Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2019-1-C2-material.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019-1-C2-material.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019-1-C2-material.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2019-1-C2-material.pdf")) % (defun e () (interactive) (find-LATEX "2019-1-C2-material.tex")) % (defun u () (interactive) (find-latex-upload-links "2019-1-C2-material")) % (find-xpdfpage "~/LATEX/2019-1-C2-material.pdf") % (find-sh0 "cp -v ~/LATEX/2019-1-C2-material.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019-1-C2-material.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019-1-C2-material.pdf % file:///tmp/2019-1-C2-material.pdf % file:///tmp/pen/2019-1-C2-material.pdf % http://angg.twu.net/LATEX/2019-1-C2-material.pdf % «.defs» (to "defs") % «.defs-int-subst» (to "defs-int-subst") % «.int-subst» (to "int-subst") % «.trab-area-superfs» (to "trab-area-superfs") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{xcolor} % (find-es "tex" "xcolor") %\usepackage{color} % (find-LATEX "edrx15.sty" "colors") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams %\def\expr#1{\directlua{output(tostring(#1))}} %\def\eval#1{\directlua{#1}} % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-angg ".emacs.papers" "latexgeom") % (find-LATEXfile "2016-2-GA-VR.tex" "{geometry}") % (find-latexgeomtext "total={6.5in,8.75in},") \usepackage[%paperwidth=11.5cm, paperheight=9cm, %total={6.5in,4in}, %textwidth=4in, paperwidth=4.5in, %textheight=5in, paperheight=4.5in, %a4paper, top=2.5cm, bottom=2.5cm, left=2.5cm, right=2.5cm, includefoot ]{geometry} \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % (find-LATEX "2017-2-C2-material.tex" "integracao-por-substituicao") % ____ __ % | _ \ ___ / _|___ % | | | |/ _ \ |_/ __| % | |_| | __/ _\__ \ % |____/ \___|_| |___/ % % «defs» (to ".defs") \def\subst#1{\left[\sm{#1}\right]} \def\Subst#1{\left[\mat{#1}\right]} \def\ddx{\frac{d}{dx}} \def\pfo#1{\ensuremath{(\mathsf{#1})}} \def\D#1{\displaystyle #1} % Difference with mathstrut \def\Difms #1#2#3{\left. \mathstrut #3 \right|_{s=#1}^{s=#2}} \def\Difmu #1#2#3{\left. \mathstrut #3 \right|_{u=#1}^{u=#2}} \def\Difmx #1#2#3{\left. \mathstrut #3 \right|_{x=#1}^{x=#2}} \def\Difmth#1#2#3{\left. \mathstrut #3 \right|_{θ=#1}^{θ=#2}} \def\iequationbox#1#2{ \left( \begin{array}{rcl} \D{ #1 } &=& \D{ #2 } \\ \end{array} \right) } \def\isubstbox#1#2#3#4#5{{ \def\veq{\rotatebox{90}{$=$}} \def\ph{\phantom} \left( \begin{array}{rcl} \D{ #1 } &=& \D{ #2 } \\ {\veq#3} \\ \D{ #4 } &=& \D{ #5 } \\ \end{array} \right) }} % «defs-int-subst» (to ".defs-int-subst") % Definição das fórmulas para integração por substituição. % Algumas são pmatrizes 3x3 usando isubstbox. \def\TFCtwo{ \iequationbox {\Intx{a}{b}{F'(x)}} {\Difmx{a}{b}{F(x)}} } \def\TFCtwoI{ \iequationbox {\intx{F'(x)}} {F(x)} } \def\Sone{ \isubstbox {\Difmx{a}{b}{f(g(x))}} {\Intx{a}{b}{f'(g(x))g'(x)}} {\ph{mmm}} {\Difmu{g(a)}{g(b)}{f(u)}} {\Intu{g(a)}{g(b)}{f'(u)}} } \def\SoneI{ \isubstbox {f(g(x))} {\intx{f'(g(x))g'(x)}} {\ph{m}} {f(u)} {\intx{f'(u)}} } \def\Stwo{ \isubstbox {\Difmx{a}{b}{F(g(x))}} {\Intx{a}{b}{f(g(x))g'(x)}} {\ph{mmm}} {\Difmu{g(a)}{g(b)}{F(u)}} {\Intu{g(a)}{g(b)}{f(u)}} } \def\StwoI{ \isubstbox {F(g(x))} {\intx{f(g(x))g'(x)}} {\ph{m}} {F(u)} {\intu{f(u)}} } \def\Sthree{ \iequationbox {\Intx{a}{b}{f(g(x))g'(x)}} {\Intu{g(a)}{g(b)}{f(u)}} } \def\SthreeI{ \iequationbox {\intx{f(g(x))g'(x)}} {\int{f(u)}} (u=g(x)) } % ___ _ _ _ % |_ _|_ __ | |_ ___ _ _| |__ ___| |_ % | || '_ \| __| / __| | | | '_ \/ __| __| % | || | | | |_ \__ \ |_| | |_) \__ \ |_ % |___|_| |_|\__| |___/\__,_|_.__/|___/\__| % % «int-subst» (to ".int-subst") % (c2m191p 1 "int-subst") % (c2m191 "int-subst") {\bf Integração por substituição} \pfo{S1}, \pfo{S2}, \pfo{S3}: substituição na integral definida (mais concreta), \pfo{S1I}, \pfo{S2I}, \pfo{S3I}: substituição na integral indefinida (mais abstrata). Os livros costumam começar pela fórmula $\pfo{SI3}$, que é a mais abstrata de todas... Nós vamos seguir um caminho bem diferente, e vamos tratar as fórmulas \pfo{TFC2I}, \pfo{S1I}, \pfo{S2I}, \pfo{S3I} como {\sl abreviações} para as fórmulas \pfo{TFC2}, \pfo{S1}, \pfo{S2}, \pfo{S3}. $$\begin{array}[t]{rcl} \text{Fórmulas}: \\[5pt] \pfo{TFC2} &=& \TFCtwo \\ \\ \pfo{S1} &=& \Sone \\ \\ \pfo{S2} &=& \Stwo \\ \\ \pfo{S3} &=& \Sthree \\ \\ \pfo{TFC2I} &=& \TFCtwoI \\ \\ \pfo{S1I} &=& \SoneI \\ \\ \pfo{S2I} &=& \StwoI \\ \\ \pfo{S3I} &=& \SthreeI \end{array} % \quad % \begin{tabular}[t]{l} Exercícios: \\[5pt] a) $\pfo{TFC2} \subst{F(x):=-\cos x \\ a:=0 \\ b:=π}$ \\ b) $\pfo{TFC2} \subst{F(x):=\cos x}$ \\ c) $\pfo{TFC2} \subst{F(x):=\cos x} \subst{a:=0 \\ b:=π}$ \\ d) $\pfo{TFC2} \subst{F(x):=\cos x} \subst{a:=π \\ b:=2π}$ \\ e) $\pfo{TFC2} \subst{F(x):=\frac12 x^2 \\ a:=0 \\ b:=4 }$ \\ f) $\pfo{TFC2} \subst{F(x):=\frac13 x^3 \\ a:=0 \\ b:=2 }$ \\ g) $f(g(x)) \subst{f(u):=\sen u \\ g(x) := 4x} $\\ h) $(f'(g(x))g'(x)) \subst{f(u):=\sen u \\ g(x) := 4x} $\\ % % (find-angg ".emacs" "c2q182") % (c2q182 6 "20180822" "TFC2; substituição") i) $\pfo{S1} \subst{ f(u) := \sen u \\ g(x) := 3x+4 \\ a := 1 \\ b := 2 \\ }$ \\ j) $\pfo{S2} \subst{ F(u) := \sen u \\ f(u) := \cos u \\ g(x) := 3x+4 \\ a := 1 \\ b := 2 \\ }$ \\ k) $\pfo{S2} \subst{ f(u) := \cos u \\ g(x) := 3x+4 \\ a := 1 \\ b := 2 \\ }$ \\ l) $\pfo{S2} \subst{ f(u) := \sqrt{u} \\ g(x) := 3x+4 \\ a := 1 \\ b := 2 \\ }$ \\ m) $\pfo{S3} \subst{ f(u) := \sqrt{u} \\ g(x) := 3x+4 \\ a := 1 \\ b := 2 \\ }$ \\ \\ i') $\pfo{S1I} \subst{ f(u) := \sen u \\ g(x) := 3x+4 \\ a := 1 \\ b := 2 \\ }$ \\ i'') $\pfo{S1I} \subst{ f(u) := \sen u \\ g(x) := 3x+4 \\ % a := 1 \\ % b := 2 \\ }$ \\ k') $\pfo{S2I} \subst{ f(u) := \cos u \\ g(x) := 3x+4 \\ a := 1 \\ b := 2 \\ }$ \\ k'') $\pfo{S2I} \subst{ f(u) := \cos u \\ g(x) := 3x+4 \\ % a := 1 \\ % b := 2 \\ }$ \\ m') $\pfo{S3I} \subst{ f(u) := \sqrt{u} \\ g(x) := 3x+4 \\ }$ \\ % (find-angg ".emacs" "c2q182") \end{tabular} $$ \newpage % _ __ % / \ _ __ ___ __ _ ___ _ _ _ __ ___ _ __ / _|___ % / _ \ | '__/ _ \/ _` | / __| | | | '_ \ / _ \ '__| |_/ __| % / ___ \| | | __/ (_| | \__ \ |_| | |_) | __/ | | _\__ \ % /_/ \_\_| \___|\__,_| |___/\__,_| .__/ \___|_| |_| |___/ % |_| % % «trab-area-superfs» (to ".trab-area-superfs") % (c2m191p 99 "trab-area-superfs") % (c2m191a "trab-area-superfs") \def\AreaEntre{\textsf{ÁreaEntre}} Trabalho sobre áreas de superfícies de revolução Vale 0.5 pontos na VR ou na VS (que vão ter questões sobre isso), o que for mais vantajoso pra vocês. \msk Sejam: $P(x,y) = (x,y)$, $C(x,R) = \setofst{(x,y,z)∈\R^3}{x^2 + y^2 = R^2}$. \msk 1) Calcule as distâncias: a) $d(P(4,2),P(7,2))$ b) $d(P(4,3),P(7,3))$ c) $d(P(4,2),P(4,3))$ d) $d(P(4,3),P(7,2))$ \msk 2) Calcule as áreas dos pedaços de cones entre: a) $C(4,2)$ e $C(7,2)$ b) $C(4,3)$ e $C(7,3)$ c) $C(4,2)$ e $C(4,3)$ \msk 3) Represente graficamente os segmentos 1a, 1b, 1c, 1d. \msk 4) Encontre no olhômetro (1d)/(1a), (1d)/(1b), (1d)/(1c). (Em sala nós chamamos eles de ``fatores multiplicadores''). \msk 5) Será que os ``fatores multiplicadores'' que você encontrou na 4 servem para calcular a área do pedaço de cone entre $C(4,3)$ e $C(7,2)$? Não examente, mas vamos fingir que sim... qual {\sl seria} o fator multiplicador a) de $\AreaEntre(C(4,2),C(7,2))$ para $\AreaEntre(C(4,3),C(7,2))$? b) de $\AreaEntre(C(4,3),C(7,3))$ para $\AreaEntre(C(4,3),C(7,2))$? c) de $\AreaEntre(C(4,2),C(4,3))$ para $\AreaEntre(C(4,3),C(7,2))$? \msk 6) Usando os fatores multiplicadores do item anterior calcule: a) $\AreaEntre(C(4,2),C(7,2))$ (item 2a!) e a partir dela $\AreaEntre(C(4,3),C(7,2))$ b) $\AreaEntre(C(4,3),C(7,3))$ (item 2b!) e a partir dela $\AreaEntre(C(4,3),C(7,2))$ c) $\AreaEntre(C(4,2),C(4,3))$ (item 2c!) e a partir dela $\AreaEntre(C(4,3),C(7,2))$ \msk 7) Use uma calculadora pra calcular numericamente os resultados dos itens 6a, 6b, 6c. \msk 8) Agora vamos generalizar o problema 5. Qual é o ``fator multiplicador'' a) de $\AreaEntre(C(x_0,y_0),C(x_1,y_0))$ para $\AreaEntre(C(x_0,y_0),C(x_1,y_1))$? b) de $\AreaEntre(C(x_0,y_1),C(x_1,y_1))$ para $\AreaEntre(C(x_0,y_0),C(x_1,y_1))$? c) de $\AreaEntre(C(x_0,y_0),C(x_0,y_1))$ para $\AreaEntre(C(x_0,y_0),C(x_1,y_1))$? \msk 9) Use os fatores multiplicadores do item anterior para calcular: a) $\AreaEntre(C(x_0,y_0),C(x_1,y_0))$ (item 8a!) e a partir dela $\AreaEntre(C(x_0,y_0),C(x_1,y_1))$ b) $\AreaEntre(C(x_0,y_1),C(x_1,y_1))$ (item 8b!) e a partir dela $\AreaEntre(C(x_0,y_0),C(x_1,y_1))$ c) $\AreaEntre(C(x_0,y_0),C(x_0,y_1))$ (item 8c!) e a partir dela $\AreaEntre(C(x_0,y_0),C(x_1,y_1))$ \msk 10) Simplifique as respostas dos itens 9a, 9b e 9c usando: $Δx=x_1-x_0$, $Δy=y_1-y_0$, $y_x = \frac{Δy}{Δy}$. \bsk \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "c2m191" % End: