Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2019kan-extensions.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019kan-extensions.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019kan-extensions.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2019kan-extensions.pdf")) % (defun e () (interactive) (find-LATEX "2019kan-extensions.tex")) % (defun u () (interactive) (find-latex-upload-links "2019kan-extensions")) % (find-pdf-page "~/LATEX/2019kan-extensions.pdf") % (find-sh0 "cp -v ~/LATEX/2019kan-extensions.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019kan-extensions.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019kan-extensions.pdf % file:///tmp/2019kan-extensions.pdf % file:///tmp/pen/2019kan-extensions.pdf % http://angg.twu.net/LATEX/2019kan-extensions.pdf % (find-LATEX "2019.mk") \documentclass[oneside]{book} \usepackage[colorlinks,urlcolor=DarkRed,citecolor=brown]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-u.bib} % (find-LATEX "catsem-u.bib") % \usepackage[a4paper]{geometry} % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu \def\Lan{\text{Lan}} \def\Ran{\text{Ran}} \def\sfC{\mathsf{C}} \def\sfD{\mathsf{D}} \def\sfE{\mathsf{E}} % (find-books "__cats/__cats.el" "riehl") % (find-riehlccpage (+ 18 44) "1.7. The 2-category of categories") % (find-riehlcctext (+ 18 44) "1.7. The 2-category of categories") % (find-riehlccpage (+ 18 45) "Lemma 1.7.4 (horizontal composition)") % (find-riehlcctext (+ 18 45) "Lemma 1.7.4 (horizontal composition)") % (find-riehlccpage (+ 18 46) "whiskering") % (find-riehlcctext (+ 18 46) "whiskering") % (find-riehlccpage (+ 18 136) "4.5. Adjunctions, limits, and colimits") % (find-riehlccpage (+ 18 189) "6. All Concepts are Kan Extensions") % (find-riehlccpage (+ 18 190) "6.1. Kan extensions") % (find-riehlccpage (+ 18 190) "Dually, a right Kan") % (find-riehlcctext (+ 18 190) "Dually, a right Kan") In \cite{Riehl}, sec.6.1, right Kan extensions are explained using the two diagrams below. The notation of cells is explained in sec.1.7 of the book, and modulo the types --- that can be inferred from the diagrams --- a right Kan extension of $K$ along $K$ is a pair $(\Ran_K F,ε)$ such that for all $(G,α)$ there is a unique $β$ making everything commute. % %D diagram riehl-ran-1 %D 2Dx 100 +40 +40 %D 2D 100 A0 ---> A2 %D 2D -> -> %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \mathsf{C} \mathsf{D} \mathsf{E} %D %D (( A0 A2 -> .plabel= a F %D A0 A1 -> .plabel= l K %D A1 A2 -> .plabel= r G .curve= _25pt %D A1 A2 varrownodes nil 17 nil <= .slide= -5pt .plabel= r δ %D )) %D enddiagram %D %D diagram riehl-ran-factored %D 2Dx 100 +40 +40 %D 2D 100 A0 ---> A2 %D 2D -> -> ^ %D 2D +40 A1 -/ %D 2D %D ren A0 A1 A2 ==> \mathsf{C} \mathsf{D} \mathsf{E} %D %D (( A0 A2 -> .plabel= a F %D A0 A1 -> .plabel= l K %D A1 A2 -> .plabel= m \Ran_KF %D A1 A2 -> .plabel= r G .curve= _25pt %D A0 A2 varrownodes 35 17 nil <= .plabel= l ε %D A1 A2 varrownodes 20 17 nil <= .slide= 5pt .plabel= r β %D )) %D enddiagram %D $$\pu \diag{riehl-ran-1} \quad \diag{riehl-ran-factored} $$ If we specialize $\sfE$ to $\Set$ and do some renamings, the diagram becomes: % %D diagram my-ran-1 %D 2Dx 100 +40 +40 %D 2D 100 A0 A2 %D 2D %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \catA \catB \Set %D %D (( A0 A2 -> .plabel= a D %D A0 A1 -> .plabel= l f %D A1 A2 -> .plabel= r C .curve= _25pt %D A1 A2 varrownodes nil 17 nil <= .slide= -5pt .plabel= r α %D )) %D enddiagram %D %D diagram my-ran-2 %D 2Dx 100 +40 +40 %D 2D 100 A0 A2 %D 2D %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \catA \catB \Set %D %D (( A0 A2 -> .plabel= a D %D A0 A1 -> .plabel= l f %D A1 A2 -> .plabel= m \Ran_fD %D A1 A2 -> .plabel= r C .curve= _25pt %D A0 A2 varrownodes 35 17 nil <= .plabel= l ε %D A1 A2 varrownodes 20 17 nil <= .slide= 5pt .plabel= r β %D )) %D enddiagram %D $$\pu \diag{my-ran-1} \quad \diag{my-ran-2} $$ % and if we change its {\sl shape} to stress that $ε$ ``looks like'' a counit map and $\Ran_f$ ``looks like'' the right adjoint to the functor $f^*$, we get this: % %D diagram geo-morph %D 2Dx 100 +30 +35 +30 %D 2D 100 L0 C0 C1 R1 %D 2D %D 2D +35 L2 C2 C3 R3 %D 2D %D 2D +20 C4 C5 %D 2D %D 2D +20 C6 C7 %D 2D %D ren C0 C1 C2 C3 C4 C5 ==> f^*C C D \Ran_fD \Set^\catA \Set^\catB %D ren C6 C7 ==> \catA \catB %D ren L0 L2 ==> f^*\Ran_fD D %D ren R1 R3 ==> C \Ran_ff^*C %D %D (( C0 C1 <-| %D C0 C2 -> .plabel= l \sm{β^\fl\\α} %D C1 C3 -> .plabel= r \sm{β\\α^♯} %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil <-| sl^ %D C0 C3 harrownodes nil 20 nil |-> sl_ %D %D C4 C5 <- sl^ .plabel= a f^* %D C4 C5 -> sl_ .plabel= b \Ran_f %D %D C6 C7 -> .plabel= a f %D L0 L2 -> .plabel= l ε %D R1 R3 -> .plabel= r d %D )) %D enddiagram %D $$\pu \diag{geo-morph} $$ When the categories $\catA$ and $\catB$ are finite posets we get: % 1) $\Set^\catA$ and $\Set^\catB$ are toposes; % 2) the functor ``precomposition with $f$'', $f^*$, is very easy to define and to visualize, % 3) the left and right Kan extensions $\Lan_f$ and $\Ran_f$ and can be defined and calculated by the formulas in sec.6.2 of \cite{Riehl}, % % (elep 7 "elephant-A4.1.4") % (ele "elephant-A4.1.4") 4) we have adjunctions $\Lan_f ⊣ f^* ⊣ \Ran_f$, and the structure $(\Lan_f ⊣ f^* ⊣ \Ran_f)$ can be seen as an essential geometric morphism $f:\Set^\catA → \Set^\catB$ (\cite{Elephant1}, A4.1.4) % (find-riehlccpage (+ 18 193) "6.2. A formula for Kan extensions") \newpage In \cite{Riehl}, sec.6.1, right Kan extensions are defined as this. Given functors $F: \sfC→\sfE$, $K: \sfC→\sfD$, a right Kan extension of $F$ along $K$ is a functor $\Ran_K F: \sfD→\sfE$ together with a natural transformation $ε: (K;\Ran_K F) ⇒ F$ such that every pair $(G : D→E, δ:F⇒(K;G))$ factors uniquely through $ε$ in this sense: there exists a unique $α:G⇒\Ran_KF$ as illustrated. For every $α:f^*F→G$ there is a unique $β:F→f_*G$ such that $(f^*β;ε)=α$: %D diagram riehl-ran-1 %D 2Dx 100 +40 +40 %D 2D 100 A0 ---> A2 %D 2D -> -> %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \mathsf{C} \mathsf{D} \mathsf{E} %D %D (( A0 A2 -> .plabel= a F %D A0 A1 -> .plabel= l K %D A1 A2 -> .plabel= r G .curve= _25pt %D A1 A2 varrownodes nil 17 nil <= .slide= -5pt .plabel= r δ %D )) %D enddiagram %D %D diagram riehl-ran-factored %D 2Dx 100 +40 +40 %D 2D 100 A0 ---> A2 %D 2D -> -> ^ %D 2D +40 A1 -/ %D 2D %D ren A0 A1 A2 ==> \mathsf{C} \mathsf{D} \mathsf{E} %D %D (( A0 A2 -> .plabel= a F %D A0 A1 -> .plabel= l K %D A1 A2 -> .plabel= m \Ran_KF %D A1 A2 -> .plabel= r G .curve= _25pt %D A0 A2 varrownodes 35 17 nil <= .plabel= l ε %D A1 A2 varrownodes 20 17 nil <= .slide= 5pt .plabel= r β %D )) %D enddiagram %D $$\pu \diag{riehl-ran-1} \quad \diag{riehl-ran-factored} $$ %D diagram tri-blob-1 %D 2Dx 100 +40 +40 %D 2D 100 A0 A2 %D 2D %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \catA \catB \Set %D %D (( A0 A2 -> .plabel= a G %D A0 A1 -> .plabel= l f %D A1 A2 -> .plabel= r F .curve= _25pt %D A1 A2 varrownodes nil 17 nil <= .slide= -5pt .plabel= r α %D )) %D enddiagram %D %D diagram tri-blob-2 %D 2Dx 100 +40 +40 %D 2D 100 A0 A2 %D 2D %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \catA \catB \Set %D %D (( A0 A2 -> .plabel= a G %D A0 A1 -> .plabel= l f %D A1 A2 -> .plabel= m f_*G %D A1 A2 -> .plabel= r F .curve= _25pt %D A0 A2 varrownodes 35 17 nil <= .plabel= l ε %D A1 A2 varrownodes 20 17 nil <= .slide= 5pt .plabel= r β %D )) %D enddiagram %D $$\pu \diag{tri-blob-1} \quad \diag{tri-blob-2} $$ % From: % (vgsp 11 "internal-views-4") % (vgs "internal-views-4") \bsk %D diagram geo-morph %D 2Dx 100 +30 +30 %D 2D 100 L0 C0 C1 %D 2D %D 2D +30 L2 C2 C3 %D 2D %D 2D +15 C4 C5 %D 2D %D 2D +20 C6 C7 %D 2D %D ren C0 C1 C2 C3 C4 C5 ==> f^*F F G f_*G \Set^\catA \Set^\catB %D ren C6 C7 ==> \catA \catB %D ren L0 L2 ==> f^*f_*G G %D %D (( C0 C1 <-| %D C0 C2 -> .plabel= l \sm{β^\fl\\α} %D C1 C3 -> .plabel= r \sm{β\\α^♯} %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil <-| sl^ %D C0 C3 harrownodes nil 20 nil |-> sl_ %D %D C4 C5 <- sl^ .plabel= a f^* %D C4 C5 -> sl_ .plabel= b f_* %D %D C6 C7 -> .plabel= a f %D L0 L2 -> .plabel= l ε %D )) %D enddiagram %D $$\pu \diag{geo-morph} $$ % (find-books "__cats/__cats.el" "riehl") % (find-riehlccpage (+ 18 189) "6. All Concepts are Kan Extensions") % (find-riehlccpage (+ 18 190) "6.1. Kan extensions") % (find-riehlccpage (+ 18 193) "6.2. A formula for Kan extensions") % (find-riehlccpage (+ 18 199) "6.3. Pointwise Kan extensions") % (find-riehlccpage (+ 18 204) "6.4. Derived functors as Kan extensions") % (find-riehlccpage (+ 18 209) "6.5. All concepts") \end{document} * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) make -f 2019.mk 2019kan-extensions.veryclean make -f 2019.mk 2019kan-extensions.pdf % Local Variables: % coding: utf-8-unix % ee-tla: "kan" % End: