Logic for Children

(i.e., for people without mathematical maturity -
a workshop at UniLog 2018)

Eduardo
Ochs

Fernando
Lucatelli

Selana
Ochs

Why?

Many years ago...
Non-Standard Analysis
\rightarrow Ultrapowers
\rightarrow Filter-powers
\rightarrow Toposes
\rightarrow Johnstone's "Topos Theory"

Why?

Many years ago...
Non-Standard Analysis
\rightarrow Ultrapowers
\rightarrow Filter-powers
\rightarrow Toposes
\rightarrow Johnstone's "Topos Theory"
\rightarrow FAR too abstract for me

Why?

Many years ago...
Non-Standard Analysis
\rightarrow Ultrapowers
\rightarrow Filter-powers
\rightarrow Toposes
\rightarrow Johnstone's "Topos Theory"
\rightarrow FAR too abstract for me
\rightarrow I NEED A VERSION FOR CHILDREN OF THIS

Why?

Many years ago...
Non-Standard Analysis
\rightarrow Ultrapowers
\rightarrow Filter-powers
\rightarrow Toposes
\rightarrow Johnstone's "Topos Theory"
\rightarrow FAR too abstract for me
\rightarrow I NEED A VERSION FOR CHILDREN OF THIS

With time this became
A MUCH BIGGER
project...
Some subtasks:

1. Find the right definition of "children"
2. Develop a basic toolbox
3. Make these things publishable

With time this became
A MUCH BIGGER project...

Some subtasks:

1. Find the right definition of "children"
(inspired by how I function)
2. Develop a basic toolbox (and name its tools)
3. Make these things publishable (make them look formal and non-trivial)

The opposite of "children"
The opposite of "children" is
"adults", or "mathematicians".
A "mathematician" feels that everything should be done as generally and as abstractly as possible - and doing otherwise is bad style.

The opposite of "children"
The opposite of "children" is
"adults", or "mathematicians".
A "mathematician" feels that everything should be done as generally and as abstractly as possible - and doing otherwise is bad style.

Example: finding a right adjoint by guesswork / trial and error...

One expression that I love is: "this step (or argument) offends adults".

Task 1: The right definition of "children":
They prefer to start from particular cases
and then generalize -
They like diagrams and finite objects
drawn very explicitly -
They become familiar with mathematical ideas
by calculating / checking several cases
(rather than by proving theorems)

Task 1: The right definition of "children":
They prefer to start from particular cases
and then generalize -
They like diagrams and finite objects
drawn very explicitly -
They become familiar with mathematical ideas
by calculating / checking several cases
(rather than by proving theorems)
Example: pentominos. Let "children" play with pentominos for a while before showing to them theorems and game trees!

Task 2: Develop a basic toolbox

I'm starting with "Category Theory for children" because I am a categorist, and
because CT uses diagrams and generalizations a lot...
Basic tools:
Use parallel diagrams,
positional notations,
internal views,
archetypal cases...
(I'll show some diagrams soon)

Task 3: Find ways to publish this

CT books treat examples very briefly,
as if they were trivial exercises... $=($
Ideas: do things "for children" and "for adults" in parallel, find ways to transfer knowledge between the two approaches...
(Non-standard Analysis has transfer theorems
between the standard universe, Set, and $\left.\operatorname{Set}^{\mathcal{I}} / \mathcal{U}\right)$

Task 3: Find ways to publish this

CT books treat examples very briefly,
as if they were trivial exercises... $=($
Ideas: do things "for children" and "for adults" in parallel, find ways to transfer knowledge between the two approaches...

$$
\left(\begin{array}{c}
\text { particular } \\
\text { case } \\
\text { "for children" }
\end{array}\right) \stackrel{\begin{array}{c}
\text { particularize } \\
\text { (easy) }
\end{array}}{\stackrel{\text { generalize }}{\text { (hard) }}} \boldsymbol{\leftarrow}\left(\begin{array}{c}
\text { general } \\
\text { case } \\
\text { "for adults" }
\end{array}\right)
$$

The diagrams for the general case and for a particular case have the same shape!!!

In the rest of these slides...
...we will show an example:
Geometric Morphisms for children!
(\uparrow a thing from Topos Theory)

Visualizing Geometric Morphisms

An application:
Sheaves and Geometric Morphisms
\uparrow two parts of Topos Theory that look
incredibly abstract at first
(Btw, I'll give a talk at the "Logic and Categories" workshop about that)

Trick:
Start with presheaves that are easy to visualize; Start with a very small, planar category like this...

Visualizing Geometric Morphisms

Trick: positional notations
Start with presheaves that are easy to visualize; Start with a very small, planar category like this,

Technicalities:
\mathbf{B} is a preorder

Visualizing Geometric Morphisms

...and now a presheaf F on B
can be drawn like this...

Technicalities:
A "real" presheaf would have an 'op'.
This is a ZPresheaf!!!
See the slides for "Visualizing Geometric Morphisms"!

Visualizing Geometric Morphisms

...choose a subcategory \mathbf{A} of \mathbf{B}, e.g., the one below.
Then a presheaf G on \mathbf{A} can be drawn as:

$$
\begin{aligned}
& \mathbf{B}=\left(\begin{array}{cccc}
& \swarrow^{1} & & \\
2 & & \searrow_{3} & \\
2 & \searrow_{4} & \\
& & & \\
& & \searrow_{5} \\
& & \searrow_{6} & \\
& & &
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llll}
2 & & & \\
& \searrow_{4} & & \\
& & \searrow_{5}
\end{array}\right) \\
& G=\left(\begin{array}{ccc}
G_{2} & & a_{3} \\
& \searrow & \swarrow \\
& G_{4} & \\
\hline
\end{array}\right.
\end{aligned}
$$

Technicalities: too many $=($

Visualizing Geometric Morphisms

\ldots...and the inclusion $f: \mathbf{A} \rightarrow \mathbf{B}$
induces a geometric morphism $f: \boldsymbol{\operatorname { S e t }}^{\mathbf{A}} \rightarrow \boldsymbol{\operatorname { S e t }}^{\mathbf{B}}$, that "is" an adjunction $f^{*} \dashv f_{*}$:

$$
\operatorname{Set}^{\mathbf{A}} \underset{f_{*}}{\stackrel{f^{*}}{\leftrightarrows}} \operatorname{Set}^{\mathbf{B}}
$$

...where f^{*} is "obvious" (for some value of "obvious") and f_{*} can be obtained by trial and error if we don't understand Kan Extensions...
Kan Extensions: for adults
Trial and error: for children

Interlude: internal views

The best way to explain the adjunction of the previous slide to children is through internal views. The internal view of the function $\sqrt{ }: \mathbb{N} \rightarrow \mathbb{R}$ is:

(' \mapsto 's take elements of a blob-set to another blob-set)

Interlude: internal views

Internal views of functors have blob-categories instead of blob-sets, like this:

Interlude: internal views

We draw the internal view of $F: \mathbf{C} \rightarrow \mathbf{D}$ as this,

$$
\begin{aligned}
& A \longmapsto F A \\
& \begin{array}{c}
g \downarrow \\
B \longmapsto F B \\
B
\end{array} \begin{array}{r}
\downarrow \text { Fg } \\
\end{array} \\
& \mathbf{C} \xrightarrow{F} \mathbf{D}
\end{aligned}
$$

we omit the blobs (the " 0 "s), and we draw the internal view - objects and maps in \mathbf{C} and \mathbf{D} above the external view $(F: \mathbf{C} \rightarrow \mathbf{D})$.

Internal views

Here is the internal view of the geometric morphism $f: \operatorname{Set}^{\mathbf{A}} \rightarrow \operatorname{Set}^{\mathbf{B}} \ldots$ remember that f is an adjunction $f^{*} \dashv f_{*}$.

A geometric morphism (for children)

$\operatorname{Set}^{\mathbf{A}} \underset{f_{*}}{f^{*}} \operatorname{Set}^{\mathbf{B}}$

(for children)
(for adults)

Resources about the workshop

Here:
http://angg.twu.net/logic-for-children-2018.html Cheers! =)

Resources about the workshop

Here:
http://angg.twu.net/logic-for-children-2018.html Cheers! =)

(for children)

(for adults)

