Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2019newton-abs.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019newton-abs.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019newton-abs.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2019newton-abs; makeindex 2019newton-abs")) % (defun e () (interactive) (find-LATEX "2019newton-abs.tex")) % (defun u () (interactive) (find-latex-upload-links "2019newton-abs")) % (find-xpdfpage "~/LATEX/2019newton-abs.pdf") % (find-sh0 "cp -v ~/LATEX/2019newton-abs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019newton-abs.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019newton-abs.pdf % file:///tmp/2019newton-abs.pdf % file:///tmp/pen/2019newton-abs.pdf % http://angg.twu.net/LATEX/2019newton-abs.pdf % % (find-TH "math-b" "2019-newton") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % https://mail.google.com/mail/ca/u/0/#search/newton/FMfcgxwDqTdRFhhfJQTMmgLMCnPcMgbZ % Voce teria interesse/possibilidade em participar deste evento, % supondo o workshop ocorrendo entre os dias 11 e 12 de dezembro? % https://mail.google.com/mail/ca/u/0/#search/hugo/FMfcgxwDqxPSnNjjTBHLclRFzDwgQbkC % Tenho até dia 15 pra mandar o abstract % Mandei: % https://mail.google.com/mail/ca/u/0/#inbox/FMfcgxwDqxPSnNjjTBHLclRFzDwgQbkC {\bf On two tricks to make Category Theory fit in less mental space: missing diagrams and skeletons of proofs} \medskip When I started studying Category Theory two things in the texts gave me the impression that CT was incredibly powerful: one was the suggestion, implicit in the use of the definite article ``the'' in expressions like ``{\sl the} functor that takes each object $B$ to $A {\times} B$'', that once we define how a functor acts on objects its action on morphisms is ``obvious'' in some sense; the other one is the idea that almost all reasoning in CT is diagrammatical, and that as soon as we are past the beginner stage the diagrams become ``obvious'' too: they are omitted from the books and articles for reasons of space, but drawing the ``missing diagrams'' is something that is almost automatic. In this talk I will present some techniques for drawing the ``missing diagrams'' in a more or less canonical way, and for starting from a ``skeleton'' of a categorical concept or proof and reconstructing the rest from that. % (find-books "__cats/__cats.el" "landry") \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "nea" % End: