|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017vichy-slides-1.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2017vichy-slides-1.tex"))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2017vichy-slides-1.pdf"))
% (defun e () (interactive) (find-LATEX "2017vichy-slides-1.tex"))
% (defun u () (interactive) (find-latex-upload-links "2017vichy-slides-1"))
% (find-xpdfpage "~/LATEX/2017vichy-slides-1.pdf")
% (find-sh0 "cp -v ~/LATEX/2017vichy-slides-1.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2017vichy-slides-1.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2017vichy-slides-1.pdf
% file:///tmp/2017vichy-slides-1.pdf
% file:///tmp/pen/2017vichy-slides-1.pdf
% http://angg.twu.net/LATEX/2017vichy-slides-1.pdf
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage{color} % (find-LATEX "edrx15.sty" "colors")
\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
\usepackage{proof} % For derivation trees ("%:" lines)
\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
\begin{document}
\catcode`\^^J=10
\directlua{dednat6dir = "dednat6/"}
\directlua{dofile(dednat6dir.."dednat6.lua")}
\directlua{texfile(tex.jobname)}
\directlua{verbose()}
\directlua{output(preamble1)}
\def\expr#1{\directlua{output(tostring(#1))}}
\def\eval#1{\directlua{#1}}
\def\pu{\directlua{pu()}}
\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua")
\directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua")
%L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end
\def\frown{=(}
\def\M#1#2{#1↦#2}
\def\hc#1#2 #3 {((#1,#2),\{#3\})}
\def\hC#1#2 #3 {((#1,#2),\csm{#3})}
{\bf A non-category}
Let $\catC$ be category with $\Objs_{\catC} = \{1,2,3,4\}$,
and these non-identity arrows:
%D diagram ??
%D 2Dx 100 +30 +30
%D 2D 100 1 --> 2
%D 2D
%D 2D +30 3 --> 4
%D 2D
%D (( 1 2 -> .plabel= a 12
%D 2 3 -> .plabel= m 23
%D 3 4 -> .plabel= b 34
%D 1 3 -> .plabel= l 123
%D 2 4 -> .plabel= a 234
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
The arrows from 1 to 4 are not shown --- $\Hom_\catC(1,4) = \{12304, 10234\}$.
The identity arrows are $\id_\catC(1) = 11$, $\id_\catC(2) = 22$,
$\id_\catC(3) = 33$, $\id_\catC(4) = 44$.
The composition is trivial --- for example, $12;23 = 123$, and $11;12=12$
everywhere except here:
$(12;23);34 = 123;34 = 12304$ and
$12;(23;34) = 12;234 = 10234$ \qquad $⇐$ associativity fails!
\bsk
We have
$$
\Hom_\catC = \cmat{
\hc11 11 , & \hc12 12 , & \hc13 123 , & \hC14 {12304,\\10234} , \\
\hc21 \, , & \hc22 22 , & \hc23 23 , & \hc24 234 , \\
\hc31 \, , & \hc32 \, , & \hc33 33 , & \hc34 34 , \\
\hc41 \, , & \hc42 \, , & \hc43 \, , & \hc44 44 \\
}
$$
%
but $({;_\catC})$ is too big to show...
We can look at parts of if, though:
$({;_\catC})_{1,2,3}(12,23) = 123$,
$({;_\catC})_{1,2,3} = \{((12,23),123)\}$,
$((1,2,3), ((12,23),123))∈({;_\catC})$.
\newpage
{\bf Solving factorization problems}
%D diagram ??
%D 2Dx 100 +40 +30 +40 +30 +40
%D 2D 100 A1 A2 B1 B2 C1 C2
%D 2D
%D 2D +30 A3 B3 C3
%D 2D
%D 2D +20 D1 D2 E1 E2
%D 2D
%D 2D +30 D3 E3
%D 2D
%D 2D +20 F1 F2 G1 G2
%D 2D
%D 2D +30 F3 G3
%D 2D
%D ren A1 A2 A3 ==> \{1,2,3\} \{4,5,6\} \{7,8,9\}
%D ren B1 B2 B3 ==> \{1,2,3\} \{4,5,6\} \{7,8,9\}
%D ren C1 C2 C3 ==> \{1,2,3\} \{4,5,6\} \{7,8,9\}
%D ren D1 D2 D3 ==> \{1\} \{2,3\} \{4\}
%D ren E1 E2 E3 ==> \{1,2\} \{3,4\} \{5,6\}
%D ren F1 F2 F3 ==> \{1,2\} \{3,4\} \{5,6\}
%D ren G1 G2 G3 ==> \{1,2\} \{3,4\} \{5,6\}
%D (( A1 A2 -> .plabel= a \sm{\M14\\\M26\\\M35}
%D A2 A3 -> .plabel= r \sm{\M47\\\M57\\\M69}
%D A1 A3 -> .plabel= l ?
%D
%D B1 B2 -> .plabel= a ?
%D B2 B3 -> .plabel= r \sm{\M47\\\M58\\\M69}
%D B1 B3 -> .plabel= l \sm{\M17\\\M28\\\M39}
%D
%D C1 C2 -> .plabel= a \sm{\M14\\\M25\\\M36}
%D C2 C3 -> .plabel= r ?
