Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2019notes-adjunctions.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019notes-adjunctions.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2019notes-adjunctions.pdf")) % (defun e () (interactive) (find-LATEX "2019notes-adjunctions.tex")) % (defun u () (interactive) (find-latex-upload-links "2019notes-adjunctions")) % (find-xpdfpage "~/LATEX/2019notes-adjunctions.pdf") % (find-sh0 "cp -v ~/LATEX/2019notes-adjunctions.pdf /tmp/") % file:///home/edrx/LATEX/2019notes-adjunctions.pdf % file:///tmp/2019notes-adjunctions.pdf % http://angg.twu.net/LATEX/2019notes-adjunctions.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{xcolor} % (find-es "tex" "xcolor") %\usepackage{color} % (find-LATEX "edrx15.sty" "colors") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % (find-LATEXfile "2019ebl-abs.tex" "Five applications") % (cwm "monads") % (cwmp 19) (For ``five applications'') Cartesian categories: \leavevmode \fbox{% $\begin{array}{l} f:A→C \\ g:B→D \\ π:A×B→A \\ π':A×B→B \\ f∘π:A×B→C \\ g∘π':A×B→D \\ 〈f∘π,g∘π'〉:A×B→C×D \\ f×g = 〈f∘π,g∘π'〉 \\ A×g = 〈π,g∘π'〉 \\ f×B = 〈f∘π,g〉 \\ \end{array}$} % %D diagram Ax %D 2Dx 100 +30 +30 +30 %D 2D 100 A1 A2 B1 B2 %D 2D %D 2D +30 A3 A4 B3 B4 %D 2D %D ren A1 A2 A3 A4 ==> B (A×)B C (A×)C %D ren B1 B2 B3 B4 ==> B A×B C A×C %D %D (( A1 A2 |-> %D A1 A3 -> .plabel= l f %D A2 A4 -> .plabel= r (A×)f %D A3 A4 |-> %D )) %D (( B1 B2 |-> %D B1 B3 -> .plabel= l f %D B2 B4 -> .plabel= r \foo %D B3 B4 |-> %D )) %D enddiagram %D $$\pu \def\foo{\sm{λ(a,b).(a.f(b)) \\ = 〈π,f∘π'〉 \\ }} \cdiag{Ax} $$ \end{document} % Local Variables: % coding: utf-8-unix % End: