Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2019jacobs.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019jacobs.tex")) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019jacobs.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2019jacobs; makeindex 2019jacobs")) % (defun e () (interactive) (find-LATEX "2019jacobs.tex")) % (defun u () (interactive) (find-latex-upload-links "2019jacobs")) % (find-xpdfpage "~/LATEX/2019jacobs.pdf") % (find-sh0 "cp -v ~/LATEX/2019jacobs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019jacobs.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019jacobs.pdf % file:///tmp/2019jacobs.pdf % file:///tmp/pen/2019jacobs.pdf % http://angg.twu.net/LATEX/2019jacobs.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % (find-books "__cats/__cats.el" "jacobs") % (find-jacobspage (+ 20 219) "4. First order predicate logic") % (find-jacobspage (+ 20 221) "4.1. Signatures, connectives and quantifiers") % (find-jacobspage (+ 20 232) "4.2. Fibrations for first order predicate logic") % (find-jacobspage (+ 19 610) "10.4.2." "comprehension category") % (find-jacobspage (+ 19 614) "some important examples of (full) comprehension") % (find-jacobspage (+ 19 616) "10.4.7." "comprehension category with unit") \def\AAA{AAA} \def\BBB{BBB} % %D diagram triangleidentityadjunctiondiagram1 %D 2Dx 100 +25 %D 2D 100 A1 A2 %D 2D +25 A3 A4 %D 2D %D %D %D (( %D ren A1 A2 A3 A4 ==> \AAA \BBB \AAA \BBB %D %D # 1cells %D %D %D A1 A2 -> .plabel= a G %D A1 A3 = %D A2 A4 = %D A3 A4 -> .plabel= b G %D A2 A3 -> .plabel= m F %D %D %D %D # 1cells %D %D %D %D # 2cells %D %D A2 A3 harrownodes 10 18 nil <= .slide= -10pt .plabel= a \eta %D A2 A3 harrownodes -5 18 nil <= .slide= 10pt .plabel= a \varepsilon %D %D %D )) %D enddiagram %D \pu \begin{equation*} \diag{triangleidentityadjunctiondiagram1} \end{equation*} % %D diagram identityofmonad %D 2Dx 100 +25 +25 %D 2D 100 T1 T2 T3 %D 2D +25 T4 %D 2D %D %D %D (( %D T1 .tex= T %D T2 .tex= T %D T3 .tex= T %D T4 .tex= T %D %D # 1cells %D %D T1 T2 -> .plabel= a \id_T\ast\eta %D T3 T2 -> .plabel= a \eta\ast\id_T %D T2 T4 -> .plabel= m \mu %D T1 T4 = %D T3 T4 = %D %D %D # 2cells %D %D )) %D enddiagram %D \pu % %D diagram associativityofmonad %D 2Dx 100 +25 %D 2D 100 T1 T2 %D 2D +25 T4 T3 %D 2D %D %D %D (( %D T1 .tex= T^3 %D T2 .tex= T^2 %D T3 .tex= T^2 %D T4 .tex= T %D %D # 1cells %D %D T1 T2 -> .plabel= a \mu\ast\id_T %D T1 T4 -> .plabel= a \id_T\ast\mu %D T4 T3 -> .plabel= b \mu %D T2 T3 -> .plabel= r c %D %D %D # 2cells %D %D )) %D enddiagram %D \pu \begin{equation*} \diag{identityofmonad}\quad \diag{associativityofmonad} \end{equation*} % %D diagram identityofmonad %D 2Dx 100 +25 +25 %D 2D 100 T1 T2 T3 %D 2D +25 T4 %D 2D %D %D %D (( %D T1 .tex= T %D T2 .tex= T %D T3 .tex= T %D T4 .tex= T %D %D # 1cells %D %D T1 T2 -> .plabel= a \id_T\ast\eta %D T3 T2 -> .plabel= a \eta\ast\id_T %D T2 T4 -> .plabel= m \mu %D T1 T4 = %D T3 T4 = %D %D %D # 2cells %D %D )) %D enddiagram %D \pu % %D diagram associativityofmonad %D 2Dx 100 +25 %D 2D 100 T1 T2 %D 2D +25 T4 T3 %D 2D %D %D %D (( %D T1 .tex= T^3 %D T2 .tex= T^2 %D T3 .tex= T^2 %D T4 .tex= T %D %D # 1cells %D %D T1 T2 -> .plabel= a \mu\ast\id_T %D T1 T4 -> .plabel= a \id_T\ast\mu %D T4 T3 -> .plabel= l \mu %D T2 T3 -> .plabel= r \mu %D %D %D # 2cells %D %D )) %D enddiagram %D \pu \begin{equation*} \diag{identityofmonad}\quad \diag{associativityofmonad} \end{equation*} % %D diagram identityofmonad %D 2Dx 100 +25 +25 %D 2D 100 T1 T2 T3 %D 2D +25 T4 %D 2D %D %D %D (( %D T1 .tex= T %D T2 .tex= T^2 %D T3 .tex= T %D T4 .tex= T %D %D # 1cells %D %D T1 T2 -> .plabel= a \id_T\ast\eta %D T3 T2 -> .plabel= a \eta\ast\id_T %D T2 T4 -> .plabel= m \mu %D T1 T4 = %D T3 T4 = %D %D %D # 2cells %D %D )) %D enddiagram %D \pu % %D diagram associativityofmonad %D 2Dx 100 +25 %D 2D 100 T1 T2 %D 2D +25 T3 T4 %D 2D %D %D %D (( %D T1 .tex= T^3 %D T2 .tex= T^2 %D T3 .tex= T^2 %D T4 .tex= T %D %D # 1cells %D %D T1 T2 -> .plabel= a \mu\ast\id_T %D T1 T3 -> .plabel= a \id_T\ast\mu %D T3 T4 -> .plabel= l \mu %D T2 T4 -> .plabel= r \mu %D %D %D # 2cells %D %D )) %D enddiagram %D %D ren T1 T2 T2 T4 ==> T^3 T^2 T^2 T \pu \begin{equation*} \diag{identityofmonad}\quad \diag{associativityofmonad} \end{equation*} \end{document} % Local Variables: % coding: utf-8-unix % End: