Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file: (find-LATEX "2019J-ops-classifier.tex") % See: (find-LATEX "2020J-ops-new.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019J-ops-classifier.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019J-ops-classifier.pdf")) % (defun e () (interactive) (find-LATEX "2019J-ops-classifier.tex")) % (defun u () (interactive) (find-latex-upload-links "2019J-ops-classifier")) % (find-pdf-page "~/LATEX/2019J-ops-classifier.pdf") % (find-sh0 "cp -v ~/LATEX/2019J-ops-classifier.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019J-ops-classifier.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019J-ops-classifier.pdf % file:///tmp/2019J-ops-classifier.pdf % file:///tmp/pen/2019J-ops-classifier.pdf % http://angg.twu.net/LATEX/2019J-ops-classifier.pdf % (find-LATEX "2019.mk") \directlua{tf_push("2019J-ops-classifier.tex")} % «.classifier» (to "classifier") % «.Omega-and-j» (to "Omega-and-j") % «.pullbacks-formally» (to "pullbacks-formally") % «.NTs-B-1» (to "NTs-B-1") % «.NTs-B-C» (to "NTs-B-C") % «.NTs-1-Om» (to "NTs-1-Om") % «.NTs-C-Om» (to "NTs-C-Om") % «.NTs-Om-Om» (to "NTs-Om-Om") % «.fig:five-sqconds» (to "fig:five-sqconds") % «.pullbacks-visually» (to "pullbacks-visually") % ____ _ _ __ _ % / ___| | __ _ ___ ___(_)/ _(_) ___ _ __ % | | | |/ _` / __/ __| | |_| |/ _ \ '__| % | |___| | (_| \__ \__ \ | _| | __/ | % \____|_|\__,_|___/___/_|_| |_|\___|_| % % «classifier» (to ".classifier") % (jonp 31 "classifier") % (joo "classifier") \subsection{The classifier} Take a map $t:1→C$ in a topos. Choose a map $g:B→C$ and form the pullback with $t$, obtaining maps $f:A→B$ and $h:A→1$. We can prove that any map from the terminal is monic, and this implies that $t$ is monic, and so, by a property of pullbacks, $f$ is a monic too; and $h$ is the unique map from $A$ to the terminal. In a diagram: % %D diagram cla-0 %D 2Dx 100 +25 +40 +25 +40 +25 %D 2D 100 A1 B0 B1 C0 C1 %D 2D %D 2D +25 A2 A3 B2 B3 C2 C3 %D 2D %D ren A1 A2 A3 ==> 1 B C %D ren B0 B1 B2 B3 ==> A 1 B C %D ren C0 C1 C2 C3 ==> A 1 B C %D %D (( A1 A3 -> .plabel= r t %D A2 A3 -> .plabel= b g %D %D # A1 B2 midpoint .TeX= ⇒ place %D A1 B2 harrownodes nil 20 nil => %D %D B0 B1 -> .plabel= a h %D B0 B2 -> .plabel= l f %D B1 B3 -> .plabel= r t %D B2 B3 -> .plabel= b g %D B0 relplace 7 7 \pbsymbol{7} %D %D # B1 C2 midpoint .TeX= ⇒ place %D B1 C2 harrownodes nil 20 nil => %D %D C0 C1 -> .plabel= a ! %D C0 C2 >-> .plabel= l f %D C1 C3 >-> .plabel= r t %D C2 C3 -> .plabel= b g %D C0 relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D $$\pu \diag{cla-0} $$ We can consider that the operation ``form the pullback with $t:1 \monicto C$'' receives a map $g: B→C$ and returns a monic $f: A \monicto B$ ``completing the pullback''. Every topos has a classifier object $Ω$ and a ``true'' map $⊤:1 \monicto Ω$ with the property that for every monic $f: A \monicto B$ there is a unique map $χ:B→Ω$ ``completing the pullback''. In a diagram: % %D diagram cla-1 %D 2Dx 100 +25 +40 +25 +45 +25 +40 +25 %D 2D 100 A0 A1 B0 B1 C0 C1 D0 D1 %D 2D %D 2D +25 A2 A3 B2 B3 C2 C3 D2 D3 %D 2D %D ren A0 A1 A2 A3 ==> A 1 B Ω %D ren B0 B1 B2 B3 ==> A 1 B Ω %D ren C0 C1 C2 C3 ==> A 1 B Ω %D ren D0 D1 D2 D3 ==> A' 1 B Ω %D %D (( A0 A2 >-> .plabel= l f %D A1 A3 >-> .plabel= r ⊤ %D %D A1 B2 harrownodes nil 20 nil => %D %D B0 B1 -> .plabel= a ! %D B0 B2 >-> .plabel= l f %D B1 B3 >-> .plabel= r ⊤ %D B2 B3 -> .plabel= b χ %D B0 relplace 7 7 \pbsymbol{7} %D %D %D C1 C3 -> .plabel= r ⊤ %D C2 C3 -> .plabel= b χ %D %D C1 D2 harrownodes nil 20 nil => %D %D D0 D1 -> .plabel= a ! %D D0 D2 >-> .plabel= l f' %D D1 D3 >-> .plabel= r ⊤ %D D2 D3 -> .plabel= b χ %D D0 relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D $$\pu \diag{cla-1} $$ These two operations, $f↦χ$ and $χ↦f'$, are not exactly inverse to one another: if we apply them in the order $f↦χ↦f'$ we may obtain an $f'$ that is isomorphic to $f$ in the sense that there is an iso $A ↔ A'$ such that the triangle below commutes: % %D diagram cla-triangle %D 2Dx 100 +15 +15 %D 2D 100 A A' %D 2D %D 2D +25 O %D 2D %D ren O ==> Ω %D %D (( A O >-> .plabel= l f %D A' O >-> .plabel= r f' %D A A' <-> %D )) %D enddiagram %D $$\pu \diag{cla-triangle} $$ This is explained in \cite[p.139]{LambekScott} % (find-lambekscottpage (+ 8 139) "subobject clasifier") % ___ _ _ % / _ \ _ __ ___ __ _ _ __ __| | (_) % | | | | '_ ` _ \ / _` | '_ \ / _` | | | % | |_| | | | | | | | (_| | | | | (_| | | | % \___/|_| |_| |_| \__,_|_| |_|\__,_| _/ | % |__/ % % «Omega-and-j» (to ".Omega-and-j") % (jonp 31 "Omega-and-j") % (joe "Omega-and-j") \subsection{The classifier and the local operator} We know that every category $\Set^{(P,A)}$ is a topos, but how do we calculate and visualize its classifier object $Ω$ and the map $⊤:1→Ω$? And what is the local operator $j:Ω→Ω$ ``associated to'' our J-operator $J:\Sub(1)→\Sub(1)$? \msk %D diagram Omega-and-j %D 2Dx 100 +30 +30 %D 2D 100 B --> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren Om1 Om2 ==> Ω Ω %D %D (( B 1 -> .plabel= a ! %D B C >-> .plabel= l i %D 1 Om1 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D B relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D %D diagram Omega-and-j-2 %D 2Dx 100 +30 +30 %D 2D 100 B ----------> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren Om1 Om2 B ==> Ω Ω \ovl{B} %D %D (( B 1 -> .plabel= a ! %D B C >-> .plabel= l \ovl{i} %D 1 Om2 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D B relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D \pu % TODO: Explain the prequisites for this section. Explain that I % learned this from Bell but McLarty is more readable. % % (find-books "__cats/__cats.el" "mclarty") % (find-books "__cats/__cats.el" "bell") We need to start by understanding two pullbacks. Remember that: \begin{itemize} \item $⊤:1→Ω$ has a property can be expressed in two equivalent ways: 1) for each object $C$ we have $\Sub(C) ≅ \Hom(C,Ω)$, and 2) for every monic $B \monicto C$ there is exactly one map $χ_B:C→Ω$ making the square below --- ``the Q-shaped diagram'' --- a pullback: % $$\diag{Omega-and-j} $$ \item a local operator (also called a ``modality'', a ``Lawvere-Tierney topology'', or a ``topology'') is a map $j:Ω→Ω$ obeying $j∘⊤=⊤$, $j∘j=j$ and $j∘∧=∧∘(j×j)$, % (find-books "__cats/__cats.el" "mclarty") % (find-mclartypage (+ 4 196) "21. Topologies") \item a local operator $j$ induces a $j$-closure operator --- see chapter 21 of \cite{McLarty} or chapter 5 of \cite{BellLST} ---, and this $j$-closure operator can be seen as a map from each $\Sub(C)$ to itself. The closure of a subobject $i: B \monicto C$ is the subobject $\ovl 1 : \ovl B \monicto C$ obtained by pullback in the diagram below (``the rectangle''): % $$\diag{Omega-and-j-2} $$ \end{itemize} We will write the restriction of a local operator $j$ to $\Sub(1)$ as $\sfJ(j)$ and we will say that a $j$ is ``associated to'' a $J$ when $\sfJ(j) = J$. \msk There are two ways to ``understand'' the pullbacks above: the first one is by doing the calculations formally and checking that everything works, the second one is by checking some particular cases and developing visual intuition from that. % In the next sections I will refer to the two diagrams above as ``the % Q-shaped diagram'' and ``the rectangle''. \newpage % ____ ____ __ _ _ % | _ \| __ ) ___ / _| ___ _ __ _ __ ___ __ _| | |_ _ % | |_) | _ \/ __| | |_ / _ \| '__| '_ ` _ \ / _` | | | | | | % | __/| |_) \__ \ | _| (_) | | | | | | | | (_| | | | |_| | % |_| |____/|___/ |_| \___/|_| |_| |_| |_|\__,_|_|_|\__, | % |___/ % % «pullbacks-formally» (to ".pullbacks-formally") % (jonp 32 "pullbacks-formally") % (joo "pullbacks-formally") \subsection{Understanding the pullbacks formally} \label{pullbacks-formally} The calculations are routine if we know the right language, and if we suppose --- without loss of generality --- that the monix $i:B\monicto C$ is a ``canonical subobject'' in the sense that each $B(p)⊆C(p)$ and each function $B(p\ton!q):B(p)→B(q)$ is a restriction of the corresponding function $C(p\ton!q):C(p)→C(q)$. We need some definitions: % $$\begin{array}{rcl} 1(p) &=& \{*\} \\ 1(p\ton!q)(*) &=& * \\ Ω(p) &=& \Sub(↓p) \\ Ω(p\ton!q)(R) &=& R∧↓q \\% % [5pt] % ⊤(p)(*) &=& ↓p \\ j(p)(R) &=& R^*∧↓p \\ χ_B(p)(R) &=& \setofst{r∈↓p}{C(p\ton!r)(c)∈B(r)} \\ \end{array} $$ The first step is to check the five naturality conditions in the next page --- we leave the rest to the reader. The main exercise is to check that if the monic $i:B\monicto C$ is $i:P\monicto 1$ for a truth-value $P$ then its closure is $i:\ovl P\monicto 1$ with $\ovl P$ being exactly $J(P)$, i.e., $P^*$. \newpage % «NTs-B-1» (to ".NTs-B-1") % %D diagram B->1 %D 2Dx 100 +30 +40 +35 +45 %D 2D 100 p Bp ---> 1p b |---> *p1 %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v *p2 %D 2D +8 q Bq --> 1q rb |--> *p3 %D 2D %D 2D +20 B ----> 1 %D 2D %D ren Bp Bq 1p 1q ==> B(p) B(q) \{*\} \{*\} %D ren b rb *p1 *p2 *p3 ==> b B(p\ton!q)(b) * * * %D %D (( p q -> .plabel= l ! %D Bp 1p -> .plabel= a ! %D Bp Bq -> .plabel= l B(p\ton!q) %D 1p 1q -> .plabel= r ! %D Bq 1q -> .plabel= a ! %D B 1 -> %D %D b *p1 |-> *p1 *p2 |-> %D b rb |-> rb *p3 |-> %D )) %D enddiagram % % «NTs-B-C» (to ".NTs-B-C") % %D diagram B->C %D 2Dx 100 +30 +40 +35 +55 %D 2D 100 p Bp ---> Cp b |---> cb %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rcb %D 2D +8 q Bq ---> Cq rb |--> crb %D 2D %D 2D +20 B ----> C %D 2D %D ren Bp Bq Cp Cq ==> B(p) B(q) C(p) C(q) %D ren b cb rcb rb crb ==> b b C(p\ton!q)(b) B(p\ton!q)(b) B(p\ton!q)(b) %D %D (( p q -> .plabel= l ! %D Bp Cp `-> .plabel= a ip %D Bp Bq -> .plabel= l B(p\ton!q) %D Cp Cq -> .plabel= r C(p\ton!q) %D Bq Cq `-> .plabel= a iq %D B C `-> .plabel= a i %D %D b cb |-> cb rcb |-> %D b rb |-> rb crb |-> %D )) %D enddiagram % % «NTs-1-Om» (to ".NTs-1-Om") % %D diagram 1->Om %D 2Dx 100 +30 +40 +35 +45 %D 2D 100 p 1p ---> Omp * |---> t* %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rt* %D 2D +8 q 1q --> Omq r* |--> tr* %D 2D %D 2D +20 1 ----> Om %D 2D %D ren 1p 1q Omp Omq ==> \{*\} \{*\} \Sub(↓p) \Sub(↓q) %D ren * t* rt* r* tr* ==> * ↓p ↓p∧↓q * ↓q %D ren Om ==> Ω %D %D (( p q -> .plabel= l ! %D 1p Omp -> .plabel= a ⊤p %D 1p 1q -> .plabel= l ! %D Omp Omq -> .plabel= r ! %D 1q Omq -> .plabel= a ⊤q %D 1 Om -> .plabel= a ⊤ %D %D * t* |-> t* rt* |-> %D * r* |-> r* tr* |-> %D )) %D enddiagram % % «NTs-C-Om» (to ".NTs-C-Om") % %D diagram C->Om %D 2Dx 100 +30 +40 +45 +95 %D 2D 100 p Cp ---> Omp c |---> chic %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rchic %D 2D +8 q Cq ---> Omq rc |--> chirc %D 2D %D 2D +20 C ----> Om %D 2D %D ren Cp Omp ==> C(p) \Sub(↓p) %D ren Cq Omq ==> C(q) \Sub(↓q) %D ren C Om ==> C Ω %D %D ren c chic ==> c \setofst{r∈↓p}{C(p\ton!r)(c)∈B(r)} %D ren rchic ==> \setofst{r∈↓p}{C(p\ton!r)(c)∈B(r)}∧↓q %D ren rc chirc ==> C(p\ton!q)(c) \setofst{s∈↓q}{C(q\ton!s)(C(p\ton!q)(c))∈B(s)} %D %D (( p q -> .plabel= l ! %D Cp Omp -> .plabel= a χ_B(p) %D Cp Cq -> .plabel= l C(p\ton!q) %D Omp Omq -> .plabel= r Ω(p\ton!q) %D Cq Omq -> .plabel= a χ_B(q) %D C Om -> .plabel= a χ_B %D %D c chic |-> chic rchic |-> %D c rc |-> rc chirc |-> %D )) %D enddiagram % % «NTs-Om-Om» (to ".NTs-Om-Om") % %D diagram Om->Om %D 2Dx 100 +30 +40 +35 +45 %D 2D 100 p Sp1 --> Sp2 R |---> jR %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rjR %D 2D +8 q Sq1 --> Sq2 rR |--> jrR %D 2D %D 2D +20 Om1 --> Om2 %D 2D %D ren Sp1 Sp2 ==> \Sub(↓p) \Sub(↓p) %D ren Sq1 Sq2 ==> \Sub(↓q) \Sub(↓q) %D ren Om1 Om2 ==> Ω Ω %D ren R jR rjR ==> R R^*∧↓p (R^*∧↓p)∧↓q %D ren rR jrR ==> R∧↓q (R∧↓q)^*∧↓q %D %D (( p q -> .plabel= l ! %D Sp1 Sp2 -> .plabel= a j(p) %D Sp1 Sq1 -> .plabel= l Ω(p\ton!q) %D Sp2 Sq2 -> .plabel= r Ω(p\ton!q) %D Sq1 Sq2 -> .plabel= a j(q) %D Om1 Om2 -> .plabel= a j %D %D R jR |-> jR rjR |-> %D R rR |-> rR jrR |-> %D )) %D enddiagram % % «fig:five-sqconds» (to ".fig:five-sqconds") % (jonp 34 "fig:five-sqconds") % (joo "fig:five-sqconds") % \pu \begin{figure}[h!] \centering $\pu \scalebox{0.9}{$ \begin{array}{l} \diag{B->1} \\ \\ \diag{B->C} \\ \\ \diag{1->Om} \\ \\ \diag{C->Om} \\ \\ \diag{Om->Om} \\ \end{array} $} $ \caption{The five square conditions in the Q-shaped diagram} \label{fig:five-sqconds} \end{figure} \newpage % ____ ____ _ _ _ % | _ \| __ ) ___ __ _(_)___ _ _ __ _| | |_ _ % | |_) | _ \/ __| \ \ / / / __| | | |/ _` | | | | | | % | __/| |_) \__ \ \ V /| \__ \ |_| | (_| | | | |_| | % |_| |____/|___/ \_/ |_|___/\__,_|\__,_|_|_|\__, | % |___/ % % «pullbacks-visually» (to ".pullbacks-visually") % (jonp 35 "pullbacks-visually") % (joo "pullbacks-visually") \subsection{Understanding the pullbacks visually} \label{pullbacks-visually} The best way to develop visual intuition about the $Ω$ and the $j$ associated to a $((P,A),Q)$ is to try to work out the details in some particular cases --- I've chosen two, presented as execises below. They both use the $((P,A),Q)$, the $Ω$ and the $j$ from Figure \ref{fig:classifier-big}. \msk {\bf Exercise 1.} In the case % %D diagram Omega-and-j-exercise-1-Q %D 2Dx 100 +30 +30 %D 2D 100 B --> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren B C ==> 11 33 %D ren Om1 Om2 ==> Ω Ω %D %D (( B 1 -> .plabel= a ! %D B C >-> .plabel= l i %D 1 Om1 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D B relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D %D diagram Omega-and-j-exercise-1-rect %D 2Dx 100 +30 +30 %D 2D 100 B ----------> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren B C ==> \ovl{11} 33 %D ren Om1 Om2 ==> Ω Ω %D %D (( B 1 -> .plabel= a ! %D B C >-> .plabel= l \ovl{i} %D 1 Om2 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D B relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D \pu $$ \diag{Omega-and-j-exercise-1-Q} \qquad \diag{Omega-and-j-exercise-1-rect} $$ % what is $χ_B$? And what is $\ovl{11}$? \msk {\bf Exercise 2.} In the case % %D diagram Omega-and-j-exercise-2-Q %D 2Dx 100 +30 +30 %D 2D 100 B --> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren B C ==> 11 23 %D ren Om1 Om2 ==> Ω Ω %D %D (( B 1 -> .plabel= a ! %D B C >-> .plabel= l i %D 1 Om1 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D B relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D %D diagram Omega-and-j-exercise-2-rect %D 2Dx 100 +30 +30 %D 2D 100 B ----------> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren B C ==> \ovl{11} 23 %D ren Om1 Om2 ==> Ω Ω %D %D (( B 1 -> .plabel= a ! %D B C >-> .plabel= l \ovl{i} %D 1 Om2 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D B relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D \pu $$ \diag{Omega-and-j-exercise-2-Q} \qquad \diag{Omega-and-j-exercise-2-rect} $$ % what is $χ_B$? And what is $\ovl{11}$? % (elep 6 "elephant-A2.1.3") % (ele "elephant-A2.1.3") % (elep 7 "elephant-A4.1.4") % (ele "elephant-A4.1.4") % (elep 8 "elephant-A4.1.5") % (ele "elephant-A4.1.5") % (ph1p 25 "topologies-as-partial-orders") % (ph1 "topologies-as-partial-orders") \directlua{tf_pop()} % Local Variables: % coding: utf-8-unix % ee-tla: "joo" % End: