Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017vichy-abs.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017vichy-abs.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017vichy-abs.pdf")) % (defun e () (interactive) (find-LATEX "2017vichy-abs.tex")) % (defun u () (interactive) (find-latex-upload-links "2017vichy-abs")) % (find-xpdfpage "~/LATEX/2017vichy-abs.pdf") % (find-sh0 "cp -v ~/LATEX/2017vichy-abs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017vichy-abs.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017vichy-abs.pdf % file:///tmp/2017vichy-abs.pdf % file:///tmp/pen/2017vichy-abs.pdf % http://angg.twu.net/LATEX/2017vichy-abs.pdf % % (find-sh0 "cp -v ~/LATEX/2017vichy-abs.pdf /tmp/tutorial-cats.pdf") % (find-sh0 "cp -v ~/LATEX/2017vichy-abs.tex /tmp/tutorial-cats.tex") % (find-sh "cd /tmp/ && lualatex tutorial-cats.tex") % (find-xpdfpage "/tmp/tutorial-cats.pdf") % (find-fline "/tmp/tutorial-cats.tex") %\documentclass[oneside]{book} %\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} %\usepackage{amsmath} %\usepackage{amsfonts} %\usepackage{amssymb} %\usepackage{pict2e} %\usepackage{color} % (find-LATEX "edrx15.sty" "colors") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % %\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") %\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") %\input edrxchars.tex % (find-LATEX "edrxchars.tex") %\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") %\input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % %\begin{document} % \catcode`\^^J=10 % \directlua{dednat6dir = "dednat6/"} % \directlua{dofile(dednat6dir.."dednat6.lua")} % \directlua{texfile(tex.jobname)} % \directlua{verbose()} % %\directlua{output(preamble1)} % \def\expr#1{\directlua{output(tostring(#1))}} % \def\eval#1{\directlua{#1}} % \def\pu{\directlua{pu()}} % % \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") % \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") % %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} \begin{document} \def\Set{\mathbf{Set}} \catcode`×=13 \def×{\times} \catcode`β=13 \defβ{\beta} \catcode`λ=13 \defλ{\lambda} {\bf An Introduction to Categorical Semantics (``For Children'')} \medskip One great way to make the expression ``for children'' precise in mathematical titles is to {\sl define} ``children'' as ``people without mathematical maturity'', in the sense that they are not able to understand structures that are too abstract straight away --- they need particular cases first. % On children: % (find-xpdfpage "~/LATEX/2015children.pdf") % (ebsp 1 "title") Consider these four basic theorems of Categorical Semantics: 1) the categorical models for Intuitionistic Propositional Calculus are the Heyting Algebras (HAs); 2) the categorical models for the simply-typed $\lambda$-calculus with products are the Cartesian Closed Categories (CCCs); 3) HAs are CCCs with one extra condition, namely that each hom-set has at most one element; 4) $\Set$ is a CCC. Let's refer to them as ``1--4''. Theorems 1--4 involve lots of definitions and this makes them quite hard to understand when they are proved in the usual way --- ``for adults'' --- in which the most general case is done first. The first part of this minicourse will be centered on proving 1--4 ``for children''. We will see how to interpret on sets the lambda-notation with types, and use that to formalize a common trick in Category Theory that is seldom explained: the trick of the ``the''. In an expression like ``We write $(A×)$ for {\sl the} functor that takes each set $B$ to $A×B$'' the action of this functor on sets, $(A×)_0$, is told explicitly, but the action of $(A×)$ on morphisms, $(A×)_1$, is left for the reader to discover; we know that if $\beta:B \to B'$ then $(A×)_1(\beta):A×B \to A×B'$ --- we know the {\sl type} of the operation $(A×)_1$, and what we have to do is to find a $\lambda$-term with that type and then check that it respects the naturality conditions. Some of the techniques we will use, like liftings and parallel diagrams, are sketched in [1]. % On corry-Howard: % (ebsp 14 "the-big-picture") % (laop 7 "C-H-diagram") % (lao "C-H-diagram") % (find-angg ".emacs" "unilog-current") % The trick of the "the": % (find-idarctpage 3 "proof\nsearch") % (find-idarcttext 3 "proof\nsearch") % (lamp171 5 "types") % (lam171 "types") % (lamp171 15 "algebraic-structures") % (lam171 "algebraic-structures") % (laqe171) % (laq171 9 "20170418" "ND: provando certas coisas vindas de diagramas; regras") % (laq171 15 "20170502" "Categrias") The second part of the minicourse will be on some less obvious HAs and CCCs: the planar HAs of [2] and categories of the form $\Set^D$, where $D$ is a directed graph. % (laq171 11 "20170425" "Lógica em ZHAs") % (ebsp 11 "non-tautologies") % (ebs "non-tautologies") The third part will be on elementary toposes. An elementary topos is formally just a CCC with pullbacks and a classifier object, but just as we can interpret $\lambda$-calculus on a CCC we can interpret ``Local Set Theory'' (``LST'') in a topos. LST has lots of operations and rules, and most of them can be understood easily if we look at what they ``mean'' in $\Set$ and in categories of the form $\Set^D$, and we choose the right particular cases. The fourth and last part of the minicourse will be on tricks for understanding both the type-theoretical language and the categorical structures used in [3], again using specialization to particular cases where everything is easy to draw explicitly. % (find-books "__cats/__cats.el" "jacobs") % (find-books "__cats/__cats.el" "jacobs" "4_ First order predicate logic") % (find-books "__cats/__cats.el" "maclane") % (find-books "__cats/__cats.el" "maclane" "IV. Adjoints") % (find-books "__cats/__cats.el" "awodey") % (find-books "__cats/__cats.el" "awodey" "6.5 lambda-calculus") \bigskip [1]: Ochs, Eduardo: {\sl Internal Diagrams and Archetypal Reasoning in Category Theory}. Logica Universalis, 2013. [2]: Ochs, Eduardo: {\sl Intuitionistic Logic for Children, or: Planar Heyting Algebras for Children}. Preprint, 2017. [3]: Jacobs, Bart: {\sl Categorical Logic and Type Theory}. North-Holland, 1999. \medskip Eduardo Ochs --- UFF eduardoochs@gmail.com Home page: \url{http://angg.twu.net/math-b.html} \medskip (Version: 2017fev21) \end{document} % (find-angg ".emacs" "idarct") % (find-idarctpage 24 "17. Cartesian Closed Categories") % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: