Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2019-2-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019-2-C2-P1.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019-2-C2-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2019-2-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2019-2-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2019-2-C2-P1")) % (setq revert-without-query '("pdf$")) % (find-pdf-page "~/LATEX/2019-2-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2019-2-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019-2-C2-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019-2-C2-P1.pdf % file:///tmp/2019-2-C2-P1.pdf % file:///tmp/pen/2019-2-C2-P1.pdf % http://angg.twu.net/LATEX/2019-2-C2-P1.pdf % (find-LATEX "2019.mk") % (find-CN-aula-links "2019-2-C2-P1" "2" "c2m192p1" "c2p1o") % «.gabarito» (to "gabarito") % «.gabarito-maxima» (to "gabarito-maxima") \documentclass[oneside]{book} \usepackage[colorlinks,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar % _____ % |_ _| _ _ __ _ __ ___ __ _ _ __ ___ __ _ % | || | | | '__| '_ ` _ \ / _` | | '_ \ / _ \/ _` | % | || |_| | | | | | | | | (_| | | |_) | __/ (_| | % |_| \__,_|_| |_| |_| |_|\__,_| | .__/ \___|\__, | % |_| |_| {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2019.2 \par P1 - turma pequena - 30/outubro/2019 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk % \bsk % \bsk % (find-TH "2019.1-C2" "provas-antigas") % (find-es "sympy" "trig-subst-questions") % (c2q) 1) \T(Total: 2.5 pts) Calcule $$\intx {(2x+3)\sqrt{4x+5}}.$$ \bsk 2) \T(Total: 2.5 pts) Calcule $$\intx {x^3 \sqrt{1-x^2}}.$$ \bsk 3) \T(Total: 2.5 pts) Calcule $$\intx {(\sen 5x)^2(\cos 6x)^2}.$$ \bsk 4) \T(Total: 2.5 pts) Calcule $$\intx {\frac{x^3}{x^2 + 9x + 20}}.$$ \bsk \bsk Algumas definições, fórmulas e substituições: $\begin{array}[t]{l} c = \cos θ \\ s = \sen θ \\ t = \tan θ \\ z = \sec θ \\ E = e^{iθ} \\ \end{array} % \begin{array}[t]{l} c^2+s^2=1 \\ z^2=t^2+1 \\ \sqrt{1-s^2} = c \\ \sqrt{t^2+1} = z \\ \sqrt{z^2-1} = t \\ \end{array} % \begin{array}[t]{l} \frac{ds}{dθ} = c \\ \frac{dc}{dθ} = -s \\ \frac{dt}{dθ} = z^2 \\ \frac{dz}{dθ} = zt \\ \end{array} % \begin{array}[t]{l} E = c+is \\ c = \frac{E+E¹}{2} \\ s = \frac{E-E¹}{2i} \\ e^{ikθ} + e^{-ikθ} = 2 \cos kθ \\ e^{ikθ} - e^{-ikθ} = 2i \sen kθ \\ \end{array} $ \newpage % _____ _ % |_ _| _ _ __ _ __ ___ __ _ __ _ __| | ___ % | || | | | '__| '_ ` _ \ / _` | / _` |/ _` |/ _ \ % | || |_| | | | | | | | | (_| | | (_| | (_| | __/ % |_| \__,_|_| |_| |_| |_|\__,_| \__, |\__,_|\___| % |___/ {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2019.1 \par P1 - turma grande - 31/outubro/2019 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk 1) \T(Total: 2.5 pts) Calcule $$\intx {(2x+3)\sqrt{4x+5}}.$$ \bsk 2) \T(Total: 2.5 pts) Calcule $$\intx {x^3 \sqrt{1-x^2}}.$$ \bsk 3) \T(Total: 2.5 pts) Calcule $$\intx {(\sen 5x)^2(\cos 6x)^2}.$$ \bsk 4) \T(Total: 2.5 pts) Calcule $$\intx {\frac{x^3}{x^2 + 9x + 20}}.