Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2019notes-monads-tys.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019notes-monads-tys.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019notes-monads-tys.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2019notes-monads-tys.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2019notes-monads-tys; makeindex 2019notes-monads-tys")) % (defun e () (interactive) (find-LATEX "2019notes-monads-tys.tex")) % (defun u () (interactive) (find-latex-upload-links "2019notes-monads-tys")) % (find-xpdfpage "~/LATEX/2019notes-monads-tys.pdf") % (find-sh0 "cp -v ~/LATEX/2019notes-monads-tys.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019notes-monads-tys.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019notes-monads-tys.pdf % file:///tmp/2019notes-monads-tys.pdf % file:///tmp/pen/2019notes-monads-tys.pdf % http://angg.twu.net/LATEX/2019notes-monads-tys.pdf % «.colors» (to "colors") % «.title-page» (to "title-page") % «.diag:generic-adjunction» (to "diag:generic-adjunction") % «.diag:prod-adj-exp» (to "diag:prod-adj-exp") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-angg ".emacs.papers" "latexgeom") \usepackage[paperwidth=11.5cm, paperheight=9.5cm, %total={6.5in,4in}, %textwidth=4in, paperwidth=4.5in, %textheight=5in, paperheight=4.5in, %a4paper, top=1.5cm, bottom=.5cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % «colors» (to ".colors") % (find-angg ".emacs.papers" "xcolor") \long\def\ColorRed #1{{\color{Red1}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorViolet#1{{\color{Violet!50!black}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGreen #1{{\color{SpringGreen4}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} \long\def\ColorGray #1{{\color{black!30!white}#1}} \def\setofst#1#2{\{\,#1\;|\;#2\,\}} \def\setofsc#1#2{\{\,#1\;;\;#2\,\}} \setlength{\parindent}{0em} \def\O{\mathcal{O}} \def\T{\mathbf{T}} \def\F{\mathbf{F}} \def\Nat{\operatorname{Nat}} % (find-LATEXfile "2017idarct.tex" "\\def\\sqcond") \def\respcomp{\mathsf{respcomp}} \def\respids {\mathsf{respids}} \def\sqcond {\mathsf{sqcond}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title-page» (to ".title-page") % (nyop 1 "title-page") % (nyo "title-page") % (cl1p 1 "title-page") % (cl1 "title-page") \begin{tabular}[b]{c} {\Large {\bf Notes on adjunctions and monads }}\\ {\Large { (and on how to interpret their }}\\ {\Large { diagrams in type systems) }}\\[2.5pt] \scriptsize \ColorRed{Eduardo Ochs (UFF, Rio das Ostras, Brazil)} \\[-4pt] \scriptsize \url{http://angg.twu.net/\#nmoooo?} \\ \\ % $\begin{array}{ccc} \resizebox{!}{30pt}{$diag$} & % & \begin{array}[c]{l} T_0 := λD.λg.(γ;Rg) \\ γ := TC(\id_C) \\ \end{array} \end{array} $ \\ % \end{tabular} \newpage \noedrxfooter % (find-books "__cats/__cats.el" "awodey") % (find-awodeyctpage (+ 10 180) "eta") % «diag:generic-adjunction» (to ".diag:generic-adjunction") % %D diagram generic-adjunction %D 2Dx 100 +30 +35 +25 %D 2D 100 LA <-| A %D 2D | | %D 2D v v %D 2D +30 G LB <-| B I %D 2D | | | | %D 2D v v v v %D 2D +30 H C |--> RC J %D 2D | | %D 2D v v %D 2D +30 D |--> RD %D 2D %D 2D +20 E <==> F %D 2D %D ren LA A ==> LA' A' %D ren LB B ==> LA A %D ren C RC ==> B RB %D ren D RD ==> B' RB' %D ren E F ==> \catB \catA %D ren G H ==> LRB B %D ren I J ==> A RLA %D %D (( LA A <-| .plabel= a L_0 %D LB B <-| .plabel= a L_0 %D C RC |-> .plabel= b R_0 %D D RD |-> .plabel= b R_0 %D %D LA B harrownodes nil 20 nil <-| sl^ .plabel= a L_1 %D LB RC harrownodes nil 20 nil <-| sl^ .plabel= a ♭ %D LB RC harrownodes nil 20 nil |-> sl_ .plabel= b ♯ %D C RD harrownodes nil 20 nil |-> sl^ .plabel= b R_1 %D %D LA LB -> .plabel= l Lα %D A B -> .plabel= r α %D LB C -> .plabel= l \sm{g^♭\\f} %D B RC -> .plabel= r \sm{g\\f^♯} %D C D -> .plabel= l β %D RC RD -> .plabel= r Rβ %D E F <- sl^ .plabel= a L %D E F -> sl_ .plabel= b R %D G H -> .plabel= l εB %D I J -> .plabel= r ηA %D )) %D enddiagram %D $$\pu \diag{generic-adjunction} $$ % «diag:prod-adj-exp» (to ".diag:prod-adj-exp") % %D diagram (xB)-|(B->) %D 2Dx 100 +45 +35 +40 %D 2D 100 LA <-| A %D 2D | | %D 2D v v %D 2D +30 G LB <-| B I %D 2D | | | | %D 2D v v v v %D 2D +30 H C |--> RC J %D 2D | | %D 2D v v %D 2D +30 D |--> RD %D 2D %D 2D +20 E <==> F %D 2D %D ren LA A ==> A{×}C A %D ren LB B ==> B{×}C B %D ren C RC ==> D (C{→}D) %D ren D RD ==> E (C{→}E) %D ren E F ==> \Set \Set %D ren G H ==> (C{→}D){×C} D %D ren I J ==> B (C→B{×}C) %D ren I J ==> B (C{→}(B{×}C)) %D %D (( LA A <-| # .plabel= a ({×}B)_0 %D LB B <-| # .plabel= a ({×}B)_0 %D C RC |-> # .plabel= b (B{→})_0 %D D RD |-> # .plabel= b (B{→})_0 %D %D LA B harrownodes nil 20 nil <-| sl^ # .plabel= a L_1 %D LB RC harrownodes nil 20 nil <-| sl^ .plabel= a ♭ %D LB RC harrownodes nil 20 nil |-> sl_ .plabel= b ♯ %D C RD harrownodes nil 20 nil |-> sl^ # .plabel= b R_1 %D %D LA LB -> .plabel= l λp.(f(πp),π'p) %D A B -> .plabel= r f %D LB C -> .plabel= l \sm{λp.g(πp)(π'p)\\\phantom{mmmmmm}h} %D B RC -> .plabel= r \sm{g\phantom{mmmmm}\\λb.λc.h(b,c)} %D C D -> .plabel= l k %D RC RD -> .plabel= r λf.λc.k(fc) %D E F <- sl^ .plabel= a ({×}C) %D E F -> sl_ .plabel= b (C{→}) %D G H -> .plabel= l λp.(πp)(π'p) %D I J -> .plabel= r λb.λc.(b,c) %D )) %D enddiagram %D $$\pu \diag{(xB)-|(B->)} $$ \end{document} % Local Variables: % coding: utf-8-unix % End: