

P ≤ R
comp

P ∨Q ≤ R

Q ≤ R
∨2

:=

Q ≤ P ∨Q
∨5

P ∨Q ≤ R

Q ≤ R
comp

P ≤ Q→R

P ∧Q ≤ R
→1

:=

P ∧Q ≤ Q
∧5

P ∧Q ≤ P
∧4

P ≤ Q→R

P ∧Q ≤ Q→R
comp

P ∧Q ≤ Q ∧ (Q→R)
∧3

Q ∧ (Q→R) ≤ R
MP0

P ∧Q ≤ R
comp

Figure 2: Derived rules (2)

2017planar-has June 16, 2017 19:15

19

Note that the trees in the right of fig.1 are HA-ness3-trees.
Fig.1 can be interpreted in two ways. The first one is that it shows that

[HA-ness3] → [∧4],
[HA-ness3] → [∧5],
[HA-ness3] → [∨4],
[HA-ness3] → [∨5],
[HA-ness3] → [MP0],
[HA-ness3] → [MP],
[HA-ness3] → [HA-ness4],
[HA-ness3] → [HA-ness7];

the second one is that it shows a way to replace occurrences of ∧4, ∧5, ∨4, ∨5,
MP0, MP. Take an HA-ness7-tree, T . Call it hypotheses H1, . . . , Hn, and its
conclusion C, Replace each occurrence of ∧4, ∧5, ∨4, ∨5, MP0, MP in T by the
corresponding tree in the right side of fig.1. The result is a new tree, T ′, which
is “equivalent” to T in the sense of having the same hypotheses and conclusion
as T . So,

• every HA-ness3-tree is an HA-ness7-tree,

• every HA-ness7-tree is “equivalent” to an HA-ness3-tree.

We call this trick “derived rules” — the rules in HA-ness4 are “derived” from
HA-ness3, and HA-ness3 and HA-ness7 are “equivalent” in the sense that they
“prove the same things”.

Now look at fig.2. It has the rules in HA-ness2 at the left, and HA-ness5-trees
at the right; it shows that

[HA-ness5] → [∧1],
[HA-ness5] → [∧2],
[HA-ness5] → [∨1],
[HA-ness5] → [∨2],
[HA-ness5] → [→2],
[HA-ness5] → [HA-ness2],
[HA-ness5] → [HA-ness7],

and it also shows how to take an HA-ness7-tree T and replace every occurrence
of an HA-ness4-rule in it by an HA-ness3-tree, producing an HA-ness3-tree T ′

which is “equivalent” to T . This means that:

• every HA-ness5-tree is an HA-ness7-tree,

• every HA-ness7-tree is “equivalent” to an HA-ness5-tree,

and that HA-ness3, HA-ness7 and HA-ness5 are all “equivalent”.

2017planar-has June 16, 2017 19:15

20

12 Topologies

The best way to connect ZHAs to several standard concepts is by seeing that
ZHAs are topologies on certain finite sets — actually on 2-column acyclical
graphs (sec.15). This will be done here and in the next few sections.

A topology on a set X is a subset U of P(X) that contains the “everything” and
the “nothing” and is closed by binary unions and intersections and by arbitrary
unions. Formally:

1) U contains X and ∅,
2) if P,Q ∈ U then U contains P ∪Q and P ∩Q,
3) if V ⊂ U then U contains

⋃
V.

A topological space is a pair (X,U) where X is a set and U is a topology on
X.

When (X,U) is a topological space and U ∈ U we say that U is open in
(X,U).

For example, let X be the ZSet
• ••• •, and let’s use the characteristic function

notation from sec.2 to denote its subsets — we write X = 1 1
1

1 1
and ∅ = 0 0

0
0 0

instead of X = • ••• • and ∅ = · ··· · .

If U =
{
1 0
0

0 0
,
0 1
0

0 0
,
0 0
1

0 0
,
0 0
0

1 0
,
0 0
0

0 1

}
then U ⊂ P(X) but U fails all the conditions

in 1, 2, 3 above:
1) X = 1 1

1
1 1
6∈ U and ∅ = 0 0

0
0 0
6∈ U

2) Let P = 1 0
0

0 0
∈ U and Q = 0 1

0
0 0
∈ U . Then P ∩ Q = 0 0

0
0 0
6∈ U and

P ∪Q = 1 1
0

0 0
6∈ U .

3) Let V =
{
0 1
0

0 0
,
0 0
1

0 0
,
0 0
0

1 0

}
⊂ U . Then

⋃
V =

0 1
0

0 0
∪ 0 0

1
0 0
∪ 0 0

0
1 0

=
0 1
1

1 0
6∈ U .

Now let K =
•

• •
•
•

and U =
{

0
0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
. In this case

(K,U) is a topological space.

Some sets have “default” topologies on them, denoted with ‘O’. For example,
R is often used to mean the topological space (R,O(R)), where:

O(R) = {U ⊂ R | U is a union of open intervals }.

We say that a subset U ⊂ R is “open in R” (“in the default sense”; note that
now we are saying just “open in R”, not “open in (R,O(R))”) when U is a union
of open intervals, i.e., when U ∈ O(R); but note that P(R) and {∅,R} are also
topologies on R, and:

{2, 3, 4} ∈ P(R), so {2, 3, 4} is open in (R,P(R)),
{2, 3, 4} 6∈ O(R), so {2, 3, 4} is not open in (R,O(R)),
{2, 3, 4} 6∈ {∅,R}, so {2, 3, 4} is not open in (R, {∅,R});

when we say just “U is open in X”, this means that:
1) O(X) is clear from the context, and
2) U ∈ O(X).

2017planar-has June 16, 2017 19:15

21

13 The default topology on a ZSet

Let’s define a default topology O(D) for each ZSet D.

For each ZSet D we define O(D) as:

O(D) := {U ⊂ D | ∀((x, y), (x′, y′)) ∈ BPM(D).
(x, y) ∈ U → (x′, y′) ∈ U }

whose visual meaning is this. Turn D into a ZDAG by adding arrows for the
black pawns moves (sec.3), and regard each subset U ⊂ D as a board configura-
tion in which the black pieces may move down to empty positions through the
arrows. A subset U is “stable” when no moves are possible because all points
of U “ahead” of a black piece are already occupied by black pieces; a subset U
is “non-stable” when there is at least one arrow ((x, y), (x′, y′)) ∈ BPM(D) in
which (x, y) had a black piece and (x′, y′) is an empty position.

In our two notations for subsets (sec.2) a subset U ⊂ D is unstable when it
has an arrow like ‘• → ·’ or ‘1 → 0’; remember that black pawn moves arrows
go down. A subset U ⊂ D is stable when none of its ‘•’s or ‘1’s can move down
to empty positions.

“Open” is the same as “stable”. O(D) is the set of stable subsets of D.

Some examples:
0

0 1
0
0

is not open because it has a 1 above a 0,

O(
•

• •
•
•
) =

{
0

0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
,

O(•• •• •) =
{

0
0 0
0 0

,
0

0 0
0 1

,
0

0 0
1 0

,
0

0 0
1 1

,
0

0 1
0 1

,
0

0 1
1 1

,
0

1 0
1 0

,
0

1 0
1 1

,
0

1 1
1 1

,
1

1 1
1 1

}
.

The definition of O(D) above can be generalized to any directed graph. If
(A,R) is a directed graph, then (A,OR(A)) is a topological space if we define:

OR(A) := {U ⊆ A | ∀(a, b) ∈ R. (a ∈ U → b ∈ U) }

The two definitions are related as this: O(D) = OBPM(D)(D).
Note that we can see the arrows in BPM(D) or in R as obligations that open

sets must obey; each arrow a → b says that every open set that contains a is
forced to contain b too.

14 Topologies as partial orders

For any topological space (X,O(X)) we can regard O(X) as a partial order,
ordered by inclusion, with ∅ as its minimal element and X as its maximal
element; we denote that partial order by (O(X),⊆).

Take any ZSet D. The partial order (O(D),⊆) will sometimes be a ZHA
when we draw it with ∅ at the bottom, D at the top, and inclusions pointing
up, as can be seen in the three figures below; when D =

•
• •
• • or D = • •• •• • the

result is a ZHA, but when D = • • •• • it not.

2017planar-has June 16, 2017 19:15

22

Let’s write “V ⊂1 U” for “V ⊆ U and V and U differ in exactly one point”.
When D is a ZSet the relation ⊆ on O(D) is the transitive-reflexive closure of
⊂1, and (O(D),⊂1) is easier to draw than (O(D),⊆).

(H,BPM(H)) =

•
• •
• •

↙ ↘
↓ ↓

(O(H),⊂1) =

1
1 1
1 1

0
1 1
1 1

0
1 0
1 1

0
0 1
1 1

0
1 0
1 0

0
0 0
1 1

0
0 1
0 1

0
0 0
1 0

0
0 0
0 1

0
0 0
0 0

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

(G,BPM(G)) =

• •
• •
• •

↙ ↘ ↙
↘ ↙ ↘ (O(G),⊂1) =

1 1
1 1
1 1

1 0
1 1
1 1

0 1
1 1
1 1

0 0
1 1
1 1

0 1
0 1
1 1

0 0
1 0
1 1

0 0
0 1
1 1

0 0
1 01 0

0 0
0 01 1

0 0
0 0
1 0

0 0
0 0
0 1

0 0
0 0
0 0

↗ ↖

↖ ↗ ↖

↗ ↖ ↗

↗ ↖ ↗

↖ ↗ ↖

↖ ↗

(W,BPM(W)) =
• • •
• •↘ ↙ ↘ ↙ (O(W),⊂1) =

1 1 1
1 1

1 1 0
1 1

1 0 1
1 1

0 1 1
1 1

1 0 0
1 1

0 1 0
1 1

0 0 1
1 1

1 0 0
1 0

0 0 0
1 1

0 0 1
0 1

0 0 0
1 0

0 0 0
0 1

0 0 0
0 0

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↗ ↖ ↑ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

2017planar-has June 16, 2017 19:15

23

We can formalize a “way to draw O(D) as a ZHA” (or “...as a ZDAG”) as
a bijective function f from a ZHA (or from a ZSet) S to O(D) that creates a
perfect correspondence between the white moves in S and the “V ⊂1 U -arrows”;
more precisely, an f such that this holds: if a, b ∈ S then (a, b) ∈ WPM(S) iff
f(a) ⊂1 f(b).

Note that the number of elements in an open set corresponds to the height
where it is drawn; if f : S → O(D) is a way to draw O(D) as a ZHA or a
ZDAG then f takes points of the form (, y) to open sets with y elements, and
if f : S → O(D) is a way to draw O(D) as a ZHA (not a ZDAG!) then we also
have that f((0, 0)) = ∅ ∈ O(D).

The diagram for (O(H),⊂1) above is a way to draw O(H) as a ZHA.
The diagram for (O(G),⊂1) above is a way to draw O(G) as a ZHA.
The diagram for (O(W),⊂1) above is not a way to draw O(W) as a ZSet.

Look at 0 1 0
1 1 and 1 0 1

1 1 in the middle of the cube formed by all open sets of the
form a b c

1 1 . We don’t have 0 1 0
1 1 ⊂1

1 0 1
1 1 , but we do have a white pawn move

(not draw in the diagram!) from f−1(0 1 0
1 1) to f−1(1 0 1

1 1). We say that a ZSet
is thin when it doesn’t have three independent points.

Every time that a ZSet D has three independent points, as in W , we will
have a situation like in (O(W),⊂1); for example, if B = • •• • •• • then the open
sets of B of the form 0 0

a b c
1 1

form a cube.

15 2-Column Graphs

Note: in this section we will manipulate objects with names like 1 , 2 , 3 , . . . ,
1, 2, 3, . . .; here are two good ways to formalize them:

...
...

4 = (0, 4) 4 = (1, 4)
3 = (0, 3) 3 = (1, 3)
2 = (0, 2) 2 = (1, 2)
1 = (0, 1) 1 = (1, 1)

or

...
...

4 = "4_" 4 = "_4"

3 = "3_" 3 = "_3"

2 = "2_" 2 = "_2"

1 = "1_" 1 = "_1"

,

where "1_", "_2", "", "Hello!", etc are strings.

We define:
LC(l) := {1 , 2 , . . . , l }
RC(r) := { 1, 2, . . . , r},

which generate a “left column” of height l and a “right column” of height r.
A description for a 2-column graph (a “D2CG”) is a 4-tuple (l, r, R, L), where

l, r ∈ N, R ⊂ LC(l)×RC(r), L ⊂ RC(r)×LC(l); l is the height of the left column,
r is the height of the right column, and R and L are set of intercolumn arrows
(going right and left respectively).

The operation 2CG (in a sans-serif font) generates a directed graph from a
D2CG:

2017planar-has June 16, 2017 19:15

24

2CG(l, r, R, L) :=

(
LC(l) ∪ RC(r),

{
{l →(l−1) , ..., 2 →1 }∪
{ r→ (r−1), ..., 2→ 1}∪

R∪L

})
For example,

2CG(3, 4,
{

3 → 4,
2 → 3

}
,
{

2 ← 2,
1 ← 2

}
) :=

({ 3 , 2 , 1 ,
4, 3, 2, 1

}
,

{
3 →2 , 2 →1 ,

4→ 3, 3→ 2, 2→ 1,
3 → 4, 2 → 3,
2 ← 2, 1 ← 2

})

which is:
1

2

3

1

2

3

4

we will usually draw that more compactly, by omitting the intracolumn (i.e.,
vertical) arrows: (

1
2
3

1
2
3
4
)

or

(
•
•
•

•
•
•
•)

.

A 2-column graph (a “2CG”) is a directed graph that is of the form 2CG(l, r, R, L).
We will often say (P,A) = 2CG(l, r, R, L), where the P stand for “points” and
A for “arrows”.

A 2-column acyclical graph (a “2CAG”) is a 2CG that doesn’t have cycles.
If L has an arrow that is the opposite of an arrow in R, this generates a cycle of
length 2; if R has an arrow l → r′ and L has an arrow l′ ← r, where l ≤ l′ and
r ≤ r′, this generates a cycle that can have a more complex shape — a triangle
or a bowtie. For example,

1

2

3

4

1

2

3

 and

1

2

3

1

2

3

4
 .

16 Topologies on 2CGs

In this section we will see that ZHAs are topologies on 2CAGs.

Let (P,A) = 2CG(l, r, R, L) be a 2-column graph.
What happens if we look at the open sets of (P,A), i.e., at OA(P)? Two things:

1) every open set U ∈ OA(P) is of the form LC(a) ∪ LC(b),
2) arrows in R and L forbids some ‘LC(a) ∪ LC(b)’s from being open sets.

In order to understand that we need to introduce some notations for “piles”.

2017planar-has June 16, 2017 19:15

25

The function
pile(〈a, b〉) := LC(a) ∪ LC(b)

converts an element 〈a, b〉 ∈ LR into a pile of elements in the left column of
height a and a pile of elements in the right column of height b. We will write
subsets of the points of a 2CG using a positional notation with arrows. So, for
example, if (P,A) = 2CG(3, 4, {2 → 3}, {2 ← 2}) then

(P,A) =

(
1
2
3

1
2
3
4
)

and pile(21) =

(
1
1
0

1
0
0
0
)

(as a subset of P).

Note that pile(21) is not open in (P,OA(P)), as it has an arrow ‘1→ 0’. In
fact, the presence of the arrow {2 → 3} in A means that all piles of the form(

1
1
?

?
?
0
0
)

are not open, the presence of the arrow {2 ← 2} means that the piles of the
form (

?
0
0

1
1
?
?
)

are not open sets.
The effect of these prohibitions can be expressed nicely with implications. If

(P,A) = 2CG(l, r,
{

c → d,
e → f

}
,
{

g ← h,
i ← j

}
)

then

OA(P) = { pile(ab) | a ∈ {0, . . . , l}, b ∈ {0, . . . , r},

(
a≥c→b≥d ∧
a≥e→b≥f ∧
a≥g←b≥h ∧
a≥i←b≥j

)
}

Let’s use a shorter notation for comparing 2CGs and their topologies:

O

1

2

3

4

1

2

3

4

5

=

42
43
44
45

32
33
34

35

20
21
22
23

24
25

10
11
12

13
14

00
01

02
03

the arrows in R and L and the values of l and r are easy to read from the 2CG
at the left, and we omit the ‘pile’s at the right.

In a situation like the above we say that the 2CG in the ‘O(. . .)’ generates
the ZHA at the right. There is an easy way to draw the ZHA generated by a

2017planar-has June 16, 2017 19:15

26

2CG, and a simple way to find the 2CG that generates a given ZHA. To describe
them we need two new concepts.

If (A,R) is a directed graph and S ⊂ A then ↓S is the smallest open set
in OR(A) that contains S. If (A,R) is a ZDAG with black pawns moves as its
arrows, think that the ‘1’s in S are painted with a black paint that is very wet,
and that that paint flows into the ‘0’s below; the result of ↓S is what we get
when all the ‘0’s below ‘1’s get painted black. For example: ↓ 0 1

0 0
0 0

= 0 1
0 1
1 1

. When
(P,A) is a 2CG and S ⊆ P , we have to think that the paint flows along the
arrows, even if some of the intercolumn arrows point upward. For example:

↓

(
1
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

and if S consists of a single point, S = {s}, then we may write ↓s instead of
↓{s} = ↓S. In the 2CG above, we have (omitting the ‘pile’s):

↓ 2 = ↓{ 2} = ↓

(
0
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

= 23, and
↓ 4=24,

↓3 =33, ↓ 3=23,
↓2 =23, ↓ 2=23,
↓1 =10, ↓ 1=01,

The second concept is this: the “generators” of a ZDAG D with white pawns
moves as its arrows — or of a ZHA D — are the points of D that have exactly
one white pawn move pointing to them (not going out of them).

If (P,A) is a 2CAG, then OA(P) is a ZHA, and ‘↓’ is a bijection from P to
the generators of OA(P); for example:

O

1

2

3

4

1

2

3

4

5

=

42
43
44

45

32
33

34
35

20
21
22

23
24
25

10
11

12
13
14

00
01
02
03

4
·
·
·

3
·
·
·

2
·
·
·
·

5

1
·
·
·

4

·
1

2
3

but if (P,A) is a 2CG with cycles, then OA(P) is not a ZHA because each
cycle generates a “gap” that disconnects the points of OA(P). We just saw an
example of a 2CG with a cycle in which ↓2 = 23 = ↓ 3 = ↓ 2; look at its
topology:

O

1

2

3

1

2

3

4
 =

34
33 24
23

11
10 01
00

2017planar-has June 16, 2017 19:15

27

17 Converting between ZHAs and 2CAGs

Let’s now see how to start from a 2CAG and produce its topology (a ZHA)
quickly, and how to find quickly the 2CAG that generates a given ZHA.

From 2CAGs to ZHAs. Let (P,A) = 2CG(l, r, R, L) be a 2CAG, and call
the ZHA generated by it H. Then the top point of H is lr, its bottom point is
00. Let C := {00, ↓1 , ↓2 , . . . , ↓l , lr}; then C has some of the points of the left
wall (sec.5) of H, but usually not all. To “complete” C, apply this operation
repeatedly: if ab ∈ C and ab 6= lr, then test if either (a+ 1)b or a(b+ 1) are in
C; if none of them are, add a(b + 1), which is northeast of ab. When there is
nothing else to add, then C is the whole of the left wall of H. For the right wall,
start with D := {00, ↓ 1, ↓ 2, . . . , ↓ r, lr}, and for each ab ∈ C with ab 6= lr, test
if either (a+ 1)b or a(b+ 1) are in D; if none of them are, add (a+ 1)b, which
is northwest of ab. When there is nothing else to add, then D is the whole of
the right wall of H.

In the acyclic example of the last section this yields:

C = {00, ↓1 , ↓2 , ↓3 , ↓4 , lr}
= {00, 10, 20, 32, 42, 45}
 {00, 10, 20, 21, 22, 32, 42, 43, 44, 45},

D = {00, ↓ 1, ↓ 2, ↓ 3, ↓ 4, ↓ 5, lr}
= {00, 01, 02, 03, 14, 25, 45}
 {00, 01, 02, 03, 13, 14, 24, 25, 35, 45}.

and the ZHA is everything between the “left wall” C and the “right wall” D.

From ZHAs to 2CAGs. Let H be a ZHA and let lr be its top point. Form
the sequence of its left wall generators (the generators of H in which the arrow
pointing to them points northwest) and the sequence of its right wall generators
(the generators of H in which the arrow pointing to them points northeast).
Look at where there are “gaps” in these sequences; each gap in the left wall
generators becomes an intercolumn arrow going right, and each gap in the right
wall generators becomes an intercolun arrow going left. In the acyclic example
of the last section, this yields:

5 = 25
(gap becomes 2 ← 5)

4 = 42 4 = 14
(no gap) (gap becomes 1 ← 4)

3 = 32 3 = 03
(gap becomes 3 → 2) (no gap)

2 = 20 2 = 02
(no gap) (no gap)

1 = 10 1 = 01

We know l and r from the top point of the ZHA, and from the gaps we get R

2017planar-has June 16, 2017 19:15

28

and L; the 2CAG that generates this ZHA is:

(4, 5,
{
3 → 2

}
,

{
2 ← 5,
1 ← 4

}
).

Theorem. The two operations above are inverse to one another in the fol-
lowing sense. If we start with a ZHA H, produce its 2CAG, and produce a ZHA
H ′ from that, we get the same ZHA: H ′ = H. In the other direction, if we start
with a 2CAG (P,A) = 2CG(l, r, R, L), produce its ZHA, H, and then obtain
a 2CAG (P ′, A′) = 2CG(l′, r′, R′, L′) from H, we get back the original 2CAG
if and only if it didn’t have any superfluous arrows; if the original 2CAG had
superflous arrows then then new 2CAG will have l′ = l, r′ = r, and R′ and L′

will be R and L minus these “superfluous arrows”, that are the ones that can
be deleted without changing which 2-piles are forbidden. For example:

1

2

3

4

1

2

3

4

44

32
33
34

22
23
24

10
11
12
13

14

00
01
02

03
04

1

2

3

4

1

2

3

4

In this case we have R =

{ 4 → 4,
4 → 3,
3 → 2,
2 → 2

}
and R′ =

{
4 → 4,
2 → 2

}
.

2017planar-has June 16, 2017 19:15

29

18 Piccs and slashings

A picc (“partition into contiguous classes”) of an interval I = {0, . . . , n} is a
partition P of I that obeys this condition (“picc-ness”):

∀a, b, c ∈ {0, . . . , n}. (a < b < c & a ∼P c)→ (a ∼P b ∼P c).

So P = {{0}, {1, 2, 3}, {4, 5}} is a picc of {0, . . . , 5}, and P ′ = {{0}, {1, 2, 4, 5}, {3}}
is a partition of {0, . . . , 5} that is not a picc.

A short notation for piccs is this:

0|123|45 ≡ {{0}, {1, 2, 3}, {4, 5}}

we list all digits in the “interval” in order, and we put bars to indicate where
we change from one equivalence class to another.

Let’s define a notation for “intervals” in LR,

[ab, ef] := [〈a, b〉, 〈e, f〉] := { 〈c, d〉 ∈ LR | a ≤ c ≤ e & b ≤ d ≤ f },

Note that it can be adapted to define “intervals” in a ZHAs H:

[ab, ef] ∩H := { 〈c, d〉 ∈ LR | a ≤ c ≤ e & b ≤ d ≤ f } ∩H
= { 〈c, d〉 ∈ H | a ≤ c ≤ e & b ≤ d ≤ f }.

A slashing S on a ZHA H with top element ab is a pair of piccs, S = (L,R),
where L is a picc on {0, . . . , a} and R is a picc on {0, . . . , b}; for example,
S = (4321/0, 0123\45\6) is a slashing on [00, 46]. We write the bars in L as ‘/’s
and the bars in R as ‘\’ as a reminder that they are to be interpreted as northeast
and northwest “cuts” respectively; S = (4321/0, 0123\45\6) is interpreted as
the diagram at the left below, and it “slashes” [00, 46] and the ZHA at the right
below as:

0
1

2
3

4

0
1
2
3
4
5
6

40
41
42
43

44
45
46

30
31
32

33
34
35

36

20
21

22
23
24

25
26

10
11
12
13

14
15
16

00
01
02

03
04
05

06

45
46

34
35
36

22
23

24
25

26

11
12

13
14

00
01

02
03

04

A slashing S = (L,R) on a ZHA H with top element ab induces an equiv-
alence relation ‘∼S ’ on H that works like this: 〈c, d〉 ∼S 〈e, f〉 iff c ∼L e and
d ∼R f . We write

[c]L := { e ∈ {0, . . . , a} | c ∼L a }
[d]R := { f ∈ {0, . . . , b} | d ∼L f }
[cd]S := { ef ∈ H | cd ∼S ef }

2017planar-has June 16, 2017 19:15

30

for the equivalence classes, and note that

if [c]L = {c′, . . . , c′′}
and [d]L = {d′, . . . , d′′}
then [cd]S = [c′d′, c′′d′′] ∩H;

for example, in the ZHA at the right at the example above we have:

[1]L = {1, 2, 3, 4},
[2]R = {0, 1, 2, 3},
[12]S = [10, 43] ∩H = {11, 12, 13, 22, 23}.

We say that a slashing S on a ZHA H partitions H into slash-regions; later
(sec.24) we will see that a J-operator J also partitions H, and we will refer to
its equivalence classes as J-regions.

Slash-regions are intervals, but note that neither 10 or 43 belong to the
slash-region [12]S = [10, 43] ∩H above.

A slash-partition is a partition on a ZHA induced by a slashing, and a slash-
equivalence is an equivalence relation on a ZHA induced by a slashing. Formally,
a slash-partition on H is a set of subsets of H, and a slash-equivalence is sub-
set of H × H, but it is so easy to convert between partitions and equivalence
relations that we will often use both terms interchangeably. Our visual repre-
sentation for slash-partitions and slash-equivalences on a ZHA H will be the
same: H slashed by diagonal cuts.

19 From slash-partitions back to slashings

We saw how to go from a slashing S = (L,R) on H to an equivalence relation
∼S on H; let’s see now how to recover L and R from ∼S .

Let LWH be the left wall of H, and RWH the right wall of H. For example,

H =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

LWH = {00, 01, 11, 12, 22, 23, 24, 34, 35, 45, 46}
RWH = {00, 01, 02, 03, 04, 14, 24, 25, 26, 36, 46}

To recover the picc L — which is a picc on {0, 1, 2, 3, 4} — we need to find
where we change from an L-equivalence class to another when we go from one
digit to the next; and to recover the picc R —which is a picc on {0, 1, 2, 3, 4, 5, 6}
—we need to find where we change from an R-equivalence class to another when
we go from one digit to the next.

2017planar-has June 16, 2017 19:15

31

We can recover L and R by walking LWH (or RWH) from bottom to top
in a series of white pawns moves, and checking when we change from one
S-equivalence class to another. Northwest moves give information about L,
and northeast moves give information about R. Look at the example below, in
which we walk on RWH :

H =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

LWH =

45
46

34
35

22
23
24

11
12

00
01

RWH =

46
36

24
25
26

14

00
01

02
03
04

26
↗

25
: 25 6∼S26 ⇒ 5 6∼R6 ⇒ 5\6

25
↗

24
: 24∼S25 ⇒ 4∼R5 ⇒ 45

46
↖

36
: 36∼S46 ⇒ 3∼L4 ⇒ 43

04
↗

03
: 03 6∼S04 ⇒ 3 6∼R4 ⇒ 3\4

36
↖

26
: 26∼S36 ⇒ 2∼L3 ⇒ 32

03
↗

02
: 02∼S03 ⇒ 2∼R3 ⇒ 23

24
↖

14
: 14∼S24 ⇒ 1∼L2 ⇒ 21

02
↗

01
: 01∼S02 ⇒ 1∼R2 ⇒ 12

14
↖

04
: 04 6∼S14 ⇒ 0 6∼L1 ⇒ 1/0

01
↗

00
: 00∼S01 ⇒ 0∼R1 ⇒ 01

(L,R) = (4321/0, 0123\45\6)

20 Slash-regions have maximal elements

...here is how our argument will work, in a particular case:

[1]L = {1, 2, 3, 4},
[2]R = {0, 1, 2, 3},

I = [10, 43],
[12]S = I ∩H = {11, 12, 13, 22, 23}.

(((11 ∨ 12︸ ︷︷ ︸
=12∈I

) ∨ 13

︸ ︷︷ ︸
=13∈I

) ∨ 22

︸ ︷︷ ︸
=23∈I

) ∨ 23

︸ ︷︷ ︸
=23∈I

(((11 ∨ 12︸ ︷︷ ︸
=12∈H

) ∨ 13

︸ ︷︷ ︸
=13∈H

) ∨ 22

︸ ︷︷ ︸
=23∈H

) ∨ 23

︸ ︷︷ ︸
=23∈H∨

[12]S =
∨
{11, 12, 13, 22, 23} = 11 ∨ 12 ∨ 13 ∨ 22 ∨ 23 ∈ I ∩H

2017planar-has June 16, 2017 19:15

32

11 ≤
∨

[12]S , 12 ≤
∨

[12]S , . . . , 23 ≤
∨

[12]S

We have [12]S = I ∩H, and
∨
[12]S belongs to I ∩H and is greter-or-equal

than all elements of I ∩H, so
∨
[12]S is the maximal element of [12]S .

Here is how we can do that in the general case. Let S = (L,R) be a slashing
on a ZHA H. Let P be a point of H. The equivalence class [P]S is a finite set
{P1, . . . , Pn}, and we know that [P]S = H ∩ I for some interval I. Look at the
elements P1, P1∨P2, (P1∨P2)∨P3, . . ., ((P1∨P2)∨. . .)∨Pn We can see that all of
them belong to both H and I, so we conclude that

∨
[P]S = ((P1∨P2)∨. . .)∨Pn

belongs to H∩I, and it is easy to see that it is greater-or-equal that all elements
in H ∩ I, so it is the maximal element of H ∩ I.

A similar argument shows that
∧
[P]S = ((P1∧P2)∧ . . .)∧Pn is the smallest

element of [P]S .

The same argument shows that if C is any non-empty set of the form I ∩H,
where I is an interval, then

∨
C ∈ C,

∧
C ∈ C, [

∧
C,
∨
C] ∩H = C.

Remember that an interval in a ZHA H is any set of the form [P,Q] ∩ H.
Let’s introduce a new definition: a closed interval in a ZHA H is a non-empty
set C ⊂ H, with

∨
C ∈ C,

∧
C ∈ C, [

∧
C,
∨
C] ∩H = C; informally, a closed

interval in a ZHA has a lowest and highest element, and it “is” everything
between them.

21 Cuts stopping midway

We saw in the last section that every slash-region is a closed interval. A partition
into closed intervals of a ZHA H is, as its name says, a partition of H whose
equivalence classes are all closed intervals in H.

Some partitions into closed intervals of a ZHA are not slashings — for ex-
ample, take the partition P with these equivalence classes:

50
51
52
53

40
41
42

43

30
31

32
33

20
21
22
23

10
11
12
13

00
01
02

03

Here is an easy way to prove formally that the partition above does not
come from a slashing S = (L,R). We will adapt the idea from sec.19, where we
recovered L and R from northwest and northeast steps.

21 ∼P 31︸ ︷︷ ︸
false

↔ 2 ∼L 3︸ ︷︷ ︸
=(

↔ 22 ∼P 32︸ ︷︷ ︸
true

31 ∼P 41︸ ︷︷ ︸
true

↔ 3 ∼L 4︸ ︷︷ ︸
=(

↔ 32 ∼P 42︸ ︷︷ ︸
false

2017planar-has June 16, 2017 19:15

33

The problem is that the figure above has “cuts stopping midway”... if its
cuts all crossed the ZHA all the way through, we would have this for L and
northeast cuts,

0 ∼L 1 ↔ 00 ∼P 10 ↔ 01 ∼P 11 ↔ 02 ∼P 12 ↔ 03 ∼P 13
1 ∼L 2 ↔ 10 ∼P 20 ↔ 11 ∼P 21 ↔ 12 ∼P 22 ↔ 13 ∼P 23
2 ∼L 3 ↔ 20 ∼P 30 ↔ 21 ∼P 31 ↔ 22 ∼P 32 ↔ 23 ∼P 33
3 ∼L 4 ↔ 30 ∼P 40 ↔ 31 ∼P 41 ↔ 32 ∼P 42 ↔ 33 ∼P 43
4 ∼L 5 ↔ 40 ∼P 50 ↔ 41 ∼P 51 ↔ 42 ∼P 52 ↔ 43 ∼P 53
5 ∼L 6 ↔ 50 ∼P 60 ↔ 51 ∼P 61 ↔ 52 ∼P 62 ↔ 53 ∼P 63

and something similar for R and northwest cuts.

Formally, a partition P on H has an “L-cut between c and c+ stopping
midway” if cd ∼P c+d 6↔ cd ∼P c+d for some d, and it has an “R-cut between
d and d+ stopping midway” if cd ∼P cd+ 6↔ c+d ∼P c+d+ for some c; here we
are writing x+ for x+ 1.

Theorem: a partition of H into closed intervals is a slash-partition if and
only if it doesn’t have any cuts stopping midway. Proof: use the ideas above
to recover L and R from ∼P , and then check that S = (L,R) induces an
equivalence relation ∼S that coincides with ∼P .

22 Slash-operators

We can define operations that take each each P ∈ H to the maximal and to the
minimal element of its S-equivalent class, now that we know that these maximal
and minimal elements exist:

PS :=
∨
[P]S (maximal element),

P coS :=
∧
[P]S (minimal element).

Note that [P]S = [P coS , PS] ∩H.
We will use the operation ·S a lot and ·coS very little. The ‘co’ in ‘coS’

means that ·coS is dual to ·S , in a sense that will be made precise later.

A slash-operator on a ZHA H is a function ·S : H → H induced by a slashing
S = (L,R) on H. It is easy to see that P ≤ PS (“ ·S is non-decreasing”) and
that PS = (PS)S (“ ·S is idempotent”).

Any idempotent function ·F : H → H induces an equivalence relation on
H: P ∼F Q iff PF = QF . We can use that to test if a given ·F : H → H is a
slash-operator: ·F is a slash-operator iff it obeys all this:

1) ·F is idempotent,
2) ·F is non-decreasing,
3) ∼F partitions H into closed intervals,
4) ∼F doesn’t have cuts stopping midway.

2017planar-has June 16, 2017 19:15

34

23 Slash-operators: a property

Slash-operators obey a certain property that will be very important later. Let’s
state that property in five equivalent ways:

1) If cd ∼S c′d′ and ef ∼S e′f ′ then cd ∧ ef ∼S c′d′ ∧ e′f ′.
2) If P ∼S P ′ and Q ∼S Q′ then P ∧Q ∼S P ′ ∧Q′.
3) If P ∼S P ′ and Q ∼S Q′ then (P ∧Q)S = (P ′ ∧Q′)S .
4) If P ∼S P ′ and Q ∼S Q′ then

(P ∧Q)S = (PS ∧QS)S (a)
= ((P ′)S ∧ (Q′)S)S (b)
= (P ′ ∧Q′)S (c)

5) (P ∧Q)S = (PS ∧QS)S .

Here’s a proof of 1↔ 2↔ 3↔ 4↔ 5.
1↔ 2: we just changed notation,
2↔ 3: because A ∼S B iff AS = BS ,

3→ 5: make the substitution
[
P ′:=PS

Q′:=QS

]
in 3,

5 → 4: 4a is just a copy of 5, and 4c is a copy of 5 with
[
P :=P ′

Q:=Q′

]
. For 4b,

note that P ∼P P ′ implies PS = (P ′)S and Q ∼P Q′ implies QS = (Q′)S ,
4→ 3: 4 is an equality between more expressions than 3,

...and here is a way to visualize what is going on:

30

31

32

33

20
21

22

23

10

11
12

13

00

01

02
03 P

P ′
PS

Q

Q′
QS

(P︸︷︷︸
30

∧ Q︸︷︷︸
03︸ ︷︷ ︸

00

)S

︸ ︷︷ ︸
22

= (P︸︷︷︸
30

S

︸ ︷︷ ︸
32

∧ Q︸︷︷︸
03

S

︸ ︷︷ ︸
23︸ ︷︷ ︸

22

)S

︸ ︷︷ ︸
22

= (P ′︸︷︷︸
31

S

︸ ︷︷ ︸
32

∧ Q′︸︷︷︸
13

S

︸ ︷︷ ︸
23︸ ︷︷ ︸

22

)S

︸ ︷︷ ︸
22

= (P ′︸︷︷︸
31

∧ Q′︸︷︷︸
13︸ ︷︷ ︸

11

)S

︸ ︷︷ ︸
22

Note that all subexpressions belong to three S-regions: a region with P , P ′,
PS = P ′S , another with Q, Q′, QS = Q′S , and one with all the ‘∧’s. If we had
cuts stopping midway then some of the ‘∧’s could be in different regions.

2017planar-has June 16, 2017 19:15

35

I think that the clearest way to show (1) is by putting its proof in tree form:

cd ∼S c′d′

c ∼L c′
ef ∼S e′f ′

e ∼L e′

min(c, e) ∼L min(c′, e′)

cd ∼S c′d′

d ∼R d′
ef ∼S e′f ′

f ∼R f ′

min(d, f) ∼L min(d′, f ′)

min(c, e)min(d, f) ∼S min(c′, e′)min(d′, f ′)

cd ∧ ef ∼S c′d′ ∧ e′f ′

24 J-operators and J-regions

A J-operator on a Heyting Algebra H = (Ω,≤,>,⊥,∧,∨,→,↔,¬) is a function
J : Ω → Ω that obeys the axioms J1, J2, J3 below; we usually write J as
·∗ : Ω→ Ω, and write the axioms as rules.

P ≤ P ∗
J1

P ∗ = P ∗∗
J2

(P&Q)∗ = P ∗&Q∗
J3

J1 says that the operation ·∗ is non-decreasing.
J2 says that the operation ·∗ is idempotent.
J3 is a bit mysterious but will have interesting consequences.

Note that when H is a ZHA then any slash-operator on H is a J-operator
on it; see secs.22 and 23.

A J-operator induces an equivalence relation and equivalence classes on Ω,
like slashings do:

P ∼J Q iff P ∗ = Q∗

[P]J := {Q ∈ Ω | P ∗ = Q∗ }

The axioms J1, J2, J3 have many consequences. The first ones are listed in
Figure 3 as derived rules, whose names mean:

Mop (monotonicity for products): a lemma used to prove Mo,
Mo (monotonicity): P ≤ Q implies P ∗ ≤ Q∗,
Sand (sandwiching): all truth values between P and P ∗ are equivalent,
EC&: equivalence classes are closed by ‘&’,
EC∨: equivalence classes are closed by ‘∨’,
ECS: equivalence classes are closed by sandwiching,

Take a J-equivalence class, [P]J , and list its elements: [P]J = {P1, . . . , Pn}.
Let P∧ := ((P1 ∧ P2) ∧ . . .) ∧ Pn and Let P∨ := ((P1 ∨ P2) ∨ . . .) ∨ Pn. It turns
out that [P]J = [P∧, P∨] ∩ Ω; let’s prove that by doing ‘⊆’ first, then ‘⊇’.

Using EC& and EC∨ several times we see that

P1 ∧ P2 ∼J P P1 ∨ P2 ∼J P
(P1 ∧ P2) ∧ P3 ∼J P (P1 ∨ P2) ∨ P3 ∼J P

...
...

((P1 ∧ P2) ∧ . . .) ∧ Pn ∼J P ((P1 ∨ P2) ∨ . . .) ∨ Pn ∼J P

2017planar-has June 16, 2017 19:15

36

(P&Q)∗ ≤ Q∗
Mop

:=

(P&Q)∗ = P ∗&Q∗
J3

P ∗&Q∗ ≤ Q∗

(P&Q)∗ ≤ Q∗

P ≤ Q

P ∗ ≤ Q∗
Mo

:=

P ≤ Q

P = P&Q

P ∗ = (P&Q)∗ (P&Q)∗ ≤ Q∗
Mop

P ∗ ≤ Q∗

P ≤ Q ≤ P ∗

P ∗ = Q∗
Sand

:=

P ≤ Q

P ∗ ≤ Q∗
Mo

Q ≤ P ∗

Q∗ ≤ P ∗∗
Mo

P ∗∗ = P ∗
J2

Q∗ ≤ P ∗

P ∗ = Q∗

P ∗ = Q∗

P ∗ = Q∗ = (P&Q)∗
EC&

:=

P ∗ = Q∗

P ∗ = Q∗ = P ∗&Q∗ P ∗&Q∗ = (P&Q)∗
J3

P ∗ = Q∗ = (P&Q)∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∨Q)∗
EC∨

:=

P ∗ = Q∗

P ≤ P ∨Q

P ≤ P ∗
J1

Q ≤ Q∗
J1

P ∗ = Q∗

Q∗ = P ∗

Q ≤ P ∗

P ∨Q ≤ P ∗

P ≤ P ∨Q ≤ P ∗

P ∗ = (P ∨Q)∗
Sand

P ∗ = Q∗ = (P ∨Q)∗

P ≤ Q ≤ R P ∗ = R∗

P ∗ = Q∗ = R∗
ECS

:=

P ≤ Q ≤ R R ≤ R∗
J1

P ∗ = R∗

R∗ = P ∗

P ≤ Q ≤ P ∗

P ∗ = Q∗
Sand

P ∗ = R∗

P ∗ = Q∗ = R∗

Figure 3: J-operators: basic derived rules

2017planar-has June 16, 2017 19:15

37

so P∧ ∼J P∨ ∼J P , and by the sandwich lemma ([P∧, P∨] ∩ Ω) ⊆ [P]J .
For any Pi ∈ [P]J we have P∧ ≤ Pi ≤ P∨, which means that:

[P]J = {P1, . . . , Pn}
⊆ {Q ∈ Ω | P∧ ≤ Q ≤ P∨ }
= [P∧, P∨] ∩ Ω,

so [P]J ⊆ [P∧, P∨] ∩ Ω.

As the operation ‘·∗’ is increasing and idempotent, each equivalence class
[P]J has exactly one maximal element, which is P ∗; but P∨ is also the maximal
element of [P]J , so P∨ = P ∗, and we can interpret the operation ‘·∗’ as “take
each P to the top element in its equivalence class”, which is similar to how we
defined an(other) operation ‘·∗’ on slashings in the previous section.

The operation “take each P to the bottom element in its equivalence class”
will be useful in a few occasions; we will call it ‘·co∗’ to indicate that it is dual
to ‘·∗’ in some sense. Note that P co∗ = P∧.

Look at the figure below, that shows a partition of a ZHA A = [00, 66] into
five regions, each region being an interval; this partition does not come from a
slashing, as it has cuts that stop midway. Define an operation ‘·∗’ on A, that
works by taking each truth-value P in it to the top element of its region; for
example, 30∗ = 61.

60
61
62

63
64
65

66

50
51

52
53
54

55
56

40
41
42
43

44
45
46

30
31
32

33
34
35
36

20
21

22
23
24
25

26

10
11
12
13
14

15
16

00
01
02
03

04
05
06

It is easy to see that ‘·∗’ obeys J1 and J2; however, it does not obey J3 — we will
prove that in sec.25. As we will see, the partitons of a ZHA into intervals that
obey J1, J2, J3 ae exactly the slashings; or, in other words, every J-operator
comes from a slashing.

2017planar-has June 16, 2017 19:15

38

25 The are no Y-cuts and no λ-cuts

We want to see that if a partition of a ZHA H into intervals has “Y-cuts” or
“λ-cuts” like these parts of the last diagram in the last section,

22
21 12
11

⇐ this is a Y-cut

25
24 15
14

⇐ this is a λ-cut

then it operation J that takes each element to the top of its equivalence class
cannot obey J1, J2 and J3 at the same time. We will prove that by deriving rules
that say that if 11 ∼J 12 then 21 ∼J 22, and that if 15 ∼J 25 then 14 ∼J 24;
actually, our rules will say that if 11∗ = 12∗ then (11 ∨ 21)∗ = (12 ∨ 21)∗, and
that if 15∗ = 25∗ then (15 ∧ 24)∗ = (25 ∧ 24)∗. The rules are:

P ∗ = Q∗

(P ∨R)∗ = (Q ∨R)∗
NoYcuts

:=

P ∗ = Q∗

P ∨R∗ = Q ∨R∗

(P ∨R∗)∗ = (Q ∨R∗)∗

(P ∨R)∗ = (Q ∨R)∗
∨∗Cube

P ∗ = Q∗

(P&R)∗ = (Q&R)∗
Noλcuts

:=

P ∗ = Q∗

P ∗&R∗ = Q∗&R∗

(P&R)∗ = (Q&R)∗
J3

The top derivation mentions a rule called ‘∨∗Cube’, which will be proved in
the next section.

2017planar-has June 16, 2017 19:15

39

26 How J-operators interact with connectives

Let’s start by proving another three derived rules:

(P ∗&Q∗)∗ = P ∗&Q∗ = (P&Q)∗
&∗C0

:=

P ∗∗ = P ∗
J2

Q∗∗ = Q∗
J2

(P ∗&Q∗)∗ = P ∗∗&Q∗∗ = P ∗&Q∗ = (P&Q)∗
J3

(P ∗&Q∗)∗ = P ∗&Q∗ = (P&Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
∨∗C0

:=

P ≤ P ∨Q

P ∗ ≤ (P ∨Q)∗
Mo

Q ≤ P ∨Q

Q∗ ≤ (P ∨Q)∗
Mo

P ∗ ∨Q∗ ≤ (P ∨Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗∗
Mo

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
J2

(P → Q∗)∗ ≤ P ∗ → Q∗
→∗C0

:=

P → Q∗ ≤ P → Q∗

(P → Q∗)&P ≤ Q∗

((P → Q∗)&P)∗ ≤ Q∗∗
Mo

((P → Q∗)&P)∗ ≤ Q∗
J2

(P → Q∗)∗&P ∗ ≤ Q∗
J3

(P → Q∗)∗ ≤ P ∗ → Q∗

It is easy to prove each one of the arrows below (A //B means A ≤ B):

P&Q

P ∗&QddJJJJJJ

P&Q∗

P ∗&Q∗ddJJJJJJ
(P&Q)∗

(P ∗&Q)∗
ddJJJJJJ

(P&Q∗)∗

(P ∗&Q∗)∗
ddJJJJJJ

P&Q

P&Q∗::tttttt

P ∗&Q

P ∗&Q∗::tttttt
(P&Q)∗

(P&Q∗)∗
::tttttt

(P ∗&Q)∗

(P ∗&Q∗)∗
::tttttt

P&Q

(P&Q)∗
OO

P ∗&Q

(P ∗&Q)∗
OO

P&Q∗

(P&Q∗)∗
OO

P ∗&Q∗

(P ∗&Q∗)∗
OO

P∨Q

P ∗∨QddJJJJJJ

P∨Q∗

P ∗∨Q∗ddJJJJJJ
(P∨Q)∗

(P ∗∨Q)∗
ddJJJJJJ

(P∨Q∗)∗

(P ∗∨Q∗)∗
ddJJJJJJ

P∨Q

P∨Q∗::tttttt

P ∗∨Q

P ∗∨Q∗::tttttt
(P∨Q)∗

(P∨Q∗)∗
::tttttt

(P ∗∨Q)∗

(P ∗∨Q∗)∗
::tttttt

P∨Q

(P∨Q)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO

P→Q

P ∗→Q

$$

JJJJJJ

P→Q∗

P ∗→Q∗

$$

JJJJJJ
(P→Q)∗

(P ∗→Q)∗

$$

JJJJJJ

(P→Q∗)∗

(P ∗→Q∗)∗

$$

JJJJJJ

P→Q

P→Q∗::tttttt

P ∗→Q

P ∗→Q∗::tttttt
(P→Q)∗

(P→Q∗)∗
::tttttt

(P ∗→Q)∗

(P ∗→Q∗)∗
::tttttt

P→Q

(P→Q)∗
OO

P ∗→Q

(P ∗→Q)∗
OO

P→Q∗

(P→Q∗)∗
OO

P ∗→Q∗

(P ∗→Q∗)∗
OO

The cubes above will be called the “obvious and-cube”, the “obvious or-
cube”, and the “obvious implication-cube”, and they show partial orders be-
tween expressions of the form (P ? � Q?)?, where the ‘�’ stands for one of the
connectives ‘∧’, ‘∨’ or ‘→’, and each ‘?’ marks a place where we can put either
a ‘∗’ or nothing.

The rules &∗C0, ∨∗C0 and →∗C0 that we proved in the beginning of the
section can be used to add more information to the partial orders given by the
three “obvious” cubes above; adding them yields the cubes below, that will be
called the “full and-cube”, the “full or-cube”, and the “full implication-cube”.

P&Q

P ∗&QddJJJJJJ

P&Q∗

P ∗&Q∗ddJJJJJJ
(P&Q)∗

(P ∗&Q)∗
JJJJJJ
JJJJJJ

(P&Q∗)∗

(P ∗&Q∗)∗
JJJJJJ
JJJJJJ

P&Q

P&Q∗::tttttt

P ∗&Q

P ∗&Q∗::tttttt
(P&Q)∗

(P&Q∗)∗
tttttt
tttttt

(P ∗&Q)∗

(P ∗&Q∗)∗
tttttt
tttttt

P&Q

(P&Q)∗
OO

P ∗&Q

(P ∗&Q)∗
OO

P&Q∗

(P&Q∗)∗
OO

P ∗&Q∗

(P ∗&Q∗)∗

P∨Q

P ∗∨QddJJJJJJ

P∨Q∗

P ∗∨Q∗ddJJJJJJ
(P∨Q)∗

(P ∗∨Q)∗
JJJJJJ
JJJJJJ

(P∨Q∗)∗

(P ∗∨Q∗)∗
JJJJJJ
JJJJJJ

P∨Q

P∨Q∗::tttttt

P ∗∨Q

P ∗∨Q∗::tttttt
(P∨Q)∗

(P∨Q∗)∗
tttttt
tttttt

(P ∗∨Q)∗

(P ∗∨Q∗)∗
tttttt
tttttt

P∨Q

(P∨Q)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO

P→Q

P ∗→Q

$$

JJJJJJ

P→Q∗

P ∗→Q∗
JJJJJJ

JJJJJJ

(P→Q)∗

(P ∗→Q)∗

$$

JJJJJJ

(P→Q∗)∗

(P ∗→Q∗)∗
JJJJJJ
JJJJJJ

P→Q

P→Q∗::tttttt

P ∗→Q

P ∗→Q∗::tttttt
(P→Q)∗

(P→Q∗)∗
::tttttt

(P ∗→Q)∗

(P ∗→Q∗)∗
::tttttt

P→Q

(P→Q)∗
OO

P ∗→Q

(P ∗→Q)∗
OO

P→Q∗

(P→Q∗)∗P ∗→Q∗

(P ∗→Q∗)∗

2017planar-has June 16, 2017 19:15

40

We say that expr1 ≤ expr2 is true “by the full and-cube” when expr1 ≤ expr2
can be read from the (non-strict!) partial order in the the full and-cube; for
example, P ∧ Q∗ ≤ (P ∗ ∧ Q)∗ is true “by the full and-cube”, and similary
P ∗ ∨Q∗ ≤ (P ∨Q)∗ is true by the full or-cube and (P → Q)∗ ≤ P → Q∗ is true
by the full implication-cube.

We write

expr1 ≤ expr2
&∗Cube

expr1 ≤ expr2
∨∗Cube

expr1 ≤ expr2
→∗Cube

to indicate that the expression below the bar is a consequence (a substitution
instance) of the partial order in the full and-cubes, the full or-cube, or the full
implication-cube.

The six cubes will be discussed in more detail in the section 29.

2017planar-has June 16, 2017 19:15

41

27 J-cubes as partial orders

If we number the vertices of the cubes of sec.26 like ths,

7
5 3 6
1 4 2

0

then we can refer to their nodes as (∧)0, . . . , (∧)7, (∨)0, . . . , (∨)7, (→)0, . . . ,
(→)7; note that

(∧)0 = P ∧Q, (∧)4 = (P ∧Q)∗,
(∧)1 = P ∗ ∧Q, (∧)1+4 = (P ∗ ∧Q)∗,
(∧)2 = P ∧Q∗, (∧)2+4 = (P ∧Q∗)∗,

(∧)1+2 = P ∗ ∧Q∗, (∧)1+2+4 = (P ∗ ∧Q∗)∗,

and the same for (∨)k and (→)k.
With this convention we can interpret s set of arrows in a cube as a subset of

{0, . . . , 7}2, and use the positional notation for subsets from sec.2 to represent
that as a grid of ‘0’s and ‘1’s:

7

5

;;

ww
ww
w 7

3

OO7

6

cc
GG

GG
G

5

1

OO5

4

cc
GG

GG
G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4

;;

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

=

(0, 1), (2, 3), (4, 5), (6, 7),
(0, 2), (1, 3), (4, 6), (5, 7),
(0, 4), (1, 5), (2, 6), (3, 7)

 =

0 0 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

This gives us a way to represent explictly the transitive-reflexive closure of
a set of arrows:

7

5

;;

ww
ww
w 7

3

OO7

6

cc
GG

GG
G

5

1

OO5

4

cc
GG

GG
G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4

;;

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

∗

=

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 0 0 1 1 0 0
1 1 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

The derived rule &∗C0 from sec.26 proves

(P ∗ ∧Q∗)∗ = P ∗ ∧Q∗ = (P ∧Q)∗,

that corresponds to arrows 7 //oo 3 //oo 4; if we add these arrows to the cube

2017planar-has June 16, 2017 19:15

42

above we get this,
7

5

;;

ww
ww
w 7

3

7

6

cc
GG

GG
G

5

1

OO5

4

cc
GG

GG
G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4

;;

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

3

4
;

We have
7

5

;;

ww
ww
w 7

3

7

6

cc
GG

GG
G

5

1

OO5

4

cc
GG

GG
G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4

;;

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

3

4
6=

7

5
ww
ww
w

ww
ww
w 7

3

7

6
GG

GG
G

GG
GG

G

5

1

OO5

4
GG

GG
G

GG
GG

G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4
ww
ww
w

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

but:

7

5

;;

ww
ww
w 7

3

7

6

cc
GG

GG
G

5

1

OO5

4

cc
GG

GG
G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4

;;

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

3

4

∗

=

7

5
ww
ww
w

ww
ww
w 7

3

7

6
GG

GG
G

GG
GG

G

5

1

OO5

4
GG

GG
G

GG
GG

G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4
ww
ww
w

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

Let’s give a name to this (non-strict) partial order: “&∗Cuben”, the “numer-
ical version” of the full and-cube. Now we can see more clearly the extent of
the rule &∗Cube defined in the end of sec.26: we have

(∧)i ≤ (∧)j
&∗Cube

whenever (i, j) ∈ &∗Cuben.
We have something similar for the or-cube and the implication-cube:

∨∗Cuben =

7

5
ww
ww
w

ww
ww
w 7

3

OO7

6
GG

GG
G

GG
GG

G

5

1

OO5

4
GG

GG
G

GG
GG

G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4
ww
ww
w

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

→∗Cuben =

0

1 ccGGGGG
2

3 ccGGGGG
4

5 ccGGGGG
6

7 ccGGGGG

0

2

{{
wwwww

1

3wwwww
wwwww
4

6

{{
wwwww

5

7wwwww
wwwww

0

4OO1

5

2

6OO3

7

∗

=

1 1 1 1 1 1 1 1
0 0 1 0 0 0 1 0
1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0

2017planar-has June 16, 2017 19:15

43

Note that the arrows 2→ 0 and 6→ 4 in the version for the implication-cube
above are not mistakes — they correspond to P ∗→Q ≤ P→Q and (P ∗→Q)∗ ≤
(P→Q)∗.

28 Valuations induce partial orders

Let H be a ZHA, J be a J-operator on H, and v be a “valuation” that assigns
to the variables P and Q values in H; v is a function from {P,Q} to H, where
P and Q are seen as names. Once we have (H, J, v) we have a natural way to
extend v to make it assign values in H for P ∗, Q∗, and for the expressions in
the nodes of the and-cube, the or-cube and the implication-cube.

We will represent a triple (H, J, v) graphically by something like this,

P
P ∗

Q
Q∗

that shows the ZHA H, the slashing on H corresponding to J , and at least
v(P) and v(Q); sometimes the diagram will show also v(P ∗) and v(Q∗), for
convenience. With this information is it easy to calculate v(expr) for all ‘expr’s
of the form (P ? � Q?)?, i.e., all the expressions in the nodes of the and-cube,
the or-cube and the implication-cube.

Let’s restrict our attention to ‘∨’ at this moment. We have:

P
P ∗

Q
Q∗

v(P ∨Q) = 11 = v((∨)0)
v(P ∗ ∨Q) = 21 = v((∨)1)

v(P) = 10 v(P ∨Q∗) = 12 = v((∨)2)
v(Q) = 01 v(P ∗ ∨Q∗) = 22 = v((∨)3)
v(P ∗) = 20 v((P ∨Q)∗) = 22 = v((∨)4)
v(Q∗) = 02 v((P ∗ ∨Q)∗) = 22 = v((∨)5)

v((P ∨Q∗)∗) = 22 = v((∨)6)
v((P ∗ ∨Q∗)∗) = 22 = v((∨)7)

This induces a partial order ∨∗Cubev(v) ⊆ {0, . . . , 7}2 in the following way:
i ≤v j iff v((∨)i) ≤H v((∨)j). One easy way to calculate this ‘≤v’ is to replace
each number from 0 to 7 in the cube by v((∨)i), and then draw arrows on that
to represent the partial order in H, and then bring these arrows “back”:

7
5 3 6
1 4 2

0

22
22 22 22
21 22 12

11

11

21 ccGGGG
12

22 ccGGGG
22

22 GGGG
GGGG

22

22 GGGG
GGGG

11

12;;wwww

21

22;;wwww
22

22
wwww
wwww

22

22wwww
wwww

11

22OO21

22OO

12

22OO22

22

∗

0

1 ccGGGGG
2

3 ccGGGGG
4

5 GGGGG
GGGGG

6

7 GGGGG
GGGGG

0

2;;wwwww

1

3;;wwwww
4

6wwwww
wwwww

5

7wwwww
wwwww

0

4OO1

5OO

2

6OO3

7

∗

2017planar-has June 16, 2017 19:15

44

We can do this more compactly, as:

∨∗Cubev

 P
P ∗

Q
Q∗

 =

0

1 ccGGGGG
2

3 ccGGGGG
4

5 GGGGG
GGGGG

6

7 GGGGG
GGGGG

0

2;;wwwww

1

3;;wwwww
4

6wwwww
wwwww

5

7wwwww
wwwww

0

4OO1

5OO

2

6OO3

7

∗

=

P∨Q

P∨Q∗ddJJJJJJ

P ∗∨Q

P ∗∨Q∗ddJJJJJJ
(P∨Q)∗

(P∨Q∗)∗
JJJJJJ
JJJJJJ

(P ∗∨Q)∗

(P ∗∨Q∗)∗
JJJJJJ
JJJJJJ

P∨Q

P ∗∨Q::tttttt

P∨Q∗

P ∗∨Q∗::tttttt
(P∨Q)∗

(P ∗∨Q)∗
tttttt
tttttt

(P∨Q∗)∗

(P ∗∨Q∗)∗
tttttt
tttttt

P∨Q

(P∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗

∗

which shows that in this valuation we have, for example, v((∨)3) = v((∨)7),
i.e., P ∗∨Q∗ = (P ∗∨Q∗)∗. The important information that a valuation gives,
though, is in its ‘ 6≤’s. For example, here we have

v((∨)1) < v((∨)5) P∨Q∗ < (P∨Q∗)∗
v((∨)5) > v((∨)1) (P∨Q∗)∗ > P∨Q∗
v((∨)5) 6≤ v((∨)1) (P∨Q∗)∗ 6≤ P∨Q∗

If it were possible to prove — as in sec.26 — that (P∨Q∗)∗ ≤ P∨Q∗, then that
would be true in all valuations; by showing a valuation where (P∨Q∗)∗ 6≤ P∨Q∗
we show that (P∨Q∗)∗ ≤ P∨Q∗ cannot be a theorem, and that all attempts to
find a tree-like proof for (P∨Q∗)∗ ≤ P∨Q∗ are doomed to fail.

Note that

∨∗Cubev

 P
P ∗

Q
Q∗

 =

P∨Q

P∨Q∗ddJJJJJJ

P ∗∨Q

P ∗∨Q∗ddJJJJJJ
(P∨Q)∗

(P∨Q∗)∗
JJJJJJ
JJJJJJ

(P ∗∨Q)∗

(P ∗∨Q∗)∗
JJJJJJ
JJJJJJ

P∨Q

P ∗∨Q::tttttt

P∨Q∗

P ∗∨Q∗::tttttt
(P∨Q)∗

(P ∗∨Q)∗
tttttt
tttttt

(P∨Q∗)∗

(P ∗∨Q∗)∗
tttttt
tttttt

P∨Q

(P∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO

∗

This new valuation tells us something that the previous one didn’t: that P ∗∨Q∗ <
(P ∗∨Q∗)∗ in some valuation, and so (P ∗∨Q∗)∗ ≤ P ∗∨Q∗ cannot be a theorem.

2017planar-has June 16, 2017 19:15

45

29 Comparing partial orders

If we represent the partial orders of the examples of the last section as subsets
of {0, . . . , 7}2 we get:

∨∗Cubev

 P
P ∗

Q
Q∗

 =

0

1 ccGGGGG
2

3 ccGGGGG
4

5 GGGGG
GGGGG

6

7 GGGGG
GGGGG

0

2;;wwwww

1

3;;wwwww
4

6wwwww
wwwww

5

7wwwww
wwwww

0

4OO1

5OO

2

6OO3

7

∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

∨∗Cubev

 P
P ∗

Q
Q∗

 =

0

1 ccGGGGG
2

3 ccGGGGG
4

5 GGGGG
GGGGG

6

7 GGGGG
GGGGG

0

2;;wwwww

1

3;;wwwww
4

6wwwww
wwwww

5

7wwwww
wwwww

0

4OO1

5OO

2

6OO3

7OO

∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

If we represent the transitive-reflexive closures of the obvious or-cube and
the full or-cube of sec.27 as subsets of {0, . . . , 7}2, we get:

(
obvious
or-cube

)∗
=

0

1 ccGGGGG
2

3 ccGGGGG
4

5 ccGGGGG
6

7 ccGGGGG

0

2;;wwwww

1

3;;wwwww
4

6;;wwwww

5

7;;wwwww

0

4OO1

5OO

2

6OO3

7OO

∗

=

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

(
full

or-cube

)∗
=

0

1 ccGGGGG
2

3 ccGGGGG
4

5 GGGGG
GGGGG

6

7 GGGGG
GGGGG

0

2;;wwwww

1

3;;wwwww
4

6wwwww
wwwww

5

7wwwww
wwwww

0

4OO1

5OO

2

6OO3

7OO

∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

2017planar-has June 16, 2017 19:15

46

If we compare these four partial orders we get:(
obvious
or-cube

)∗
(

(
full

or-cube

)∗

= ∨∗Cubev

 P
P ∗

Q
Q∗

 (∨∗Cubev

 P
P ∗

Q
Q∗

Note that each ‘1’ in the grid of the obvious or-cube tells us something

that we know how to prove; the same for the full or-cube, and the full or-cube
has more ‘1’s in its grid, so it has “more information” — about the existence
of tree-like theorems — than the obvious or-cube. For example, the obvious
or-cube tells us that we know how prove (P∨Q)∗ ≤ (P ∗∨Q∗)∗, and the full
or-cube tells us that we know how to prove (P∨Q)∗ = (P ∗∨Q∗)∗.

Each ’0’ in the grid of a valuation-cube tells us about something that cannot
be be proved as a theorem, because that valuation is a “countermodel” for
it. The first valuation in the beginning of this section is on a ZHA with 9
elements, and the second one is on a ZHA with 10 elements; let’s refer to them
as (H9, J9, v9) and (H10, J10, v10), or just as v9 and v10. Note that the grid
for v10 has more ‘0’s; and ∨∗Cubev(v10) (∨∗Cubev(v9); for example, we have
(7, 3) ∈ ∨∗Cubev(v9) but

(7, 3) 6∈ ∨∗Cubev(v10) ⇒ v10(v((∨)7)) 6≤H10 v10(v((∨)3))
⇒ v10((P

∗∨Q∗)∗) 6≤H10 v10(P
∗∨Q∗)

⇒ v10 is a countermodel for (P ∗∨Q∗)∗ ≤ P ∗∨Q∗
⇒ v10 shows that (P ∗∨Q∗)∗ ≤ P ∗∨Q∗

cannot be a theorem,

so v10 has “more information” — now about the non-existence of tree-like the-
orems — than v9.

The full or-cube is “better” than the obvious or-cube, and the v10-cube is
“better” than the v9-cube. Moreover, the full or-cube and the v10-cube coincide,
and this means that the status of every statement of the form v((∨)i) ≤ v((∨)j)
can be determined in the following way: if v((∨)i) ≤ v((∨)j) is true in this
partial order

0

1 ccGGGGG
2

3 ccGGGGG
4

5 GGGGG
GGGGG

6

7 GGGGG
GGGGG

0

2;;wwwww

1

3;;wwwww
4

6wwwww
wwwww

5

7wwwww
wwwww

0

4OO1

5OO

2

6OO3

7OO

2017planar-has June 16, 2017 19:15

47

then v((∨)i) ≤ v((∨)j) is a consequence of the obvious or-cube plus ∨∗C0

(sec.26); if v((∨)i) ≤ v((∨)j) is not true in the partial order, then it cannot
be proved as a theorem, and the valuation v10 is a countermodel for it.

We can do even better, and extract all information from well-chosen valua-
tions.

Theorem. Take any statement of the form v((∨)i) ≤ v((∨)j). If it is true in
the valuation below,

v(∨) = v10 =

P
P ∗

Q
Q∗

then it is a theorem and can be proved using the obvious or-cube and ∨∗C0; if
the statement is false in the valuation v(∨), then it cannot be a theorem and
v(∨) is a countermodel that shows that.

We also have:
Theorem. Take any statement of the form (P ?∧Q?)? ≤ (P ?∧Q?)?. If it is

true in the valuation below,

v(∧) = P
P ∗

Q
Q∗

then it is a theorem and can be proved using the obvious and-cube and &∗C0;
if the statement is false in the valuation v(∧), then it cannot be a theorem and
v(∧) is a countermodel that shows that.

Theorem. Take any statement of the form (P ?→Q?)? ≤ (P ?→Q?)?. If it is
true in the valuation below,

v(→) =
P Q

then it is a theorem and can be proved using the obvious implication-cube and
→∗C0; if the statement is false in the valuation v(→), then it cannot be a theorem
and v(→) is a countermodel that shows that.

2017planar-has June 16, 2017 19:15

48

30 Fragments of Lindenbaum Algebras

31 Polynomial J-operators

It is not hard to check that for any Heyting Algebra H and any Q,R ∈ H the
operations (¬¬), . . ., (∨Q ∧→R) below are J-operators:

(¬¬)(P) = ¬¬P
(→→R)(P) = (P→R)→R

(∨Q)(P) = P ∨Q
(→R)(P) = P→R

(∨Q ∧→R)(P) = (P∨Q) ∧ (P→R)

Checking that they are J-operators means checking that each of them obeys
J1, J2, J3. Let’s define formally what are J1, J2 and J3 “for a given F : H → H”:

J1F := (P ≤ F (P))
J2F := (F (P) = F (F (P))
J3F := (F (P ∧ P ′) = F (P) ∧ F (P ′))

and:
J123F := J1F ∧ J2F ∧ J3F .

Checking that (¬¬) obeys J1, J2, J3 means proving J123(¬¬) using only the
rules from intuitionist logic from sec.11; we will leave the proof of this, of and
J123(→→R), J123(∨Q), and so on, to the reader.

The J-operator (∨Q ∧→R) is a particular case of building more complex
J-operators from simpler ones. If J,K : H → H, we define:

(J ∧K) := λP :H.(J(P)∧K(P))

it not hard to prove J123(J∧K) from J123J and J123K using only the rules from
intuitionistic logic.

The J-operators above are the first examples of J-operators in Fourman and
Scott’s “Sheaves and Logic” ([FS79]); they appear in pages 329–331, but with
these names (our notation for them is at the right):

(i) The closed quotient,

Jap = a ∨ p JQ = (∨Q).

(ii) The open quotient,

Jap = a→ p JR = (→R).

(iii) The Boolean quotient.

Bap = (p→ a)→ a BR = (→→R).

2017planar-has June 16, 2017 19:15

49

(iv) The forcing quotient.

(Ja ∧ Jb)p = (a ∨ p) ∧ (b→ p) (JQ ∧ JR) = (∨Q ∧→R).

(vi) A mixed quotient.

(Ba ∧ Ja)p = (p→ a)→ p (BQ ∧ JQ) = (→→Q ∧→Q).

The last one is tricky. From the definition of Ba and Ja what we have is

(Ba ∧ Ja)p = ((p→ a)→ a) ∧ (a→ p),

but it is possible to prove

((p→ a)→ a) ∧ (a→ p) ↔ ((p→ a)→ p)

intuitionistically.
The operators above are “polynomials on P,Q,R,→,∧,∨,⊥” in the termi-

nology of Fourman/Scott: “If we take a polynomial in→,∧,∨,⊥, say, f(p, a, b, . . .),
it is a decidable question whether for all a, b, . . . it defines a J-operator” (p.331).

When I started studying sheaves I spent several years without any visual
intuition about the J-operators above. I was saved by ZHAs and brute force —
and the brute force method also helps in testing if a polynomial (in the sense
above) is a J-operator in a particular case. For example, take the operators
λP :H.(P ∧ 22) and (∨22) on H = [00, 44]:

λP :H.(P ∧ 22) = 20
21
22

22
22

20
21

22
22
22

20
21
22
22

22

10
11
12

12
12

00
01

02
02
02

(∨22) = 42
42
42

43
44

32
32

32
33
34

22
22
22
23

24

22
22
22

23
24

22
22

22
23
24 = 22

The first one, λP :H.(P ∧22), is not a J-operator; one easy way to see that is
to look at the region in which the result is 22 — its top element is 44, and this
violates the conditions on slash-operators in sec.22. The second operator, (∨22),

2017planar-has June 16, 2017 19:15

50

is a slash operator and a J-operator; at the right we introduce a convenient
notation for visualizing the action of a polynomial slash-operator, in which we
draw only the contours of the equivalence classes and the constants that appear
in the polynomial.

Using this new notation, we have:

(¬¬) = (→→00) =

00

(→→22) = 22

(∨42) = 42 (→24) = 24

(∨42 ∧→24) = 42 24

(→→22 ∧→22) =
22

Note that the slashing for (∨42 ∧ →24) has all the cuts for (∨42) plus all
the cuts for (→24), and (∨42∧→24) “forces 42 ≤ 24” in the following sense: if
P ∗ = (∨42 ∧→24)(P) then 42∗ ≤ 24∗.

32 An algebra of piccs

We saw in the last section a case in which (J ∧K) has all the cuts from J plus
all the cuts from K; this suggests that we may have an operation dual to that,

2017planar-has June 16, 2017 19:15

51

that behaves as this: (J ∨K) has exactly the cuts that are both in J and in K:

Cuts(J ∧K) = Cuts(J) ∪ Cuts(K)
Cuts(J ∨K) = Cuts(J) ∩ Cuts(K)

And it J1, . . . , Jn are all the slash-operators on a given ZHA, then

Cuts(J1 ∧ . . . ∧ Jn) = Cuts(J1) ∪ . . . ∪ Cuts(Jk) = (all cuts)
Cuts(J1 ∨ . . . ∨ Jn) = Cuts(J1) ∩ . . . ∩ Cuts(Jk) = (no cuts)

yield the minimal element and the maximal element, respectively, of an algebra
of slash-operators; note that the slash-operator with “all cuts” is the identity
map λP : H.P , and the slash-operator with “no cuts” is the one that takes all
elements to >: λP : H.>. This yields a lattice of slash-operators, in which the
partial order is J ≤ K iff Cuts(J) ⊇ Cuts(K). This is somewhat counterintuitive
if we think in terms of cuts — the order seems to be reversed — but it makes
a lot of sense if we think in terms of piccs (sec.18) instead.

Each picc P on {0, . . . , n} has an associated function ·P that takes each
element to the top element of its equivalence class. If we define P ≤ P ′ to mean
∀a ∈ {0, . . . , n}. aP ≤ aP

′
, then we have this:

0
1
2
3
4
5

012345
•
•
•
•
•
•

a

aP

≤
0
1
2
3
4
5

012345

••
••
••

a

aP ′

≤
0
1
2
3
4
5

012345

••

••••

a

aP ′′

≤
0
1
2
3
4
5

012345

••••••

a

aP ′′′

0|1|2|3|4|5 ≤ 01|23|45 ≤ 01|2345 ≤ 012345
P ≤ P ′ ≤ P ′′ ≤ P ′′′

This yields a partial order on piccs, whose bottom element is the identity
function 0|1|2| . . . |n, and the top element is 012 . . . n, that takes all elements to
n.

The piccs on {0, . . . , n} form a Heyting Algebra, where > = 01 . . . n, ⊥ =
0|1| . . . |n, and ‘∧’ and ‘∨’ are the operations that we have discussed above; it is
possible to define a ‘→’ there, but this ‘→’ is not going to be useful for us and
we are mentioning it just as a curiosity. We have, for example:

01234

01|234

OO >

P ∨Q

OO

01|234

0|1|234

??

��
��
01|234

01|2|34

__
??

??
P ∨Q

P

??

��
��
�
P ∨Q

Q

__
??

??
?

0|1|234

0|1|2|34

__
??

??
01|2|34

0|1|2|34

??

��
��

P

P ∧Q

__

??
??

? Q

P ∧Q

??

��
��
�

0|1|2|34

0|1|2|3|4

OO
P ∧Q

⊥

OO

2017planar-has June 16, 2017 19:15

52

33 An algebra of J-operators

Fourman and Scott define the operations ∧ and ∨ on J-operators in pages 325
and 329 ([FS79]), and in page 331 they list ten properties of the algebra of
J-operators:

(i) Ja ∨ Jb = Ja∨b (∨21) ∨ (∨12) = (∨22)
(ii) Ja ∨ Jb = Ja∧b (→32) ∨ (→23) = (→22)
(iii) Ja ∧ Jb = Ja∧b (∨21) ∧ (∨12) = (∨11)
(iv) Ja ∧ Jb = Ja∨b (→32) ∧ (→23) = (→33)
(v) Ja ∧ Ja = ⊥ (∨22) ∧ (→22) = (⊥)
(vi) Ja ∨ Ja = > (∨22) ∨ (→22) = (>)
(vii) Ja ∨K = K ◦ Ja
(viii) Ja ∨K = Ja ◦K
(ix) Ja ∨Ba = Ba

(x) Ja ∨Bb = Ba→b

The first six are easy to visualize; we won’t treat the four last ones. In the
right column of the table above we’ve put a particular case of (i), . . ., (vi) in
our notation, and the figures below put all together.

In Fourman and Scott’s notation,

J22

J> = > = J⊥??���������
J22

J> = > = J⊥__?????????

J21

J22??�����
J12

J22 __?????
J32

J22
??�����

J23

J22
__?????

J11

J21 __?????
J11

J12??�����
J11

J32
__?????

J11

J23
??�����

J⊥ = ⊥ = J>

J11 __?????????

J⊥ = ⊥ = J>

J11
??���������

2017planar-has June 16, 2017 19:15

53

in our notation,

(22∨)

(>∨) = (λP.>) = (⊥→)
??�����������

(22→)

(>∨) = (λP.>) = (⊥→)
__???????????

(21∨)

(22∨)
??����

(12∨)

(22∨)
__????

(32→)

(22→)
??����

(23→)

(22→)
__????

(11∨)

(21∨)
__????

(11∨)

(12∨)
??����

(33→)

(32→)
__????

(33→)

(23→)
??����

(⊥∨) = (λP.P) = (>→)

(11∨)
__???????????

(⊥∨) = (λP.P) = (>→)

(33→)
??�����������

and drawing the polynomial J-operators as in sec.31:

22 22

21 12

32

34

11

33

34 All slash-operators are polynomial

Here is an easy way to see that all slashings — i.e., J-operators on ZHAs —
are polynomial. Every slashing J has only a finite number of cuts; call them

2017planar-has June 16, 2017 19:15

54

J1, . . . , Jn. For example:

J =

45
46

34
35

36

22
23
24

25
26

11
12
13

14

00
01
02

03
04

J1 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J2 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J3 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

Each cut Ji divides the ZHA into an upper region and a lower region, and
Ji(00) yields the top element of the lower region. Also, (→→Ji(00)) is a poly-
nomial way of expressing that cut:

J1 =
(→→ 04) = 04

J2 =
(→→ 23) =

23
J3 =

(→→ 45) =

45

The conjunction of these ‘(→→Ji(00))’s yields the original slashing:

(→→ 04) ∧ (→→ 23) ∧ (→→ 45) =
04

23

45

= J

2017planar-has June 16, 2017 19:15

55

35 Open sets of a certain form

A 2-column graph with question marks (a “2CGQ”) is a triple ((P,A), B,D),
where (P,A) is a 2CG and B ⊆ D ⊆ P ; let G = ((P,A), B,D). We represent G
graphically like (P,A), but with ‘0’s, ‘?’s and ’1’s on the points of P , and the
expression “C is of the form G” means B ⊆ C ⊆ D. For example:

0

1

1

0

0
 is of the form

0

?

1

?

0

Informally, a ‘0’ in the graphical representation of a 2CGQ Q means “all
‘C’s of the form G have a ‘0’ here”, a ‘1’ means “all ‘C’s of the form G have a
‘1’ here”, and a ‘?’ means “some ‘C’s of the form G have ‘0’s there and some
have ‘1’s”. More formally, a 2CGQ G corresponds to a partition of P into P0,
P1 and P? — the sets of ‘0’s, ‘1’s and ‘?’s of the graphical representation of G
— and we have P1 = B, P? = D\B, P0 = P\D, D = P1 ∪ P?.

Our main use for 2CGQs will be for giving us a nice notation for “the set of
open sets of (P,A) betwen B and D”:

Opens((P,A), B,D) = {U ⊆ P | B ⊆ U ⊆ D and U ∈ OA(P) }

Note that adding intercolumn arrows reduce sets of opens sets,

Opens

?
1
?
?
0
?

?
1
?
?
0
?
 ⊇ Opens

?
1
?
?
0
?

?
1
?
?
0
?
 ⊇ Opens

?
1
?
?
0
?

?
1
?
?
0
?

because each arrow is a “restriction” (sec.16) on what is considered an open set.
We can propagate ‘1’s forward along arrows like ‘1→?’ and ‘0’s backward along
arrows like ‘?→ 0’ without changing the result of ‘Opens(. . .)’:

Opens

?
1
?
?
0
?

?
1
?
?
0
?
 = Opens

1
1
?
?
0
0

1
1
?
?
0
0
 Opens

1
?
?
?

?
?
?
0
?
0
 = Opens

1
?
0
0

1
?
?
0
0
0

36 Propagation

Fix a 2CG (P,A). There are two good, natural ways to get rid of all arrows
‘1→ 0’ in a subset C ⊆ P : one, called ‘prp1,(P,A)’ or ‘prp1’, “propagates the ‘1’s
forward”, and the other one, called ‘prp0’ or ‘prp1,(P,A)’, “propagates the ‘0’s
backward”. An example:

prp0

(
0
1

1
0
0
)

=

(
0
0

1
0
0
)

prp1

(
0
1

1
0
0
)

=

(
1
1

1
1
0
)

2017planar-has June 16, 2017 19:15

56

It easy to see that prp1(C) returns the smallest open set containing C, and
prp0(C) returns the largest open set contained in C,

The interior of a set S in a topology U on P is the biggest open set in U
contained in S, and, dually, the cointerior of a set S is the smallest open set in
U containing S. In finite topologies cointeriors always exist.

Theorem 1. For any 2CG (P,A) and S ⊆ P we have

int(S) = prp0(S) ⊆ S ⊆ prp1(S) = coint(S).

We can define propagations for 2CGQs in a way that changes only the ‘?’s.
If G = ((P,A), B,D) is a 2CGQ, then prp1(G) propagates forward only the ‘1’s
in arrows like ‘1→?’, and prp0(G) propagates backward only the ‘0’s in arrows
like ‘?→ 0’.

The operations ‘prp1’ and ‘prp0’ on 2CGQs need not commute:

prp1

(
prp0

(
?
1

0
?
))

=
(

0
1

0
0
)

prp0

(
prp1

(
?
1

0
?
))

=
(

1
1

0
1
)

but they can only fail to commute when Opens(G) = ∅. When they commute
we will write their composite as ‘prp’.

Theorem 2. Let G = ((P,A), B,D) be a 2CGQ with Opens(G) 6= ∅ and let
G′ = prp(G) = Opens((P,A), B′, D′), P ′1 = B′, P ′? = D′\B′, P ′1 = P\D′. Then:

a) In G′ everything below a ‘1’ is also ‘1’,
b) In G′ everything above a ‘0’ is also ‘0’,
c) B′ = P ′1 is an open set,
d) D′ = P ′1 ∪ P ′? = P\P ′0 is an open set,
e) B′ = prp1(B) = coint(B),
f) D′ = prp0(D) = int(D),
g) B′ = pile(ab) for some ab,
h) D′ = pile(ef) for some ef ,
i) B′ ∈ Opens(G) = Opens(G′),
j) D′ ∈ Opens(G) = Opens(G′).

An example:

G =

1
?
?
?

?
?
?
0
?
0
 G′ = prp(G) =

1
?
0
0

1
?
?
0
0
0
 = ((P,A), pile(11), pile(23))

The next theorem translates this to ZHAs, and shows that when Opens(G) 6=
∅ then it returns an interval in a ZHA (in the sense of sec.18),

Theorem 3. Let G = ((P,A), B,D) be a 2CGQ with Opens(G) 6= ∅ and
let G′ = prp(G) = Opens((P,A), B′, D′), ab = pile−1(B′), ef = pile−1(D′),

2017planar-has June 16, 2017 19:15

57

I = pile−1(Opens(G)) = pile−1(Opens(G′)), and let H be the ZHA generated by
(P,A), i.e., H = pile−1(OA(P)). Then:

a) ab is the minimal point of I,
b) ef is the maximal point of I,
c) I ⊆ H,
d) I = [ab, ef] ∩H,
e) if A has no intercolumn arrows then I = [ab, ef].

With Theorem 3 we can extend the last example to:

G =

1
?
?
?

?
?
?
0
?
0
 G′ = prp(G) =

1
?
0
0

1
?
?
0
0
0
 = ((P,A), pile(11), pile(23))

Opens(G) = Opens(G′) = I oo pile

pile−1

// [11, 23] ∩

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

In the next sections we will see that in some important cases the results of
Opens(. . .) coincide with J-equivalence classes.

37 The set of relevant points of a slashing

We saw in sec.18 that a slashing on a ZHA H can be represented a pair (L,R) of
piccs, that we drew in a V-shaped diagram; let’s write S for the set of numbers
above the cuts in the V-shaped diagram, converting them to the notation for
elements of the left and the right columns of 2-column graphs:

J =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

(L,R) =

0
1

2
3

4

0
1
2
3
4
5
6

S = {1 , 4, 6}

We also saw (sec.24) that on ZHAs there is a bijection between slashings
and J-operators. Let relev(J) be the operation that obtains the set S for a
J-operator J : relev(J) = {1 , 4, 6} for the J above. We will call S ⊆ P the
set of relevant points of the J-operator J , and Q = qmarks(J) = P\S will be

2017planar-has June 16, 2017 19:15

58

the set of (points that will be replaced by) question marks by J . Note that we
can also go from a set Q ⊆ P to a slashing and a J-operator, but we will not
need a notation for that.

We can define the operation that receives a C ⊆ P and “forgets the infor-
mation on the points of Q” on C, returning a 2CGQ, as:

forget(P,A),Q(C) = ((P,A), C\Q,C ∪Q)

for example:

forget(P,A),Q(pile(12)) =

1
?
?
?

?
?
?
0
?
0

Note that

prp(forget(P,A),Q(pile(12))) =

1
?
0
0

1
?
?
0
0
0

= ((P,A), pile(11), pile(23))

and that:

pile−1(Opens(prp(forget(P,A),Q(pile(12))))) = [11, 23] ∩H

= [coJ(12), J(12)] ∩H
= [12]J

this holds in general, as we will see soon.

38 Rectangular versions

The “rectangular version” of a 2CG, a ZHA and a J-operator are defined as this.
Let (P,A) be a 2CG and H its associated ZHA, and J : H → H a J-operator
on H; then A′ is A minus its intercolumn arrows, H ′ is the (rectangular) ZHA
associated to (P,A′), and J ′ : H ′ → H ′ is J-operator on H ′ that has the same
cuts as J . The primes on A′, H ′ and J ′ will always mean from here on that we
are on the rectangular versions. Let Q = qmarks(J) = qmarks(J ′).

The rectangular versions for the (P,A) and the J that we are using in our

2017planar-has June 16, 2017 19:15

59

examples are:

(P,A′) =

1

2

3

4

1

2

3

4

5

6

J ′ =
40

41
42
43

44
45
46

30
31
32

33
34
35

36

20
21

22
23
24

25
26

10
11
12
13

14
15
16

00
01
02

03
04
05

06
.

Take any C ⊆ P , The result of forget(P,A′),Q(C) is always of this form,

forget(P,A′),Q(C) =

a
?
?
?

?
?
?
b
?
c

for some a, b, c ∈ {0, 1}; moreover, if C is open then forget(P,A′),Q(C) doesn’t
have ‘1’s above ‘0’s. Take any C ⊆ P open in (P,A); C will be of the form
pile(cd) for some cd ∈ H ′. Let G = forget(P,A′),Q(C). The action of prp on
‘G’s of this form is particularly simple: each column of G is made of blocks of
consecutive ‘?’s separated by ‘0’s or ‘1’s, and prp acts homogeneously on each
block, leaving ‘?’s in at most one block in each column. For example, if a = b = 1
and c = 0 then

prp(forget(P,A′),Q(C)) =

1
?
?
?

1
1
1
1
?
0

It is easy to see that:

Theorem 1. If C = pile(cd) then pile−1(Opens(prp(forget(P,A′),Q(C)))) is a
J ′-equivalence class.

Theorem 2. If C = pile(cd) then pile−1(Opens(prp(forget(P,A′),Q(C)))) is
[coJ ′(cd), J ′(cd)].

Theorem 3. Suppose that cd ∈ H (instead of cd ∈ H ′) and let:

C = pile(cd)
G = forget(P,A′),Q(C)

G′ = prp(forget(P,A′),Q(C))

G′′ = prp(forget(P,A),Q(C))

I ′ = pile−1(Opens(G′))
I ′′ = pile−1(Opens(G′′))

2017planar-has June 16, 2017 19:15

60

thenG′ is a “rectangular” (and “propagated”) 2CGQ, and I ′ = [coJ ′(cd), J ′(cd)]
is a “rectangular interval”; G′′ is G′ plus the intercolumn arrows, and with the
propagations having been done through the intercolumn arrows too. It is not
hard to see that:

a) Opens(G) = Opens(G′) ⊇ Opens(G′′)
b) I ′′ = I ′ ∩H
c) cd ∈ I ′′

d) I ′′ = [coJ(cd), J(cd)] ∩H
e) pile(coJ(cd)), pile(J(cd)) ∈ I ′′

f) G′′ = ((P,A), pile(coJ(cd)), pile(J(cd)))
g) G′′ = ((P,A), coint(C\Q), int(C ∪Q)), so:
h) pile(coJ(cd)) = coint(C\Q) = prp1(C\Q) and
i) pile(J(cd)) = int(C ∪Q) = prp0(C ∪Q),
j) coJ(cd)) = pile−1(coint(C\Q)) = pile−1(prp1(C\Q)) and
k) J(cd) = pile−1(int(C ∪Q)) = pile−1(prp0(C ∪Q)).

A way to visualize what Theorem 3 means is to define B,B′, B′′, D,D′D′′

like this:
(B,D) = (C\Q,C ∪Q)

G′ = ((P,A′), B′, D′)
G′′ = ((P,A), B′′, D′′)

then, in the example we are using, omitting some ‘pile’s and ‘pile−1’s, we have:

J =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J ′ =
40
41

42
43
44
45
46

30
31
32
33
34
35
36

20
21
22
23
24
25
26

10
11
12
13
14
15
16

00
01
02
03
04
05
06

C

B′

D′

C
B′′

D′′

Theorem 3 shows several ways to calculate B′, C ′, B′′, C ′′.

39 Sub-2-column graphs

Another way to understand the properties of the operation forget(P,A),Q is to
think that it relates two topologies, OA(P) and OA|S (S) (mnemonic: S is a
“smaller set”, and S = relev(J) = P\Q). We will sometimes denote OA(P)
and OA|S (S) as just O(P) and O(S); O(S) is a restriction of O(P) to S in the
following sense: the open sets of O(S) are exactly the sets of the form U ∩ S,
where U ∈ OA(P).

The topology O(S) = OA|S (S) comes from a “sub-2-column graph” (S,A|S)
of (P,A), where the set of arrows A|S can be obtained from A and S by

A|S := (A∗ ∩ (S × S))ess,

2017planar-has June 16, 2017 19:15

61

which means: take the transitive-reflexive closure A∗ of A, which yields a partial
order on P , and restrict that order to S by taking A∗∩ (S×S); then (note: this
last step is optional!) drop the redundant arrows in A∗ ∩ (S×S) and keep only
the “essential” ones, which are the ones that can’t be deleted without changing
the order.

For clarity, we will draw the arrows in (S,A|S) as in the original 2CG (P,A),
even though some arrows may look as coming from or going to nonexistent
points; a really honest drawing of (S,A|S) in the example below would be the
one at the right, that has only one intercolumn arrow, 1 ← 6, and only one
vertical arrow, 6→ 4.

(P,A) =

1

2

3

4

1

2

3

4

5

6

(S,A|S) =

1

·

·

·

·

·

·

4

·

6

=

1

4

6

A sub-2-column graph is a graph (S,A|S) generated by a 2CG (P,A) and
an S ⊆ P by the procedure above: A|S = (A∗ ∩ (S × S))ess.

Theorem 1. Fix a ZHA H and a J-operator J on it, and from that produce
(P,A), U = OA(P), S, and Q. We clearly have bijections between:

1) the set of fixed points of J , { ef ∈ H | J(ef) = ef },
2) the set of fixed points of coJ , { ab ∈ H | coJ(ab) = ab },
3) the image of J , J(H) = { J(cd) | cd ∈ H },
4) the image of coJ , coJ(H) = { coJ(cd) | cd ∈ H },
5) the set of J-equivalence classes of H, H/J = { [cd]J | cd ∈ H },
6) the elements ef ∈ H such that pile(ef) = int(pile(ef) ∪Q),
7) the elements ab ∈ H such that pile(ab) = coint(pile(ab)\Q),
8) the sets U ⊆ O(P) such that U = int(U ∪Q),
9) the sets W ⊆ O(P) such that W = coint(W\Q),
10) the sets U ⊆ P such that U = int(U ∪Q),
11) the sets W ⊆ P such that W = coint(W\Q),
12) the opens sets in O(S).

The partial order on O(S) is given by inclusion; some of the corresponding
partial orders on the other sets of Theorem 1 are not so obvious.

Theorem 2. Let ab, cd ∈ H, A = pile(ab), B = pile(cd), A′ = A ∩ S,
B′ = B ∩ S. The following are all equivalent:

1) A′ ⊆ B′,
2) A\Q ⊆ B\Q,
2’) A ∪Q ⊆ B ∪Q,
3) coint(A\Q) ⊆ coint(B\Q),

2017planar-has June 16, 2017 19:15

62

3’) int(A ∪Q) ⊆ int(B ∪Q),
4) prp1(A\Q) ⊆ prp1(B\Q)
4’) prp0(A ∪Q) ⊆ prp0(B ∪Q)
5) coJ(ab) ≤ coJ(cd),
5’) J(ab) ≤ J(cd),
6) inf([ab]J) ≤ inf([cd]J),
6’) sup([ab]J) ≤ sup([cd]J).

Items 6 and 6’ give us a way to endow H/J with a partial order. Remember
that sup([ab]J) = J(ab) and inf([ab]J) = coJ(ab); we say that [ab]J ≤ [cd]J

when J(ab) ≤ J(cd), or, equivalently, coJ(ab) ≤ coJ(cd).

Theorem 3. For any ab, cd, ef ∈ H we have:
1) [cd]J ≤ [ef]J iff cd ≤ J(ef),
2) [ab]J ≤ [cd]J iff coJ(ab) ≤ cd.

We can put that in a diagram,

[ef]J J(ef)
� sup //

[cd]J cdoo �

[ab]J coJ(ab)�
inf
//

[ef]J

[cd]J

OO
J(ef)

cd

OO
oo //

[cd]J

[ab]J

OO
cd

coJ(ab)

OO
oo //

that can be read as a categorical statement: the functor [·]J : H → H/J has
a left adjoint inf : H/J → H and a right adjoint sup : H/J → H, where
inf returns the smallest element of a J-equivalence class, and sup returns the
biggest.

40 J-operators as adjunctions

The last diagram of the last section can be translated to topological language:

O(S) O(P)
f∗ //

O(S) O(P)oo f∗O(S) O(P)
f !

//

S P
f //

U int(U ∪Q)
� f∗ //

V ∩ S Voo f∗ �

W coint(U\Q)
�

f ! //

S P
f //

U

V ∩ S

OO int(U ∪Q)

V

OO
oo //

V ∩ S

W

OO V

coint(U\Q)

OO
oo //

2017planar-has June 16, 2017 19:15

REFERENCES 63

The notation used in the diagram above is essentially the one from figures 6
and 7 in [Och13]; the “external view” is at the left,“internal view” is at the right,
the adjunction is f ! a f∗ a f∗, and the diagram shows that f∗(U) = int(U ∪Q),
f∗(V) = V ∩ S and f !(W) = coint(U\Q) (where int and coint use the topology
O(P)).

The order in which things are constructed in the diagram above is different
from last section, though. Now we start with a finite set P , a topology O(P),
and a subset S ⊆ P , and we define O(S) by restriction:

O(S) = {V ∩ S | V ∈ O(P) }

we define Q as P\S, we let f : S → P be the inclusion and f∗(V) be V ∩ S;
then it turns out (theorem!) that the f ! and f∗ as defined above are the left
and the right adjoints of f∗ — and J and coJ are built from f !, f∗ and f∗: the
definitions

J(V) = f∗(f
∗(V))

coJ(V) = f !(f∗(V))

yield a J-operator J : O(P) → O(P) and its ‘co’ version, that returns the
smallest element in each equivalence class; and if O(P) = OA(P) for some 2CG
(P,A), then we can define J and coJ in this other way,

J(cd) = pile−1(f∗(f
∗(pile(cd))))

coJ(cd) = pile−1(f !(f∗(pile(cd))))

that yields a J-operator (and its ‘co’ version) on the ZHA H generated by the
2CG (P,A).

This “topological version” of the adjunction is a nice concrete starting point
for understanding toposes and geometric morphisms between them — or, actu-
ally, for introducing geometric morphisms to “children” who prefer to start with
finite examples in which everything can be calculated explicitly. The toposes in-
volved are SetO(S)op and SetO(P)op , and the adjunction f ! a f∗ a f∗ presented
above acts only on the subobjects of the terminal of each topos — it needs to
be extended to an (essential) geometric morphism between these toposes. This,
and several concepts from section A4 of [Joh02], will be treated in a sequel of
this paper, in a joint work with Peter Arndt.

[Joh02] [DP02] [Och13] [FS79] [Bel88]

References

[Bel88] J. L. Bell. Toposes and Local Set Theories. Number 14 in Oxford Logic
Guides. Oxford University Press, 1988.

[DP02] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 2002.

2017planar-has June 16, 2017 19:15

REFERENCES 64

[FS79] M.P. Fourman and D.S. Scott. Sheaves and logic. In M.P. Fourman,
D.J. Mulvey, and D.S. Scott, editors, Applications of Sheaves: Proceed-
ings of the Research Symposium on Applications of Sheaf Theory to
Logic, Algebra and Analysis - Durham, july 9-21, 1977, number 753 in
Lecture Notes in Mathematics, pages 302–401. Springer, 1979.

[Joh02] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Com-
pendium, volume 1. Oxford University Press, 2002.

[Och13] E. Ochs. Internal diagrams and archetypal reasoning in category theory.
Logica Universalis, 7(3):291–321, september 2013.

2017planar-has June 16, 2017 19:15

	Children
	Positional notations
	ZDAGs
	LR-coordinates
	ZHAs
	Conventions on diagrams without axes
	Propositional calculus
	Propositional calculus in a ZHA
	Heyting Algebras
	The two implications are equivalent
	Logic in a Heyting Algebra
	Derived rules

	Topologies
	The default topology on a ZSet
	Topologies as partial orders
	2-Column Graphs
	Topologies on 2CGs
	Converting between ZHAs and 2CAGs
	Piccs and slashings
	From slash-partitions back to slashings
	Slash-regions have maximal elements
	Cuts stopping midway
	Slash-operators
	Slash-operators: a property
	J-operators and J-regions
	The are no Y-cuts and no -cuts
	How J-operators interact with connectives
	J-cubes as partial orders
	Valuations induce partial orders
	Comparing partial orders
	Fragments of Lindenbaum Algebras
	Polynomial J-operators
	An algebra of piccs
	An algebra of J-operators
	All slash-operators are polynomial
	Open sets of a certain form
	Propagation
	The set of relevant points of a slashing
	Rectangular versions
	Sub-2-column graphs
	J-operators as adjunctions