$$ \bsk \bsk Algumas definições, fórmulas e substituições: $\begin{array}[t]{l} c = \cos θ \\ s = \sen θ \\ t = \tan θ \\ z = \sec θ \\ E = e^{iθ} \\ \end{array} % \begin{array}[t]{l} c^2+s^2=1 \\ z^2=t^2+1 \\ \sqrt{1-s^2} = c \\ \sqrt{t^2+1} = z \\ \sqrt{z^2-1} = t \\ \end{array} % \begin{array}[t]{l} \frac{ds}{dθ} = c \\ \frac{dc}{dθ} = -s \\ \frac{dt}{dθ} = z^2 \\ \frac{dz}{dθ} = zt \\ \end{array} % \begin{array}[t]{l} E = c+is \\ c = \frac{E+E¹}{2} \\ s = \frac{E-E¹}{2i} \\ e^{ikθ} + e^{-ikθ} = 2 \cos kθ \\ e^{ikθ} - e^{-ikθ} = 2i \sen kθ \\ \end{array} $ \newpage % _____ _ % |_ _| _ _ __ _ __ ___ __ _ __ _ __| | ___ % | || | | | '__| '_ ` _ \ / _` | / _` |/ _` |/ _ \ % | || |_| | | | | | | | | (_| | | (_| | (_| | __/ % |_| \__,_|_| |_| |_| |_|\__,_| \__, |\__,_|\___| % |___/ {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2019.1 \par P1 - versão pra Thais Knupp - 6/novembro/2019 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk 1) \T(Total: 2.5 pts) Calcule $$\intx {(2+3x)\sqrt{4+5x}}.$$ \bsk 2) \T(Total: 2.5 pts) Calcule $$\intx {x^3 \sqrt{1-x^2}}.$$ \bsk 3) \T(Total: 2.5 pts) Calcule $$\intx {(\sen 4x)^2(\cos 5x)^2}.$$ \bsk 4) \T(Total: 2.5 pts) Calcule $$\intx {\frac{x^3}{x^2 + 7x + 12}}.$$ \bsk \bsk Algumas definições, fórmulas e substituições: $\begin{array}[t]{l} c = \cos θ \\ s = \sen θ \\ t = \tan θ \\ z = \sec θ \\ E = e^{iθ} \\ \end{array} % \begin{array}[t]{l} c^2+s^2=1 \\ z^2=t^2+1 \\ \sqrt{1-s^2} = c \\ \sqrt{t^2+1} = z \\ \sqrt{z^2-1} = t \\ \end{array} % \begin{array}[t]{l} \frac{ds}{dθ} = c \\ \frac{dc}{dθ} = -s \\ \frac{dt}{dθ} = z^2 \\ \frac{dz}{dθ} = zt \\ \end{array} % \begin{array}[t]{l} E = c+is \\ c = \frac{E+E¹}{2} \\ s = \frac{E-E¹}{2i} \\ e^{ikθ} + e^{-ikθ} = 2 \cos kθ \\ e^{ikθ} - e^{-ikθ} = 2i \sen kθ \\ \end{array} $ \newpage % «gabarito» (to ".gabarito") % (c2m192p1p 4 "gabarito") % (c2m192p1a "gabarito") Gabarito (incompleto e não revisado): \def\d{\displaystyle} \def\t{\textstyle} \bsk % Versão da prova da Thais: % % 1) % $\begin{array}[t]{rcll} % \d\intx {(2+3x)\sqrt{4+5x}} % &=& \d\intu {\t (2+3(\frac u5 - \frac 45)) \sqrt{u} (\frac15)} % & \subst{u = 4+5x \\ x=\frac{u-4}5 \\ dx=\frac15 du} \\ % &=& \d\intu {\t (\frac15) (\frac35u + \frac{10}5 - \frac{12}5) \sqrt{u}} \\ % &=& \d\intu {\t (\frac3{25} u - \frac2{25}) \sqrt{u}} \\ % &=& \d\intu {\t \frac3{25} u^{3/2} - \frac2{25} u^{1/2}} \\ % &=& \frac3{25} \frac52 u^{5/2} - \frac2{25} \frac23 u^{3/2} \\ % &=& \frac3{10} u^{5/2} - \frac4{75} u^{3/2} \\ % &=& \frac3{10} (4+5x)^{5/2} - \frac4{75} (4+5x)^{3/2} \\ % \end{array} % $ % (find-es "ipython" "2019.2-C2-P1") % (find-es "ipython" "2019.2-C2-P1" "Questao 1") 1) $\begin{array}[t]{rcll} \d\intx {(2x+3)\sqrt{4x+5}} &=& \d\intu {\t (2(\frac u4 - \frac 54)+3) \sqrt{u} (\frac14)} & \subst{u = 4x+5 \\ x=\frac{u-5}4 \\ dx=\frac14 du} \\ &=& \d\intu {\t (\frac14) (\frac{2u}4 - \frac{10}4 - \frac{12}4) \sqrt{u}} \\ &=& \d\intu {\t (\frac{u}8 - \frac{11}8) \sqrt{u}} \\ &=& \d\intu {\t \frac1{8} u^{3/2} - \frac{11}8 u^{1/2}} \\ &=& \frac18 \frac52 u^{5/2} - \frac{11}8 \frac23 u^{3/2} \\ &=& \frac5{16} u^{5/2} - \frac{11}{12} u^{3/2} \\ &=& \frac5{16} (4x+5)^{5/2} - \frac{11}{12} (4x+5)^{3/2} \\ \end{array} $ % (xz "~/tmp/2019nov18_gab_c2_p1_1.jpg") % (xz "~/tmp/2019nov18_gab_c2_p1_2.jpg") \bsk 2) $\begin{array}[t]{lll} \intx {x^3 \sqrt{1-x^2}} & \subst{s=x} \\ = \;\; \ints {s^3 \sqrt{1-s^2}} & \subst{s=\senθ \\ ds = \cosθdθ \\ \sqrt{1-s^2} = \cosθ} \\ = \;\; \ints {(\senθ)^3 \cosθ\,\cosθ} \\ = \;\; \ints {(\senθ)^2 (\cosθ)^2 \senθ} & \subst{\cosθ=c \\ (\senθ)^2=1-c^2 \\ \senθdθ=(-1)dc} \\ = \;\; \intc {(1-c^2)c^2(-1)} \\ = \;\; \intc {c^4-c^2} \\ = \;\; \frac15 c^5 - \frac13 c^3 \\ = \;\; \frac15 {\sqrt{1-s^2}}^5 - \frac13 {\sqrt{1-s^2}}^3 \\ = \;\; \frac15 {\sqrt{1-x^2}}^5 - \frac13 {\sqrt{1-x^2}}^3 \\ \end{array} $ \bsk 3) $\def\E#1 {E^{#1}} \begin{array}[t]{lll} (\sen 5θ)^2 (\cos 6θ)^2 \\ = \;\; \left(\frac{\E5 - \E-5 }{2i}\right)^2 \left(\frac{\E6 + \E-6 }{2}\right)^2 \\ = \;\; -\frac1{16}(\E10 - 2 +\E-10 )(\E12 + 2 +\E-12 ) \\ = \;\; -\frac1{16}\pmat{ (\E10 - 2 +\E-10 ) \E12 + \\ (\E10 - 2 +\E-10 ) · 2 + \\ (\E10 - 2 +\E-10 ) \E-12 \\ } \\ = \;\; -\frac1{16}\pmat{ \E22 - 2\E12 +\E2 + \\ 2\E10 - 4 +2\E-10 + \\ \E-2 - 2\E-12 +\E-22 \\ } \\ = \;\; -\frac1{16}( (\E22 + \E-22 ) -2 (\E12 + \E-12 ) +2 (\E10 + \E-10 ) + (\E2 + \E-2 ) - 4 ) \\ = \;\; -\frac1{16}( 2\cos22θ -4\cos12θ +4\cos10θ +2\cos2θ - 4 ) \\ = \;\; -\frac18 \cos22θ +\frac14 \cos12θ -\frac14 \cos10θ -\frac18 \cos2θ \frac14 \\ \end{array} $ $$\begin{array}[t]{rcl} \intx {(\sen 5x)^2 (\cos 6x)^2} &=& \intx {-\frac18 \cos22x +\frac14 \cos12x -\frac14 \cos10x -\frac18 \cos2x +\frac14} \\ &=& -\frac1{8·22} \sen22x +\frac1{4·12} \sen12x -\frac1{4·10} \sen10x -\frac1{8·2} \sen2x +\frac14x \\ \end{array} $$ \newpage % (find-es "ipython" "2019.2-C2-P1") 4) $\begin{array}[t]{rcl} \d\intx {\frac{x^3}{x^2 + 7x + 12}} &=& \d\intx {x - 7 + \frac{37x + 84}{x^2 + 7x + 12}} \\ &=& \d\intx {x - 7 + \frac{37x + 84}{(x+3)(x+4)}} \\ &=& \d\intx {x - 7 - \frac{27}{x+3} + \frac{64}{x+4}} \\ &=& \d\frac{x^2}{2} - 7x + 27\ln|x+3| + 64\ln|x+4| \\ \end{array} $ % 3 % x % ------------- % 2 % x + 7*x + 12 % % 37*x + 84 % x - 7 + --------------- % (x + 3)*(x + 4) % % 64 27 % x - 7 + ----- - ----- % x + 4 x + 3 % «gabarito-maxima» (to ".gabarito-maxima") % (c2m192p1p 4 "gabarito-maxima") % (c2m192p1a "gabarito-maxima") % (find-es "maxima" "trig-ids") % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^% ") % % * (eepitch-maxima) % * (eepitch-kill) % * (eepitch-maxima) % load("/usr/share/emacs/site-lisp/maxima/emaxima.lisp")$ % display2d:'emaxima$ % ** % ** Questao 1: % ** % f : (2*x + 3) * sqrt(4*x + 5); % F : integrate (f, x); % r : (4*x + 5)^(3/2); % F / r; % expand(F / r); % ratsimp(expand(F / r)); % F2 : ratsimp(expand(F / r)) * r; % ratsimp(F2 - F); % ** % ** Questao 2: % ** % f : x^3 * sqrt(1 - x^2); % F : integrate (f, x); % r : (1 - x^2)^(3/2); % F2 : ratsimp(expand(F / r)) * r; % ratsimp(F2 - F); % ** % ** Questao 3: % ** % f : sin(5*x)^2 * cos(6*x)^2; % g : expand(demoivre(expand(exponentialize(f)))); % G : integrate(g, x); % ** % ** Questao 4: % ** % f : x^3 / (x^2 + 9*x + 20); % g : partfrac(f, x); % G : integrate(g, x); \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "c2p1" % End: