Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017vichy-slides-1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017vichy-slides-1.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017vichy-slides-1.pdf")) % (defun e () (interactive) (find-LATEX "2017vichy-slides-1.tex")) % (defun u () (interactive) (find-latex-upload-links "2017vichy-slides-1")) % (find-xpdfpage "~/LATEX/2017vichy-slides-1.pdf") % (find-sh0 "cp -v ~/LATEX/2017vichy-slides-1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017vichy-slides-1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017vichy-slides-1.pdf % file:///tmp/2017vichy-slides-1.pdf % file:///tmp/pen/2017vichy-slides-1.pdf % http://angg.twu.net/LATEX/2017vichy-slides-1.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} \directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\frown{=(} \def\M#1#2{#1↦#2} \def\hc#1#2 #3 {((#1,#2),\{#3\})} \def\hC#1#2 #3 {((#1,#2),\csm{#3})} {\bf A non-category} Let $\catC$ be category with $\Objs_{\catC} = \{1,2,3,4\}$, and these non-identity arrows: %D diagram ?? %D 2Dx 100 +30 +30 %D 2D 100 1 --> 2 %D 2D %D 2D +30 3 --> 4 %D 2D %D (( 1 2 -> .plabel= a 12 %D 2 3 -> .plabel= m 23 %D 3 4 -> .plabel= b 34 %D 1 3 -> .plabel= l 123 %D 2 4 -> .plabel= a 234 %D )) %D enddiagram %D $$\pu \diag{??} $$ The arrows from 1 to 4 are not shown --- $\Hom_\catC(1,4) = \{12304, 10234\}$. The identity arrows are $\id_\catC(1) = 11$, $\id_\catC(2) = 22$, $\id_\catC(3) = 33$, $\id_\catC(4) = 44$. The composition is trivial --- for example, $12;23 = 123$, and $11;12=12$ everywhere except here: $(12;23);34 = 123;34 = 12304$ and $12;(23;34) = 12;234 = 10234$ \qquad $⇐$ associativity fails! \bsk We have $$ \Hom_\catC = \cmat{ \hc11 11 , & \hc12 12 , & \hc13 123 , & \hC14 {12304,\\10234} , \\ \hc21 \, , & \hc22 22 , & \hc23 23 , & \hc24 234 , \\ \hc31 \, , & \hc32 \, , & \hc33 33 , & \hc34 34 , \\ \hc41 \, , & \hc42 \, , & \hc43 \, , & \hc44 44 \\ } $$ % but $({;_\catC})$ is too big to show... We can look at parts of if, though: $({;_\catC})_{1,2,3}(12,23) = 123$, $({;_\catC})_{1,2,3} = \{((12,23),123)\}$, $((1,2,3), ((12,23),123))∈({;_\catC})$. \newpage {\bf Solving factorization problems} %D diagram ?? %D 2Dx 100 +40 +30 +40 +30 +40 %D 2D 100 A1 A2 B1 B2 C1 C2 %D 2D %D 2D +30 A3 B3 C3 %D 2D %D 2D +20 D1 D2 E1 E2 %D 2D %D 2D +30 D3 E3 %D 2D %D 2D +20 F1 F2 G1 G2 %D 2D %D 2D +30 F3 G3 %D 2D %D ren A1 A2 A3 ==> \{1,2,3\} \{4,5,6\} \{7,8,9\} %D ren B1 B2 B3 ==> \{1,2,3\} \{4,5,6\} \{7,8,9\} %D ren C1 C2 C3 ==> \{1,2,3\} \{4,5,6\} \{7,8,9\} %D ren D1 D2 D3 ==> \{1\} \{2,3\} \{4\} %D ren E1 E2 E3 ==> \{1,2\} \{3,4\} \{5,6\} %D ren F1 F2 F3 ==> \{1,2\} \{3,4\} \{5,6\} %D ren G1 G2 G3 ==> \{1,2\} \{3,4\} \{5,6\} %D (( A1 A2 -> .plabel= a \sm{\M14\\\M26\\\M35} %D A2 A3 -> .plabel= r \sm{\M47\\\M57\\\M69} %D A1 A3 -> .plabel= l ? %D %D B1 B2 -> .plabel= a ? %D B2 B3 -> .plabel= r \sm{\M47\\\M58\\\M69} %D B1 B3 -> .plabel= l \sm{\M17\\\M28\\\M39} %D %D C1 C2 -> .plabel= a \sm{\M14\\\M25\\\M36} %D C2 C3 -> .plabel= r ? %D C1 C3 -> .plabel= l \sm{\M17\\\M28\\\M39} %D %D D1 D2 -> sl^ .plabel= a ? %D D1 D2 -> sl_ .plabel= b ? %D D2 D3 -> .plabel= r \sm{\M24\\\M34} %D D1 D3 -> .plabel= l \sm{\M14} %D %D E1 E2 -> .plabel= a \sm{\M13\\\M23} %D E2 E3 -> sl_ .plabel= l ? %D E2 E3 -> sl^ .plabel= r ? %D E1 E3 -> .plabel= l \sm{\M15\\\M25} %D %D F1 F2 -> .plabel= a \frown %D F2 F3 -> .plabel= r \sm{\M35\\\M45} %D F1 F3 -> .plabel= l \sm{\M15\\\M26} %D %D G1 G2 -> .plabel= a \sm{\M13\\\M23} %D G2 G3 -> .plabel= r \frown %D G1 G3 -> .plabel= l \sm{\M15\\\M26} %D %D )) %D enddiagram %D $$\pu \diag{??} $$ `$\diagxyto/->/^{?}$': exactly one solution `$\two/->`->/^{?}_{?}$': two different solutions `$\diagxyto/->/^{\frown}$': no solutions \newpage {\bf Solving factorization problems: products} {\bf Exercise.} Complete: %D diagram ?? %D 2Dx 100 +35 +35 +30 +30 +30 +30 %D 2D 100 A1 E1 %D 2D %D 2D +30 A2 A3 A4 E2 E3 E4 %D 2D %D 2D +30 B1 F1 %D 2D %D 2D +30 B2 B3 B4 F2 F3 F4 %D 2D %D 2D +30 C1 G1 %D 2D %D 2D +30 C2 C3 C4 G2 G3 G4 %D 2D %D 2D +30 D1 H1 %D 2D %D 2D +30 D2 D3 D4 H2 H3 H4 %D 2D %D ren A1 A2 A3 A4 ==> \{1,2\} \{3,4\} \csm{35,53,\\45,46} \{5,6\} %D ren B1 B2 B3 B4 ==> \{1,2\} \{3,4\} \csm{35,53,\\45,46} \{5,6\} %D ren C1 C2 C3 C4 ==> \{1,2\} \{3,4\} \csm{35,53,\\45,46} \{5,6\} %D ren D1 D2 D3 D4 ==> \{1,2\} \{3,4\} \csm{35,53,\\45,46} \{5,6\} %D ren E1 E2 E3 E4 ==> \{1,2\} \{3,4\} \csm{(3,5),(3,6),\\(4,5),(4,6)} \{5,6\} %D (( A1 A2 -> .plabel= l ? %D A1 A3 -> .plabel= m \sm{\Mm135\\\Mm253} %D A1 A4 -> .plabel= r ? %D A2 A3 <- .plabel= b \sm{\MM353\\\MM533\\\MM454\\\MM464} %D A3 A4 -> .plabel= b \sm{\MM355\\\MM535\\\MM455\\\MM466} %D %D B1 B2 -> .plabel= l \sm{\M14\\\M24} %D B1 B3 -> .plabel= m ? %D B1 B4 -> .plabel= r \sm{\M15\\\M26} %D B2 B3 <- .plabel= b \sm{\MM353\\\MM533\\\MM454\\\MM464} %D B3 B4 -> .plabel= b \sm{\MM355\\\MM535\\\MM455\\\MM466} %D %D C1 C2 -> .plabel= l \sm{\M13\\\M24} %D C1 C3 -> sl_ .plabel= l ? %D C1 C3 -> sl^ .plabel= r ? %D C1 C4 -> .plabel= r \sm{\M15\\\M26} %D C2 C3 <- .plabel= b \sm{\MM353\\\MM533\\\MM454\\\MM464} %D C3 C4 -> .plabel= b \sm{\MM355\\\MM535\\\MM455\\\MM466} %D %D D1 D2 -> .plabel= l \sm{\M14\\\M24} %D D1 D3 -> .plabel= m \frown %D D1 D4 -> .plabel= r \sm{\M15\\\M26} %D D2 D3 <- .plabel= b \sm{\MM353\\\MM533\\\MM454\\\MM464} %D D3 D4 -> .plabel= b \sm{\MM355\\\MM535\\\MM455\\\MM466} %D %D )) %D enddiagram %D $$\pu \def\Mm#1#2#3{#1↦#2#3} \def\MM#1#2#3{#1#2↦#3} \def\MP#1#2#3{#1↦#3} \diag{??} $$ % `$\diagxyto/->/^{?}$': exactly one solution % % `$\two/->`->/^{?}_{?}$': two different solutions % % `$\diagxyto/->/^{\frown}$': no solutions \newpage {\bf A question of style} \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: