Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2018-2-MD-P2B.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2018-2-MD-P2B.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2018-2-MD-P2B.pdf")) % (defun e () (interactive) (find-LATEX "2018-2-MD-P2B.tex")) % (defun u () (interactive) (find-latex-upload-links "2018-2-MD-P2B")) % (find-xpdfpage "~/LATEX/2018-2-MD-P2B.pdf") % (find-sh0 "cp -v ~/LATEX/2018-2-MD-P2B.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2018-2-MD-P2B.pdf /tmp/pen/") % file:///home/edrx/LATEX/2018-2-MD-P2B.pdf % file:///tmp/2018-2-MD-P2B.pdf % file:///tmp/pen/2018-2-MD-P2B.pdf % http://angg.twu.net/LATEX/2018-2-MD-P2B.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams \catcode`\^^J=10 % (find-es "luatex" "spurious-omega") \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 %\directlua{dednat6dir = "dednat6/"} %\directlua{dofile(dednat6dir.."dednat6.lua")} %\directlua{texfile(tex.jobname)} %\directlua{verbose()} %\directlua{output(preamble1)} %\def\expr#1{\directlua{output(tostring(#1))}} %\def\eval#1{\directlua{#1}} %\def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\V{\mathbf{V}} \def\F{\mathbf{F}} \def\Par {\mathsf{par}} \def\Impar{\mathsf{impar}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Matemática Discreta \par PURO-UFF - 2018.2 \par P2 - 12/dez/2018 - Eduardo Ochs \par Turma pequena (C1, com aulas nas terças e quartas) \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar { \setlength{\parindent}{0em} 1) \T(Total: 2.0 pts) Mostre que uma das regras abaixo é admissível e a outra não. %: %: %: Γ⊢A→B Γ⊢¬B Γ,A⊢C %: ------------(R1) -------(R2) %: Γ⊢¬A Γ,A∨B⊢C %: %: ^R1 ^R2 %: \pu $$\ded{R1} \qquad \ded{R2}$$ \bsk 2) \T(Total: 3.5 pts) Para cada $k∈\N$ Seja $P(k)$ a seguinte proposição: $1+3+\ldots+(2k+1)=(k+1)^2$. a) \B(0.5 pts) Defina uma função $f(k)$ sem `$\ldots$'s, usando somatório, tal que $f(k)=1+3+\ldots+(2n+1)$. b) \B(0.5 pts) Calcule $f(21)-f(20)$. c) \B(0.5 pts) Calcule $f(0)$ e $(f(0)=0^2)$. d) \B(1.5 pts) Demonstre $k∈N⊢P(k)→P(k+1)$. e) \B(0.5 pts) Demonstre $∀n∈N.P(n)$. \bsk \bsk 3) \T(Total: 2.0 pts) Seja $F:\N×\N→\N$ uma função que obedece: (F0) $F(0,0)=0$, (FT) $∀n∈\N.0<n→F(n+1,0)=F(0,n)+1$, (FS) $∀x,y∈\N.0<y<x→F(x,y)=F(x,y-1)+1$, (FE) $∀x,y∈\N.0≤x≤y→F(x,y)=F(x+1,y)+1$, Calcule os valores de $F(x,y)$ para todos os $(x,y)∈\{0,1,2,3\}^2$. \bsk \bsk 4) \T(Total: 2.5 pts) Seja $A={1,2,3,4,5,6}$ e $f,g:A→A$ as seguintes permutações: $f = (1\; 2\; 3)(4\; 5)$ \qquad $(=\{(1,2), (2,3), (3,1), (4,5), (5,4), (6,6)\})$ $g = (3\; 4)$ a) \B(0.5 pts) Calcule $f∘g$ e $g∘f$ e expresse-os na notação de ciclos. b) \B(1.0 pts) Calcule $f, f^2, f^3, f^4, f^5, f^6$ e expresse-os na notação de ciclos. c) \B(1.0 pts) Calcule $f^{20}$ e expresse-o na notação de ciclos. } \end{document} % Local Variables: % coding: utf-8-unix % End: