Logic for Children (i.e., for people without mathematical maturity a workshop at UniLog 2018)

Eduardo Ochs

Fernando Lucatelli

1

Selana Ochs

2018vichy-video June 17, 2018 20:05

Many years ago...

Non-Standard Analysis

- \rightarrow Ultrapowers
- \rightarrow Filter-powers
- \rightarrow Toposes
- \rightarrow Johnstone's "Topos Theory"

Many years ago...

Non-Standard Analysis

- \rightarrow Ultrapowers
- \rightarrow Filter-powers
- \rightarrow Toposes
- \rightarrow Johnstone's "Topos Theory"
- \rightarrow FAR too abstract for me

Many years ago...

Non-Standard Analysis

- \rightarrow Ultrapowers
- \rightarrow Filter-powers
- \rightarrow Toposes
- \rightarrow Johnstone's "Topos Theory"
- \rightarrow FAR too abstract for me

 \rightarrow I NEED A VERSION FOR CHILDREN OF THIS

Many years ago...

Non-Standard Analysis

- \rightarrow Ultrapowers
- \rightarrow Filter-powers
- \rightarrow Toposes
- \rightarrow Johnstone's "Topos Theory"
- \rightarrow FAR too abstract for me

 \rightarrow I NEED A VERSION FOR CHILDREN OF THIS

With time this became **A MUCH BIGGER** project...

Some subtasks:

- 1. Find the right definition of "children"
- 2. Develop a basic toolbox
- 3. Make these things publishable

7

With time this became **A MUCH BIGGER** project...

Some subtasks:

- 1. Find the right definition of "children" (inspired by how I function)
- 2. Develop a basic toolbox (and name its tools)
- 3. Make these things publishable (make them look formal and non-trivial)

8

The opposite of "children" The opposite of "children" is "adults", or "mathematicians". A "mathematician" feels that everything should be done as generally and as abstractly as possible — and doing otherwise is *bad style*. The opposite of "children" The opposite of "children" is "adults", or "mathematicians". A "mathematician" feels that everything should be done as generally and as abstractly as possible — and doing otherwise is *bad style*.

Example: finding a right adjoint by guesswork / trial and error...

One expression that I love is: "this step (or argument) offends adults".

Task 1: The right definition of "children": They prefer to start from particular cases and then generalize — They like diagrams and finite objects drawn very explicitly — They become familiar with mathematical ideas by calculating / checking several cases (rather than by proving theorems) Task 1: The right definition of "children": They prefer to start from particular cases and then generalize — They like diagrams and finite objects drawn very explicitly —

They become familiar with mathematical ideas by calculating / checking several cases (rather than by proving theorems)

Example: pentominos. Let "children" play with pentominos for a while before showing to them theorems and game trees!

Task 2: Develop a basic toolbox I'm starting with "Category Theory for children" because I am a categorist, and because CT uses diagrams and generalizations *a lot*...

Basic tools: Use parallel diagrams, positional notations, internal views, archetypal cases...

(I'll show some diagrams soon)

Task 3: Find ways to publish this CT books treat examples very briefly, as if they were trivial exercises... =(Ideas: do things "for children" and "for adults" in parallel, find ways to *transfer knowledge* between the two approaches...

(Non-standard Analysis has transfer theorems between the standard universe, **Set**, and $\mathbf{Set}^{\mathcal{I}}/\mathcal{U}$)

Task 3: Find ways to publish this CT books treat examples very briefly, as if they were trivial exercises... =(Ideas: do things "for children" and "for adults" in parallel, find ways to *transfer knowledge* between the two approaches...

The diagrams for the general case and for a particular case have the same shape!!!

In the rest of these slides... ...we will show an example: Geometric Morphisms for children! (↑ a thing from Topos Theory) Visualizing Geometric Morphisms An application: Sheaves and Geometric Morphisms ↑ two parts of Topos Theory that look *incredibly abstract* at first (Btw, I'll give a talk at the "Logic and Categories" workshop about that)

Trick:

Start with presheaves that are easy to visualize; Start with a very small, planar category like this...

Visualizing Geometric Morphisms

Trick: positional notations

Start with presheaves that are easy to visualize; Start with a very small, planar category like this,

Technicalities: **B** is a preorder

Visualizing Geometric Morphisms ... and now a presheaf F on **B** can be drawn like this...

Technicalities: A "real" presheaf would have an 'op'. This is a *ZPresheaf*!!! See the slides for "Visualizing Geometric Morphisms"!

Visualizing Geometric Morphisms ... choose a subcategory \mathbf{A} of \mathbf{B} , e.g., the one below. Then a presheaf G on \mathbf{A} can be drawn as:

Technicalities: too many =(

Visualizing Geometric Morphisms ...and the inclusion $f : \mathbf{A} \to \mathbf{B}$ induces a geometric morphism $f : \mathbf{Set}^{\mathbf{A}} \to \mathbf{Set}^{\mathbf{B}}$, that "is" an adjunction $f^* \dashv f_*$:

$$\mathbf{Set}^{\mathbf{A}} \xrightarrow{f^{*}}_{f_{*}} \mathbf{Set}^{\mathbf{B}}$$

...where f^* is "obvious" (for some value of "obvious") and f_* can be obtained by trial and error if we don't understand Kan Extensions... Kan Extensions: for adults Trial and error: for children

Interlude: internal views

The best way to explain the adjunction of the previous slide to children is through *internal views*. The internal view of the function $\sqrt{:\mathbb{N}\to\mathbb{R}}$ is:

(' \mapsto 's take elements of a blob-set to another blob-set)

Interlude: internal views

Internal views of functors have blob-categories instead of blob-sets, like this:

Interlude: internal views We draw the internal view of $F : \mathbf{C} \to \mathbf{D}$ as this,

we omit the blobs (the " \square "s), and we draw the internal view — objects and maps in **C** and **D** above the external view ($F : \mathbf{C} \to \mathbf{D}$).

Internal views

Here is the internal view of the geometric morphism $f : \mathbf{Set}^{\mathbf{A}} \to \mathbf{Set}^{\mathbf{B}}$... remember that f is an adjunction $f^* \dashv f_*$.

(particular case) (general case)

A geometric morphism (for children)

Resources about the workshop

Here:

```
http://angg.twu.net/logic-for-children-2018.html
Cheers! =)
```

Resources about the workshop

Here:

http://angg.twu.net/logic-for-children-2018.html
Cheers! =)

