Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2019-2-C2-VS.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019-2-C2-VS.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019-2-C2-VS.pdf")) % (defun e () (interactive) (find-LATEX "2019-2-C2-VS.tex")) % (defun u () (interactive) (find-latex-upload-links "2019-2-C2-VS")) % (find-pdf-page "~/LATEX/2019-2-C2-VS.pdf") % (find-sh0 "cp -v ~/LATEX/2019-2-C2-VS.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019-2-C2-VS.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019-2-C2-VS.pdf % file:///tmp/2019-2-C2-VS.pdf % file:///tmp/pen/2019-2-C2-VS.pdf % http://angg.twu.net/LATEX/2019-2-C2-VS.pdf % (find-LATEX "2019.mk") \documentclass[oneside]{book} \usepackage[colorlinks,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2019.2 - Eduardo Ochs \par VS - 19/dez/2019 \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar % (find-TH "2019.1-C2" "provas-antigas") % (find-pdf-page "~/LATEX/2017-1-C2-P1.pdf") % (find-pdf-page "~/LATEX/2017-1-C2-P2.pdf") % (find-pdf-page "~/LATEX/2017-1-C2-VS.pdf") % (find-pdf-page "~/LATEX/2017-2-C2-P1.pdf") % (find-pdf-page "~/LATEX/2017-2-C2-P2.pdf") % (find-pdf-page "~/LATEX/2017-2-C2-VS.pdf") % (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf") % (find-pdf-page "~/LATEX/2018-2-C2-P1fake.pdf") % (find-pdf-page "~/LATEX/2018-2-C2-P2.pdf") % (find-pdf-page "~/LATEX/2018-2-C2-VS.pdf") % (find-pdf-page "~/LATEX/2019-1-C2-P1.pdf") % (find-pdf-page "~/LATEX/2019-1-C2-P2.pdf") % (find-pdf-page "~/LATEX/2019-1-C2-VR.pdf") % (find-pdf-page "~/LATEX/2019-1-C2-VS.pdf") 1) \T(Total: 2.0 pts) Seja $(*)$ esta EDO: $y^3\,dx = e^{2x}\,dx$. a) \B(1.0 pts) Encontre a solução geral de $(*)$. b) \B(1.0 pts) Teste a sua resposta. \bsk \bsk \bsk 2) \T(Total: 3.0 pts) Calcule $$\intx {\frac{x^2}{x^2 + 3x - 10}}$$ % e teste a sua resposta. \bsk \bsk \bsk 3) \T(Total: 5.0 pts) Calcule $$\intx {x^3 \sqrt{1-x^2}^3}$$ % e teste a sua resposta. % Dica: $\sen \arccos c = \sqrt{1-c^2}$. \bsk \bsk \bsk \bsk \bsk \bsk \bsk \bsk \bsk \bsk \bsk \bsk \bsk Algumas definições, fórmulas e substituições: $\begin{array}[t]{l} c = \cos θ \\ s = \sen θ \\ t = \tan θ \\ z = \sec θ \\ E = e^{iθ} \\ \end{array} % \begin{array}[t]{l} c^2+s^2=1 \\ z^2=t^2+1 \\ \sqrt{1-s^2} = c \\ \sqrt{t^2+1} = z \\ \sqrt{z^2-1} = t \\ \end{array} % \begin{array}[t]{l} \frac{ds}{dθ} = c \\ \frac{dc}{dθ} = -s \\ \frac{dt}{dθ} = z^2 \\ \frac{dz}{dθ} = zt \\ \end{array} % \begin{array}[t]{l} E = c+is \\ c = \frac{E+E¹}{2} \\ s = \frac{E-E¹}{2i} \\ e^{ikθ} + e^{-ikθ} = 2 \cos kθ \\ e^{ikθ} - e^{-ikθ} = 2i \sen kθ \\ \end{array} $ % Baseada em: % (find-angg "LATEX/2018-2-C2-P1fake.tex") \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "NONE" % End: