TUGboat, Volume 0 (9999), No. 0

Dednat6: an extensible (semi-)preprocessor
for LualpATEXthat understands diagrams in
ASCII art

Eduardo Ochs

1 Prehistory

Many, many years ago, when I was writing my mas-
ter’s thesis, I realized that I was typesetting too
many Natural Deduction trees, and that this was
driving me mad. The code (in proof.sty) for a small
tree like this one
[a]' a—b
b b—c

a—c
was this:

\infer [{1}1{ a\to ¢ }{
\infer [{}1{ ¢
\infer [{}1{ b }{
[al"1 &
a\to b } &
b\to ¢ } } }

This was still manageable, but the code for big-
ger trees was very hard to understand and to debug.
I started to add 2D representations of the typeset
trees above the code, and I defined a macro \defded
to let me define the code for several trees at once,
and a macro \ded to invoke that code later:

% [2l"1 a—>b

% ___________

% b b->c
/A —
% c

% -——-1

% a->c

%

% “a->c

%
\defded{a->c}H{
\infer [{1}1{ a\to ¢ }{
\infer[{}1{ ¢ }{
\infer[{}1{ b }{
[a]l"1 &
a\to b } &
b\to ¢ } } }
%
$$\ded{a->c}$$
Then I realized that if I made the syntax of my
2D representations a but more rigid then I could
write a preprocessor that would understand them,
and that would write all the ‘\defded’s itself to an
auxiliary file. If a file foo.tex had this — note: I

preliminary draft, October 16, 2018 13:31

preliminary draft, October 16, 2018 13:31 71

will omit all header and footer code, like \begin{document}|]

and \end{document}, from the examples —,

\input foo.dnt

%: [al”1 a->b

hi mmmmmmm—m-

% b b->c
% mmmmmm—————
b c

%: -—-1

% a->c

%:

% “a->c

$$\ded{a->c}$$

then I just had to run “dednat.icn foo.tex; latex]]
foo.tex” instead of “latex foo.tex”.

2 Dednat.lua

A few years after that I learned Lua, fell in love with
it, and ported dednat.icn from Icon — that was a
compiled language — to Lua.

The first novel feature in dednat.lua was a way
to run arbitrary Lua code from the .tex file being
preprocessed, and so extend the preprocessor dy-
namically. Dednat.lua treated blocks of lines start-
ing with *%:’ as specifications of trees, and blocks of
lines starting with ‘%L’ as Lua code. More precisely,
the initial set of heads was {"%:", "%L", "%D"},
and dednat.lua processed each block of contiguous
lines starting with the same head in a way that de-
pended on the head.

The second novel feature in dednat.lua was a
way to generate code for categorical diagrams, or
“2D diagrams” for short, automatically, like what
we did for trees... I wanted to make the preprocessor
write the ‘\defdiag’s here itself:

% LA <-| A
%o I
%hoov v
% B |->RB

yA

\defdiag{adj_L-|R}{
\morphism(0,0)/<-1/<400,0>[LA"A;]
\morphism(0,0)/->/<0,-400>[LA"B;]
\morphism(400,0)/->/<0,-400>[A"RB;]
\morphism(0,-400)/|->/<400,0>[B RB;]

}

$$\diag{adj_L-|R}$$

where ‘\morphism’ is the main macro in diagxy,

Michael Barr’s front-end for Xy-pic.

After months of experimentation I arrived at a
good syntax for 2D diagrams. This code

preliminary draft, October 16, 2018 13:31

72 preliminary draft, October 16, 2018 13:31

%D diagram adj_L-|R

%D 2Dx 100 +25
%D 2D 100 LA <-| A
%D 2D | |
%D 2D | |
%D 2D v v
%D 2D +25 B |-> RB
%D 2D

%D ((LA A <-|

%D LA B ->ARB —>
%D B RB |->

%D))

%D enddiagram

%D
$$\diag{adj_L-IR}$$

generates this:
LA<—A

|

B+—RB
The lines with ‘%D 2Dx’ and ‘%D 2D’ define a
grid with coordinates and nodes, and the lines be-
tween ‘%D ((’ and ‘4D))’ connect these nodes with
arrows.

2.1 A Forth-based language for 2D
diagrams — low-level ideas

The article “Bootstrapping a Forth in 40 lines of
Lua code” [1] describes how a Forth-like language
can be reduced to a minimal extensible core, and
bootstrapped from it. The most basic feature in [1]
is that we can have “words that eat text”; the fact
that Forth is stack-based language is secondary —
stacks are added later. The code for ‘/%D’-lines is
based on [1].

A “Forth” — actually the “outer interpreter” of
a Forth, but let’s call it simply a “Forth” — works
on one line of input at a time, reads each “word” in it
and executes it as soon as it is read. A “word” is any
sequence of one of more non-whitespace characters,
and an input line is made of words separated by
whitespace. The “outer interpreter” of Forth does
essentially this on each line, in pseudocode:

while true do
word = getword()
if not word then break end
execute (word)

end

Note that word is a global variable. The current
input line is stored in subj and the current position
of the parser is stored in pos; subj and pos are also
global variables — which means the execute (word)
can change them!

preliminary draft, October 16, 2018 13:31

TUGboat, Volume 0 (9999), No. 0

The function getword() parses whitespace in
subj starting at pos, then parses a word and returns
it, and advances pos to the position after that word.
There is a similar function called getrestofline()
that returns all the rest of the line from pos onwards,
and advances pos to the end of the line.

One of the simplest Forth words is ‘#’ (“com-
ment”). Tt is defined as:

forths["#"] = function ()
getrestofline()
end

It simply runs getrestofline(), discards its
return value, and returns. We say that # “eats the
rest of the line”.

In a “real” Forth we can define words using ‘:’
and ‘;’, like this:

: SQUARE DUP * ;

but the Forth-based language in dednat.lua is so
minimalistic that we don’t have ‘:’ and ‘;” — we
define words by storing their Lua code in the table
forths.

2.2 A Forth-based language for 2D
diagrams — code for diagrams

Let’s look at an example. This code

%D diagram T:F->G

%D 2Dx 100 +20 +20
%D 2D 100 A

%D 2D VAR

%D 2D vVvVvyv

%D 2D +30 FA --> GA
%D 2D

%D (CAFA |->AGA |->

yA) FA GA -> .plabel= b TA
%D A FA GA midpoint |->
%D))

%D enddiagram

%D

$$\diag{T:F->G}$$

yields this:

|
|
|
i
FA GA

TA

The word diagram eats a word — the name of
the diagram — and sets diagramname to it. The
word 2Dx eats the rest of the line, and uses it to
attribute z-coordinates to some columns. The word
2D also eats the rest of the line; when it is followed
by nnn or +nnn that number tells the y-coordinate
of that line, and the words that intersect a point

preliminary draft, October 16, 2018 13:31

TUGboat, Volume 0 (9999), No. 0

that has both an z-coordinate and a y-coordinate
become nodes. When a 2D is not followed by an nnn
or +nnn then this is a line without a y-coordinate,
and it is ignored.

In a sequence like “A FA |->" both A and FA
put nodes on the stack, and |-> creates an arrow
joining the two nodes on the top of the stack, with-
out dropping the nodes from the stack. In a se-
quence like “FA GA midpoint” the midpoint cre-
ates a phantom node halfway between the two nodes
on the top of the stack, drops (pops) them and
pushes the phantom node in their place. The word
.plabel= eats two words, a placement and a label,
and modifies the arrow at the top of the stack by
setting the arrow’s label and placement attributes
with them. The word ‘((’ remembers the depth of
the stack — 42, say — and the word ‘))’ pops ele-
ments from the top of the stack; if the depth at))’
is 200 then))’ pops 200 — 42 elements to make the
depth become 42 again.

The word enddiagram defines a diagram with
the name stored in diagramname; each arrow that
was created, even the ones that were dropped from
the stack, becomes a call to \morphism — the main
macro in diagxy — in the body of the diagram.

A good way to understand in detail how every-
thing works is to inspect the data structures. We
modify the code of the example to add some ‘print’s
in ‘%L’-lines in the middle of the ‘%D’-code:

%D diagram T:F->G

%D 2Dx 100 +20 +20

%L print("xs:"); print(xs)
%D 2D 100 A

%D 2D VAR

%D 2D VvV

%D 2D +30 FA --> GA

%L print("nodes:"); print(nodes)
%D 2D

%D (C AFA |->AGA |->

%D FA GA -> .plabel= b TA

%D A FA GA midpoint -->

%L print("ds:"); print(ds)

%D)

%L print("arrows:"); print(arrows)
%D enddiagram

The preprocessor outputs this on stdout:

Xs:

{12=100, 16=120, 20=140}

nodes:

{ 1={"noden"=1, "tag"=“A", an=120’ uyn=1oo},
2={"noden"=2, "tag"="FA", "x"=100, "y"=130},

3={"noden"= s "tag"="-—>", "x"=120, nyn=130}’
4={"noden"= s "tag"=“GA" , "x"=140, "Y"=130},
"——>"={"noden"=3, "tag"="——>", "g"=120, "Y"=130},

"pAv={"noden"= s "tag“="A", "x"=120, "y"=100},

preliminary draft, October 16, 2018 13:31

preliminary draft, October 16, 2018 13:31 73

"FA"={"noden"=2, "tag"="FA", "x"=100, "y"=130},

"GA"={"noden"=4, "tag"="GA", "x"=140, "y"=130}
}
ds:
12={"arrown"=4, "from"=1, "shape"="-->", "to"=5}
11={"TeX"="\", "noden"=5, "x"=120,
"y"=130}
10={"noden"= s "tag"="A", "g"=120, uyn=100}
9={"arrown"=3, "from"=2, "label"="TA",
||placementll="bll . llshape"=ll_>" . "toll=4}
8={"noden"=4, "tag"="GA", "x"=140, "y"=130}
7={"noden"=2, "tag"="FA", "x"=100, "y"=130}
6={"arrown"=2, "from"=1, "shape"="|->", "to"=4}

5={"noden"=4, "tag"="GA", "x"=140, ||yvv=130}
4={"noden"=1, "tag"="A", "x"=120, "y"=100}

3={"arrown"=1, "from"=1, "shape"="|->", "to"=2}

2={"noden"=2, "tag"="FA" s "X"=100, uyn=130}

1={"noden"=1, "tag"="A", "x"=120, "y"=100}

arrows:

{ 1={"arrown"=1, "from"=1, "shape"="|->", "to"=2},
2={"arrown"=2, "from"=1, "shape"="|->", "to"=4},
3={"arrown"=3, "from"=2, "label"="TA",

"placement"="b", "shape"="->", "to"=4},
4={"arrown"=4, "from"=1, "shape"="-->", "to"=5}

}

3 Semi-preprocessors

Dednat.icn, dednat.lua and all its successors until
dednatb.lua were preprocessors in the usual sense —
they had to be run outside latex and before latex.
With dednat6 this changed; dednat6 can still be run
as a preprocessor, but the recommended way to run
it on, say, foo.tex, is to put a line like

\directlua{dofile "dednat6load.lua"}

somewhere in the beginning of foo.tex, add some
calls to \pu at some points — as we will explain
soon — and compile foo.tex with lualatex instead
of latex, to make foo.tex be processed “in parallel”
by TEX and by Lua. That “in parallel” is a simpli-
fication, though... consider this example:

%

% a b

hr —mm-

% c

%

%: “my-tree

%:
$$\pu\ded{my-tree}$$
%:

%: d e f

hy e

% g

%

% “my-tree

%
$$\pu\ded{my-tree}$$

preliminary draft, October 16, 2018 13:31

74 preliminary draft, October 16, 2018 13:31

Suppose that this fragment starts at line 20. We
are not showing the header and footer code — things

TUGboat, Volume 0 (9999), No. 0

field nline that points to the first line that dednat6
hasn’t processed yet. If foo.tex has 234 lines then

like \begin{document} and \directlua{dofile "dednshélezflld bidk]for foo.tex starts as:

We have a %:-block from lines 20-26, a call to
\pu at line 27, another %:-block from lines 28-34,
and another call to \pu at line 35.

Block {i=1, j=234, nline=1}
We saw in sections 1 and 2.2 that the “output”
of a %:-block is a series of ‘\defded’s and the “out-

The output of the first % :-block above is a \defded{%ﬂ of a %D-block is a series of ‘\defdiags’s. We

tree}, and the output of the second %:-block above
is a different \defded{my-tree}.

‘\pu’ means “process until” — or, more pre-
cisely, make dednat6 process everything until this
point that it hasn’t processed yet. The first \pu
processes the lines 1-26 of foo.tex, and “outputs” —
i.e., sends to TEX— the first \defded{my-tree}; the
second \pu processes the lines 28-34 of foo.tex, and
“outputs” the second \defded{my-treel}. It not re-
ally true that TEX and dednat6 process foo.tex in
parallel; dednat6 goes later, and each \pu is a syn-
chronization point.

3.1 Heads and blocks

In order to understand how this idea — “semi-pre-
processors” — is implemented in dednat6 we need
some terminology.

The initial set of headsis {"%:", "%L", "%D"Z}.
It may be extended with other heads, but we may
only add to it heads that start with ‘%’

A block is a set of contiguous lines in the current
.tex file. This code

Block {i=42, j=99}

creates and returns a block that starts on line 42 and
ends on line 99. The Lua function Block receives
a table, changes its metatable to make it a “block
object”, and returns the modified table.

A head block is a (maximal) set of contiguous
lines all with same head. Head blocks are imple-
mented as blocks with an extra field head. For ex-
ample:

Block {i=20, j=26, head="%:"}

A block is bad when it contains a part of a head
block but not the whole of it. We avoid dealing with
bad blocks — dednat6 never creates a block object
that is “bad”.

Each head has a processor. Executing a head
block means running it through the processor asso-
ciated its head. Executing an arbitrary (non-bad)
block means executing each head block in it one at
a time, in order. Note: the code for executing non-
bad arbitrary blocks was a bit tricky to implement,
as executing a ‘%L’-block may change the set of heads
and the processors associated to heads.

A texfile block is a block that refers to the
whole of the current .tex file, and that has an extra

preliminary draft, October 16, 2018 13:31

can generalize this. For example, the “output” of

%L output [[\def\Foo{F00}]1]
%L output [[\def\Bar{BAR}]]
is

\def\Foo{F00}
\def\Bar{BAR}

The output of a head block is the concatena-
tion of the strings sent to output () when that block
is executed. The output of an arbitrary (non-bad)
block is the concatenation of the strings sent to
output () by its head blocks when the arbitrary blocklil
is executed.

A \pu-block is created by dednat6 when a \pu
is executed, pointing to the lines between this \pu
and the previous \pu. If foo.tex has a \pu at line
27 and another at line 35 then the first \pu creates
this block,

Block {i=1, j=26}
and the second \pu creates this:
Block {i=28, j=34}
As “\pu’s only happen in non-comment lines
\pu-blocks are never bad.

3.2 The implementation of \pu

The macro \pu is defined as

\def\pu{\directlua{

processuntil (tex.inputlineno)

}r

in WTEX, and processuntil() is this (in Lua):
processuntil = function (puline)

local publock =

Block {i=tf.nline, j=puline-1}
publock:process()
tf.nline = puline + 1
end

Here’s a high-level explanation. When dednat6
is loaded and initialized it creates a texfile block for
the current .tex file — with nline=1 — and stores
it in the global variable tf. The macro \pu creates
a \pu-block that starts at line tf.nline and ends
at line tex.inputlineno - 1, executes it, and ad-
vances tf.nline —i.e., sets it to tex.inputlineno
+ 1.

The code above looks simple because the line
publock:process() does all the hard word.

preliminary draft, October 16, 2018 13:31

TUGboat, Volume 0 (9999), No. 0

4 Creating new heads

New heads can be created with registerhead, and
they are recognized immediately. For example, this

%L eval = function (str)

%L return assert(loadstring(str)) ()
%L end

%L expr = function (str)

%L return eval("return "..str)

%L end

%L

%L registerhead "%A" {

%L name = "eval-angle-brackets",

%L action = function ()

%L local i,j,str = tf:getblockstr()
%L str = str:gsub("<(.-)>", expr)
%L output (str)

%L end,

%L}

% $2+3 = <2+3>$

\pu

produces “2 4+ 3 = 57; that looks trivial, but it is
easy to write bigger examples of ‘%A’-blocks with
pict2e code in them, in which the Lua expressions
in ‘<...>’s generate ‘\polyline’s and ‘\puts’s whose
coordinates are all calculated by Lua.

5 A REPL
Dednat6 uses only one function from the LuaTEX li-

preliminary draft, October 16, 2018 13:31 7?5

<node nil < 6107 > 6114 :
>>> print(tex.box[0].list.id,

29 29

>>> print(tex.box[0].list.char, string.byte("a"))
97 97

>>> print(tex.box[0].list.next)

<node 6107 < 6114 > 32849 : glyph 256>

>>> print(tex.box[0].list.next.char,

>>>> string.byte("b"))
98 98

>>>

glyph 256>
node.id("glyph"))

The best way to use luarepl() — in my not
so humble opinion — is from Emacs, with the eev
library; the tutorial of eev at

http://angg.twu.net/eev-intros/
find-eev-quick-intro.html

explains, in the section “Controlling shell-like pro-
grams”, how we can edit the commands to be sent to
lualatex in a buffer, called the “notes buffer”, and
send them line by line to another buffer that runs
lualatex foo.tex in a shell — the “target buffer”;
each time that we type the F8 key Emacs sends the
current line to the program running in the target
buffer, as if the user had typed it.

6 Availability

Dednat6 is not in CTAN yet (as of october, 2018).
Until it gets there you can download it from:

http://angg.twu.net/dednat6.html

braries — tex.print — and two variables, status.filefam&jpferences

and tex.inputlineno, but it includes a nice way to
play with the other functions and variables in the
libraries.

Dednat6 includes a copy of Rob Hoelz’s lua-
repl, and we can invoke it by running luarepl().
If we put this in our foo.tex,

\setbox0=\hbox{abc}
\directlua{luarepl ()}

then running lualatex foo.tex will print lots of
stuff, and then the prompt ‘>>>’ of the lua-repl
inside dednat6; if we send these commands to the
REPL,

print (tex.box[0])
print (tex.box[0].id,
print(tex.box[0].1list)
print(tex.box[0].1list.id, node.id("glyph"))
print(tex.box[0].list.char, string.byte("a"))
print(tex.box[0].1list.next)
print (tex.box[0].list.next.char,
string.byte("b"))

node.id("hlist"))

we get this in the terminal:

>>> print(tex.box[0])

<node nil < 35981 > nil :
>>> print(tex.box[0].id,

00

>>> print(tex.box[0].list)

hlist 2>
node.id("hlist"))

preliminary draft, October 16, 2018 13:31

[1] E. Ochs: Bootstrapping a Forth in 40 Lines of
Lua Code. Chapter 6 (pages 57-70) of: L.H. de
Figueiredo, W. Celes, and R. Ierusalimschy: Lua
Programming Gems. Lua.org, 2008. Available from
http://angg.twu.net/miniforth-article.html.

preliminary draft, October 16, 2018 13:31

