
preliminary draft, October 29, 2018 21:32 preliminary draft, October 29, 2018 21:32

TUGboat, Volume 0 (9999), No. 0 preliminary draft, October 29, 2018 21:32 ? 1

Dednat6: An extensible (semi-)preprocessor
for LuaLATEX that understands diagrams
in ASCII art

Eduardo Ochs

1 Prehistory
Many, many years ago, when I was writing my mas-
ter’s thesis, I realized that I was typesetting too many
natural deduction trees, and that this was driving
me mad. The code (in proof.sty) for a small tree
like this one

[a]1 a → b

b b → c

c

a → c
1

was this:
\infer[{1}]{ a\to c }{
\infer[{}]{ c }{
\infer[{}]{ b }{
[a]^1 &
a\to b } &
b\to c } } }

This was somewhat manageable, but the code
for bigger trees was very hard to understand and to
debug. I started to add 2D representations of the
typeset trees above the code, and I defined a macro
\defded to let me define the code for several trees
at once, and a macro \ded to invoke that code later:
% [a]^1 a->b
% -----------
% b b->c
% ------------
% c
% ----1
% a->c
%
% ^a->c
%
\defded{a->c}{
\infer[{1}]{ a\to c }{
\infer[{}]{ c }{
\infer[{}]{ b }{
[a]^1 &
a\to b } &

b\to c } } }
%
$$\ded{a->c}$$

Then I realized that if I made the syntax of my
2D representations a bit more rigid, I could write a
preprocessor that would understand them directly,
and write all the ‘\defded’s itself to an auxiliary
file. If a file foo.tex had this (note: I will omit all

header and footer code, like \begin{document} and
\end{document}, from the examples),
\input foo.dnt

%: [a]^1 a->b
%: -----------
%: b b->c
%: ------------
%: c
%: ----1
%: a->c
%:
%: ^a->c

$$\ded{a->c}$$

then I just had to run “dednat.icn foo.tex;latex
foo.tex” instead of “latex foo.tex”.

2 dednat.lua

A few years after that, I learned Lua, fell in love with
it, and ported dednat.icn from Icon — which was a
compiled language — to Lua.

The first novel feature in dednat.lua was a way
to run arbitrary Lua code from the .tex file being
preprocessed, and so extend the preprocessor dynam-
ically. dednat.lua treated blocks of lines starting
with ‘%:’ as specifications of trees, and blocks of lines
starting with ‘%L’ as Lua code. More precisely, the
initial set of heads was {"%:", "%L", "%D"}, and
dednat.lua processed each block of contiguous lines
starting with the same head in a way that depended
on the head.

The second novel feature in dednat.lua was a
way to generate code for categorical diagrams, or
“2D diagrams” for short, automatically, analogous
to what we did for trees. I wanted to make the
preprocessor write the ‘\defdiag’s seen here itself:
% LA <-| A
% | |
% v v
% B |-> RB
%
\defdiag{adj_L-|R}{
\morphism(0,0)/<-|/<400,0>[LA`A;]
\morphism(0,0)/->/<0,-400>[LA`B;]
\morphism(400,0)/->/<0,-400>[A`RB;]
\morphism(0,-400)/|->/<400,0>[B`RB;]

}
$$\diag{adj_L-|R}$$

where ‘\morphism’ is the main macro in diagxy,
Michael Barr’s front-end for XY-pic.

After months of experimentation I arrived at a
good syntax for 2D diagrams. This code:

preliminary draft, October 29, 2018 21:32 preliminary draft, October 29, 2018 21:32

? 2 preliminary draft, October 29, 2018 21:32 TUGboat, Volume 0 (9999), No. 0

%D diagram adj_L-|R
%D 2Dx 100 +25
%D 2D 100 LA <-| A
%D 2D | |
%D 2D | |
%D 2D v v
%D 2D +25 B |-> RB
%D 2D
%D ((LA A <-|
%D LA B -> A RB ->
%D B RB |->
%D))
%D enddiagram
%D
$$\diag{adj_L-|R}$$
generates this:

LA Aoo �LA

B
��

A

RB
��

B RB
� //

The lines with ‘%D 2Dx’ and ‘%D 2D’ define a grid
with coordinates and nodes, and the lines between
‘%D ((’ and ‘%D))’ connect these nodes with arrows.

2.1 A Forth-based language for 2D
diagrams — low-level ideas

The article “Bootstrapping a Forth in 40 lines of
Lua code” [1] describes how a Forth-like language
can be reduced to a minimal extensible core, and
bootstrapped from it. The most basic feature in [1] is
“words that eat text”; the fact that Forth is a stack-
based language is secondary — stacks are added later.
The code for ‘%D’-lines is based on [1].

A “Forth” — actually the “outer interpreter” of
a Forth, but let’s call it simply a “Forth” — works on
one line of input at a time, reads each “word” in it
and executes it as soon as it is read. A “word” is any
sequence of one of more non-whitespace characters,
and an input line is made of words separated by
whitespace. The “outer interpreter” of Forth does
essentially this on each line, in pseudocode:
while true do
word = getword()
if not word then break end
execute(word)

end
Note that word is a global variable. The current

input line is stored in subj and the current position
of the parser is stored in pos; subj and pos are also
global variables — which means the execute(word)
can change them!

The function getword() parses whitespace in
subj starting at pos, then parses a word and returns

it, and advances pos to the position after that word.
There is a similar function called getrestofline()
that returns all the rest of the line from pos onwards,
and advances pos to the end of the line.

One of the simplest Forth words is ‘#’ (“com-
ment”). It is defined as:
forths["#"] = function ()

getrestofline()
end

It simply runs getrestofline(), discards its
return value, and returns. We say that # “eats the
rest of the line”.

In a “real” Forth we can define words using ‘:’
and ‘;’, like this:
: SQUARE DUP * ;

but the Forth-based language in dednat.lua is so
minimalistic that we don’t have ‘:’ and ‘;’ — we
define words by storing their Lua code in the table
forths.

2.2 A Forth-based language for 2D
diagrams — code for diagrams

Let’s look at an example. This code
%D diagram T:F->G
%D 2Dx 100 +20 +20
%D 2D 100 A
%D 2D /|\
%D 2D v v v
%D 2D +30 FA --> GA
%D 2D
%D ((A FA |-> A GA |->
%D FA GA -> .plabel= b TA
%D A FA GA midpoint |->
%D))
%D enddiagram
%D
$$\diag{T:F->G}$$

yields this:
A

FA

J

��

A

GA

t

��4
44

44
44

4

FA GA
TA

//

A

���
�
�
�

The word diagram eats a word — the name of
the diagram — and sets diagramname to it. The
word 2Dx eats the rest of the line, and uses it to
attribute x-coordinates to some columns. The word
2D also eats the rest of the line; when it is followed
by nnn or +nnn that number gives the y-coordinate
of that line, and the words that intersect a point
that has both an x-coordinate and a y-coordinate
become nodes. When a 2D is not followed by an nnn

preliminary draft, October 29, 2018 21:32 preliminary draft, October 29, 2018 21:32

TUGboat, Volume 0 (9999), No. 0 preliminary draft, October 29, 2018 21:32 ? 3

or +nnn then this is a line without a y-coordinate,
and it is ignored.

In a sequence like “A FA |->”, both A and FA
put nodes on the stack, and |-> creates an arrow
joining the two nodes on the top of the stack, without
dropping the nodes from the stack. In a sequence like
“FA GA midpoint” the midpoint creates a phantom
node halfway between the two nodes on the top of the
stack, drops (pops) them and pushes the phantom
node in their place. The word .plabel= eats two
words, a placement and a label, and modifies the
arrow at the top of the stack by setting the arrow’s
label and placement attributes with them. The word
‘((’ remembers the depth of the stack — 42, say —
and the word ‘))’ pops elements from the top of
the stack; if the depth at ‘))’ is 200 then ‘))’ pops
200 − 42 elements to make the depth become 42
again.

The word enddiagram defines a diagram with
the name stored in diagramname; each arrow that
was created, even the ones that were dropped from
the stack, becomes a call to \morphism— the main
macro in diagxy— in the body of the diagram.

A good way to understand in detail how every-
thing works is to inspect the data structures. Let’s
modify the code of the example to add some ‘print’s
in ‘%L’-lines in the middle of the ‘%D’-code:
%D diagram T:F->G
%D 2Dx 100 +20 +20
%L print("xs:"); print(xs)
%D 2D 100 A
%D 2D /|\
%D 2D v v v
%D 2D +30 FA --> GA
%L print("nodes:"); print(nodes)
%D 2D
%D ((A FA |-> A GA |->
%D FA GA -> .plabel= b TA
%D A FA GA midpoint -->
%L print("ds:"); print(ds)
%D))
%L print("arrows:"); print(arrows)
%D enddiagram

The preprocessor outputs this on stdout:
xs:
{12=100, 16=120, 20=140}
nodes:
{ 1={"noden"=1, "tag"="A", "x"=120, "y"=100},

2={"noden"=2, "tag"="FA", "x"=100, "y"=130},
3={"noden"=3, "tag"="-->", "x"=120, "y"=130},
4={"noden"=4, "tag"="GA", "x"=140, "y"=130},
"-->"={"noden"=3, "tag"="-->", "x"=120, "y"=130},
"A"={"noden"=1, "tag"="A", "x"=120, "y"=100},
"FA"={"noden"=2, "tag"="FA", "x"=100, "y"=130},
"GA"={"noden"=4, "tag"="GA", "x"=140, "y"=130}

}

ds:
12={"arrown"=4, "from"=1, "shape"="-->", "to"=5}
11={"TeX"="\", "noden"=5, "x"=120,

"y"=130}
10={"noden"=1, "tag"="A", "x"=120, "y"=100}
9={"arrown"=3, "from"=2, "label"="TA",

"placement"="b", "shape"="->", "to"=4}
8={"noden"=4, "tag"="GA", "x"=140, "y"=130}
7={"noden"=2, "tag"="FA", "x"=100, "y"=130}
6={"arrown"=2, "from"=1, "shape"="|->", "to"=4}
5={"noden"=4, "tag"="GA", "x"=140, "y"=130}
4={"noden"=1, "tag"="A", "x"=120, "y"=100}
3={"arrown"=1, "from"=1, "shape"="|->", "to"=2}
2={"noden"=2, "tag"="FA", "x"=100, "y"=130}
1={"noden"=1, "tag"="A", "x"=120, "y"=100}
arrows:
{ 1={"arrown"=1, "from"=1, "shape"="|->", "to"=2},

2={"arrown"=2, "from"=1, "shape"="|->", "to"=4},
3={"arrown"=3, "from"=2, "label"="TA",

"placement"="b", "shape"="->", "to"=4},
4={"arrown"=4, "from"=1, "shape"="-->", "to"=5}

}

3 Semi-preprocessors
dednat.icn, dednat.lua and all its successors until
dednat5.lua were preprocessors in the usual sense —
they had to be run outside latex and before latex.
With dednat6 this changed; dednat6 can still be run
as a preprocessor, but the recommended way to run
it on, say, foo.tex, is to put a line like
\directlua{dofile "dednat6load.lua"}

somewhere near the beginning of foo.tex, add some
calls to \pu at some points — as we will explain
soon — and compile foo.tex with lualatex instead
of latex, to make foo.tex be processed “in paral-
lel” by TEX and by Lua. That “in parallel” is a
simplification, though; consider this example:
%:
%: a b
%: ----
%: c
%:
%: ^my-tree
%:
$$\pu\ded{my-tree}$$
%:
%: d e f
%: -------
%: g
%:
%: ^my-tree
%:
$$\pu\ded{my-tree}$$

Suppose that this fragment starts at line 20. (As
mentioned above, we are omitting the header and
footer — e.g., \begin{document} and \directlua
{dofile "dednat6load.lua"}.)

preliminary draft, October 29, 2018 21:32 preliminary draft, October 29, 2018 21:32

? 4 preliminary draft, October 29, 2018 21:32 TUGboat, Volume 0 (9999), No. 0

We have a %:-block from lines 20–26, a call to
\pu at line 27, another %:-block from lines 28-34,
and another call to \pu at line 35.

The output of the first %:-block above is a
\defded{my-tree}, and the output of the second
%:-block above is a different \defded{my-tree}.

‘\pu’ means “process until” — or, more precisely,
make dednat6 process everything until this point that
it hasn’t processed yet. The first \pu processes the
lines 1–26 of foo.tex, and “outputs” — i.e., sends to
TEX — the first \defded{my-tree}; the second \pu
processes the lines 28–34 of foo.tex, and “outputs”
the second \defded{my-tree}. Thus, it is not tech-
nically true that TEX and dednat6 process foo.tex
in parallel; dednat6 goes later, and each \pu is a
synchronization point.

3.1 Heads and blocks
In order to understand how this idea — “semi-prepro-
cessors” — is implemented in dednat6 we need some
terminology.

The initial set of heads is {"%:", "%L", "%D"}.
It may be extended with other heads, but we may
only add heads that start with ‘%’.

A block is a set of contiguous lines in the current
.tex file. This code
Block {i=42, j=99}

creates and returns a block that starts on line 42 and
ends on line 99. The Lua function Block receives
a table, changes its metatable to make it a “block
object”, and returns the modified table.

A head block is a (maximal) set of contiguous
lines all with same head. Head blocks are imple-
mented as blocks with an extra field head. For ex-
ample:
Block {i=20, j=26, head="%:"}

A block is bad when it contains a part of a head
block but not the whole of it. We avoid dealing with
bad blocks — dednat6 never creates a block object
that is “bad”.

Each head has a processor. Executing a head
block means running it through the processor associ-
ated with its head. Executing an arbitrary (non-bad)
block means executing each head block in it, one at a
time, in order. Note: the code for executing non-bad
arbitrary blocks was a bit tricky to implement, as
executing a ‘%L’-block may change the set of heads
and the processors associated to heads.

A texfile block is a block that refers to the whole
of the current .tex file, and that has an extra field
nline that points to the first line that dednat6 hasn’t
processed yet. If foo.tex has 234 lines then the
texfile block for foo.tex starts as:

Block {i=1, j=234, nline=1}

We saw in sections 1 and 2.2 that the “output” of
a %:-block is a series of ‘\defded’s and the “output”
of a %D-block is a series of ‘\defdiags’s. We can
generalize this. For example, the “output” of
%L output [[\def\Foo{FOO}]]
%L output [[\def\Bar{BAR}]]

is
\def\Foo{FOO}
\def\Bar{BAR}

The output of a head block is the concatenation
of the strings sent to output() when that block
is executed. The output of an arbitrary (non-bad)
block is the concatenation of the strings sent to
output() by its head blocks when the arbitrary block
is executed.

A \pu-block is created by dednat6 when a \pu
is executed, pointing to the lines between this \pu
and the previous \pu. If foo.tex has a \pu at line
27 and another at line 35 then the first \pu creates
this block,
Block {i=1, j=26}

and the second \pu creates this:
Block {i=28, j=34}

As ‘\pu’s only happen in non-comment lines,
\pu-blocks are never bad.

3.2 The implementation of \pu
The macro \pu is defined as
\def\pu{\directlua{

processuntil(tex.inputlineno)
}}

in LATEX, and processuntil() is this (in Lua):
processuntil = function (puline)

local publock =
Block {i=tf.nline, j=puline-1}

publock:process()
tf.nline = puline + 1

end

Here’s a high-level explanation. When dednat6
is loaded and initialized it creates a texfile block for
the current .tex file — with nline=1— and stores
it in the global variable tf. The macro \pu creates
a \pu-block that starts at line tf.nline and ends
at line tex.inputlineno - 1, executes it, and ad-
vances tf.nline— i.e., sets it to tex.inputlineno
+ 1.

The code above looks simple because the line
publock:process() does all the hard work.

preliminary draft, October 29, 2018 21:32 preliminary draft, October 29, 2018 21:32

TUGboat, Volume 0 (9999), No. 0 preliminary draft, October 29, 2018 21:32 ? 5

4 Creating new heads
New heads can be created with registerhead, and
they are recognized immediately. For example, this
%L eval = function (str)
%L return assert(loadstring(str))()
%L end
%L expr = function (str)
%L return eval("return "..str)
%L end
%L
%L registerhead "%A" {
%L name = "eval-angle-brackets",
%L action = function ()
%L local i,j,str = tf:getblockstr()
%L str = str:gsub("<(.-)>", expr)
%L output(str)
%L end,
%L }
%A $2+3 = <2+3>$
\pu
produces “2 + 3 = 5”; that looks trivial, but it is
easy to write bigger examples of ‘%A’-blocks with
pict2e code in them, in which the Lua expressions in
‘<...>’s generate ‘\polyline’s and ‘\puts’s whose
coordinates are all calculated by Lua.

5 A read-eval-print-loop (REPL)
Dednat6 uses only one function from the LuaTEX
libraries — tex.print— and two variables, status.
filename and tex.inputlineno, but it includes a
nice way to play with the other functions and vari-
ables in the libraries.

Dednat6 includes a copy of lua-repl (by Rob
Hoelz, github.com/hoelzro/lua-repl), and we can
invoke it by running luarepl(). If we put this in
our foo.tex,
\setbox0=\hbox{abc}
\directlua{luarepl()}
then running lualatex foo.tex will print lots of
stuff, and then the prompt ‘>>>’ of the lua-repl
inside dednat6; if we send these commands to the
REPL,
print(tex.box[0])
print(tex.box[0].id, node.id("hlist"))
print(tex.box[0].list)
print(tex.box[0].list.id, node.id("glyph"))
print(tex.box[0].list.char, string.byte("a"))
print(tex.box[0].list.next)
print(tex.box[0].list.next.char,

string.byte("b"))

we get this in the terminal:
>>> print(tex.box[0])
<node nil < 35981 > nil : hlist 2>
>>> print(tex.box[0].id, node.id("hlist"))
0 0
>>> print(tex.box[0].list)
<node nil < 6107 > 6114 : glyph 256>
>>> print(tex.box[0].list.id, node.id("glyph"))
29 29
>>> print(tex.box[0].list.char, string.byte("a"))
97 97
>>> print(tex.box[0].list.next)
<node 6107 < 6114 > 32849 : glyph 256>
>>> print(tex.box[0].list.next.char,
>>>> string.byte("b"))
98 98
>>>

The best way to use luarepl()— in my not
so humble opinion — is from Emacs, with the eev
library. The tutorial of eev at
http://angg.twu.net/eev-intros/
find-eev-quick-intro.html

explains, in the section “Controlling shell-like pro-
grams”, how we can edit the commands to be sent to
lualatex in a buffer, called the “notes buffer”, and
send them line by line to another buffer that runs
lualatex foo.tex in a shell — the “target buffer”;
each time that we type the F8 key Emacs sends the
current line to the program running in the target
buffer, as if the user had typed it.

6 Availability
Dednat6 is not in CTAN yet (as of October, 2018).
Until it gets there you can download it from:
http://angg.twu.net/dednat6.html

References
[1] E. Ochs: Bootstrapping a Forth in 40 Lines of Lua
Code. Chapter 6 (pp. 57–70) of Lua Programming
Gems, L.H. de Figueiredo, W. Celes, and R. Ierusa-
limschy, eds. lua.org/gems, 2008. Available from
http://angg.twu.net/miniforth-article.html.

� Eduardo Ochs
eduardoochs (at) gmail dot com
http://angg.twu.net/dednat6.html