%D C1 C3 -> .plabel= l \sm{\M17\\\M28\\\M39}
%D
%D D1 D2 -> sl^ .plabel= a ?
%D D1 D2 -> sl_ .plabel= b ?
%D D2 D3 -> .plabel= r \sm{\M24\\\M34}
%D D1 D3 -> .plabel= l \sm{\M14}
%D
%D E1 E2 -> .plabel= a \sm{\M13\\\M23}
%D E2 E3 -> sl_ .plabel= l ?
%D E2 E3 -> sl^ .plabel= r ?
%D E1 E3 -> .plabel= l \sm{\M15\\\M25}
%D
%D F1 F2 -> .plabel= a \frown
%D F2 F3 -> .plabel= r \sm{\M35\\\M45}
%D F1 F3 -> .plabel= l \sm{\M15\\\M26}
%D
%D G1 G2 -> .plabel= a \sm{\M13\\\M23}
%D G2 G3 -> .plabel= r \frown
%D G1 G3 -> .plabel= l \sm{\M15\\\M26}
%D
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
`$\diagxyto/->/^{?}$': exactly one solution
`$\two/->`->/^{?}_{?}$': two different solutions
`$\diagxyto/->/^{\frown}$': no solutions
\newpage
{\bf Solving factorization problems: products}
{\bf Exercise.} Complete:
%D diagram ??
%D 2Dx 100 +35 +35 +30 +30 +30 +30
%D 2D 100 A1 E1
%D 2D
%D 2D +30 A2 A3 A4 E2 E3 E4
%D 2D
%D 2D +30 B1 F1
%D 2D
%D 2D +30 B2 B3 B4 F2 F3 F4
%D 2D
%D 2D +30 C1 G1
%D 2D
%D 2D +30 C2 C3 C4 G2 G3 G4
%D 2D
%D 2D +30 D1 H1
%D 2D
%D 2D +30 D2 D3 D4 H2 H3 H4
%D 2D
%D ren A1 A2 A3 A4 ==> \{1,2\} \{3,4\} \csm{35,53,\\45,46} \{5,6\}
%D ren B1 B2 B3 B4 ==> \{1,2\} \{3,4\} \csm{35,53,\\45,46} \{5,6\}
%D ren C1 C2 C3 C4 ==> \{1,2\} \{3,4\} \csm{35,53,\\45,46} \{5,6\}
%D ren D1 D2 D3 D4 ==> \{1,2\} \{3,4\} \csm{35,53,\\45,46} \{5,6\}
%D ren E1 E2 E3 E4 ==> \{1,2\} \{3,4\} \csm{(3,5),(3,6),\\(4,5),(4,6)} \{5,6\}
%D (( A1 A2 -> .plabel= l ?
%D A1 A3 -> .plabel= m \sm{\Mm135\\\Mm253}
%D A1 A4 -> .plabel= r ?
%D A2 A3 <- .plabel= b \sm{\MM353\\\MM533\\\MM454\\\MM464}
%D A3 A4 -> .plabel= b \sm{\MM355\\\MM535\\\MM455\\\MM466}
%D
%D B1 B2 -> .plabel= l \sm{\M14\\\M24}
%D B1 B3 -> .plabel= m ?
%D B1 B4 -> .plabel= r \sm{\M15\\\M26}
%D B2 B3 <- .plabel= b \sm{\MM353\\\MM533\\\MM454\\\MM464}
%D B3 B4 -> .plabel= b \sm{\MM355\\\MM535\\\MM455\\\MM466}
%D
%D C1 C2 -> .plabel= l \sm{\M13\\\M24}
%D C1 C3 -> sl_ .plabel= l ?
%D C1 C3 -> sl^ .plabel= r ?
%D C1 C4 -> .plabel= r \sm{\M15\\\M26}
%D C2 C3 <- .plabel= b \sm{\MM353\\\MM533\\\MM454\\\MM464}
%D C3 C4 -> .plabel= b \sm{\MM355\\\MM535\\\MM455\\\MM466}
%D
%D D1 D2 -> .plabel= l \sm{\M14\\\M24}
%D D1 D3 -> .plabel= m \frown
%D D1 D4 -> .plabel= r \sm{\M15\\\M26}
%D D2 D3 <- .plabel= b \sm{\MM353\\\MM533\\\MM454\\\MM464}
%D D3 D4 -> .plabel= b \sm{\MM355\\\MM535\\\MM455\\\MM466}
%D
%D ))
%D enddiagram
%D
$$\pu
\def\Mm#1#2#3{#1↦#2#3}
\def\MM#1#2#3{#1#2↦#3}
\def\MP#1#2#3{#1↦#3}
\diag{??}
$$
% `$\diagxyto/->/^{?}$': exactly one solution
%
% `$\two/->`->/^{?}_{?}$': two different solutions
%
% `$\diagxyto/->/^{\frown}$': no solutions
\newpage
{\bf A question of style}
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-anchor-format: "«%s»"
% End: