
1

Dednat6: an extensible (semi-)preprocessor for LuaLaTeX that
understands diagrams in ASCII art

Eduardo Ochs
UFF, Brazil
eduardoochs@gmail.com
http://angg.twu.net/dednat6.html

(La)TeX treats lines starting with “%” as comments, and ignores them. This
means that we can put anything we want in these “%” lines, even code to be
processed by other programs besides TeX.

In this talk we will describe a “semi-preprocessor”, called dednat6, that
makes blocks of lines starting with “%L” be executed as Lua code, treats blocks
of lines starting with “%:” as 2D representations of derivation trees, and treats
blocks of lines starting with “%D” as diagrams in which a 2D representation
specifies where the nodes are to be placed and a stack-based language inspired
by Forth is used to connect these nodes with arrows.

A predecessor of dednat6, called dednat4, was a preprocessor in the usual
sense: running “dednat4.lua foo.tex” on a shell would convert the trees and
diagrams in “%:” and “%D”-blocks in foo.tex to “\def”s that LaTeX can un-
derstand, and would put these “\def”s in a file foo.dnt; we had to put in
foo.tex an “\input "foo.dnt"” that would load those definitions. Dednat6
does something almost equivalent to that, but it uses LuaLaTeX to avoid the
need for an external preprocessor and for an auxiliar “.dnt” file. Here is how;
the workflow is unusual, so let’s see it in detail.

Put a line “\directlua{dofile("loaddednat6.lua")}” in a file bar.tex.
When we run “lualatex bar.tex” that line loads the dednat6 library, initial-
izes the global variable tf in the Lua interpreter with a TexFile object, and sets
tf.nline=1 to indicate that nothing in bar.tex has been processed with ded-
nat6 yet. A (low-level) command like \directlua{processlines(200, 300)}
in bar.tex would “process the lines 200 to 300 in bar.tex with dednat6”, which
means to take all the blocks of “%L”-lines, “%:”-lines, and “%D”-lines between the
lines 200 to 300 in bar.tex, run them in the adequate interpreters, and then send
the resulting LaTeX code — usually “\def”s — to the latex interpreter. The
high-level macro “\pu” runs “\directlua(processuntil{tex.inputlineno})”,
that runs processlines on the lines between tf.nline=1 and the line where
the current “\pu” is, and advances tf.nline — i.e., it processes with dednat6
the lines in the current file between the previous “\pu” and the current one.

The strings “%L”, “%:”, and “%D” are called “heads” in dednat6, and it’s easy
to add support for new heads; this can even be done in a “%L” block.

Note that with dednat4 all the “\def”s had to be loaded at once; in dednat6
idioms like “{\pu ...}”, “$\pu ...$”, and “$$\pu ...$$” can be used to make
the “\def”s between the last “\pu” and the current one be local.

