
1

1 J-operators
A J-operator on a Heyting Algebra H = (Ω,≤,>,⊥,∧,∨,→,↔,¬) is a
function J : Ω → Ω that obeys the axioms J1, J2, J3 below; we usually write
J as ·∗ : Ω → Ω, and write the axioms as rules.

P ≤ P ∗ J1
P ∗ = P ∗∗ J2

(P ∧Q)∗ = P ∗ ∧Q∗ J3

J1 says that the operation ·∗ is non-decreasing.
J2 says that the operation ·∗ is idempotent.
J3 is a bit mysterious but will have interesting consequences.
Note that when H is a ZHA then any slash-operator on H is a J-operator

on it; see secs.?? and ??.
A J-operator induces an equivalence relation and equivalence classes on

Ω, like slashings do:
P ∼J Q iff P ∗ = Q∗

[P ]J := {Q ∈ Ω | P ∗ = Q∗ }
The equivalence classes of a J-operator J are called J-regions.

The axioms J1, J2, J3 have many consequences. The first ones are listed
in Figure 1 as derived rules, whose names mean:

Mop (monotonicity for products): a lemma used to prove Mo,
Mo (monotonicity): P ≤ Q implies P ∗ ≤ Q∗,
Sand (sandwiching): all truth values between P and P ∗ are equivalent,
EC∧: equivalence classes are closed by ‘&’,
EC∨: equivalence classes are closed by ‘∨’,
ECS: equivalence classes are closed by sandwiching,

Take a J-equivalence class, [P ]J , and list its elements: [P ]J = {P1, . . . , Pn}.
Let P∧ := ((P1 ∧ P2) ∧ . . .) ∧ Pn and P∨ := ((P1 ∨ P2) ∨ . . .) ∨ Pn. Clearly
P∧ ≤ Pi ≤ P∨ for each i, so [P ]J ⊆ [P∧, P∨].

Using EC∧ and EC∨ several times we see that:
P1 ∧ P2 ∼J P P1 ∨ P2 ∼J P

(P1 ∧ P2) ∧ P3 ∼J P (P1 ∨ P2) ∨ P3 ∼J P
... ...

((P1 ∧ P2) ∧ . . .) ∧ Pn ∼J P ((P1 ∨ P2) ∨ . . .) ∨ Pn ∼J P
P∧ ∼J P P∨ ∼J P

P∧ ∈ [P ]J P∨ ∈ [P ]J

2019planar-has-2-logic June 23, 2019 02:52



2

(P ∧Q)∗ ≤ Q∗ Mop
:=

(P ∧Q)∗ = P ∗ ∧Q∗ J3
P ∗ ∧Q∗ ≤ Q∗

(P ∧Q)∗ ≤ Q∗

P ≤ Q

P ∗ ≤ Q∗ Mo
:=

P ≤ Q

P = P ∧Q

P ∗ = (P ∧Q)∗ (P ∧Q)∗ ≤ Q∗ Mop

P ∗ ≤ Q∗

P ≤ Q ≤ P ∗

P ∗ = Q∗ Sand
:=

P ≤ Q

P ∗ ≤ Q∗ Mo

Q ≤ P ∗

Q∗ ≤ P ∗∗ Mo
P ∗∗ = P ∗ J2

Q∗ ≤ P ∗

P ∗ = Q∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∧Q)∗
EC∧

:=

P ∗ = Q∗

P ∗ = Q∗ = P ∗ ∧Q∗ P ∗ ∧Q∗ = (P ∧Q)∗
J3

P ∗ = Q∗ = (P ∧Q)∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∨Q)∗
EC∨

:=

P ∗ = Q∗

P ≤ P ∨Q

P ≤ P ∗ J1
Q ≤ Q∗ J1

P ∗ = Q∗

Q∗ = P ∗

Q ≤ P ∗

P ∨Q ≤ P ∗

P ≤ P ∨Q ≤ P ∗

P ∗ = (P ∨Q)∗
Sand

P ∗ = Q∗ = (P ∨Q)∗

P ≤ Q ≤ R P ∗ = R∗

P ∗ = Q∗ = R∗ ECS
:=

P ≤ Q ≤ R R ≤ R∗ J1
P ∗ = R∗

R∗ = P ∗

P ≤ Q ≤ P ∗

P ∗ = Q∗ Sand
P ∗ = R∗

P ∗ = Q∗ = R∗

Figure 1: J-operators: basic derived rules

2019planar-has-2-logic June 23, 2019 02:52



3

and using ECS we can see that all elements between P∧ and P∨ are J-
equivalent to P :

P∧ ≤ Q ≤ P∨

P∧ ∼J P

P∧
∗ = P ∗

P∨ ∼J P

P∨
∗ = P ∗

P∧
∗ = P∨

∗

P∧
∗ = Q∗ = P∨

∗ ECS
P∨

∗ = P ∗

Q∗ = P ∗

Q ∼J P

so [P∧, P∨] ⊆ [P ]J . This means that J-regions are intervals.

1.1 Cuts stopping midway
Look at the figure below, that shows a partition of a ZHA A = [00, 66] into
five regions, each region being an interval; this partition does not come from
a slashing, as it has cuts that stop midway. Define an operation ‘·∗’ on A,
that works by taking each truth-value P in it to the top element of its region;
for example, 30∗ = 61.

60
61
62
63
64
65
66

50
51
52
53
54
55
56

40
41
42
43
44
45
46

30
31
32
33
34
35
36

20
21
22
23
24
25
26

10
11
12
13
14
15
16

00
01
02
03
04
05
06

It is easy to see that ‘·∗’ obeys J1 and J2; however, it does not obey J3 —
we will prove that in sec.1.2. As we will see, the partitons of a ZHA into
intervals that obey J1, J2, J3 ae exactly the slashings; or, in other words,
every J-operator comes from a slashing.

2019planar-has-2-logic June 23, 2019 02:52



4

1.2 The are no Y-cuts and no λ-cuts
We want to see that if a partition of a ZHA H into intervals has “Y-cuts” or
“λ-cuts”, like these parts of the last diagram in sec.1.1,

22
21 12
11

⇐ this is a Y-cut

25
24 15
14

⇐ this is a λ-cut

then the operation J that takes each element to the top of its equivalence
class cannot obey J1, J2 and J3 at the same time. We will prove that by
deriving rules that say that if 11 ∼J 12 then 21 ∼J 22, and that if 15 ∼J 25
then 14 ∼J 24; actually, our rules will say that if 11∗ = 12∗ then (11∨21)∗ =
(12∨ 21)∗, and that if 15∗ = 25∗ then (15∧ 24)∗ = (25∧ 24)∗. The rules are:

P ∗ = Q∗

(P ∨R)∗ = (Q ∨R)∗
NoYcuts

:=

P ∗ = Q∗

P ∨R∗ = Q ∨R∗

(P ∨R∗)∗ = (Q ∨R∗)∗

(P ∨R)∗ = (Q ∨R)∗
66 = 64

P ∗ = Q∗

(P ∧R)∗ = (Q ∧R)∗
Noλcuts

:=

P ∗ = Q∗

P ∗ ∧R∗ = Q∗ ∧R∗

(P ∧R)∗ = (Q ∧R)∗
J3

The expansion of double bar labeled ‘66 = 64’ in the top derivation uses
twice the derived rule 66 = 64, that is easy to prove using the cubes of
sec.1.3.

1.3 How J-operators interact with connectives
The axiom J3 says that (P ∧Q)∗ = P ∗ ∧Q∗ — it says something about how
‘·∗’ interacts with ‘∧’. Let’s introduce a shorter notation. There are eight
ways to replace each of the ‘?’s in (P ?∧Q?)? by either nothing or a star. We
establish that the three ‘?’s in (P ?∧Q?)? are “worth” 1, 2 and 4 respectively,

2019planar-has-2-logic June 23, 2019 02:52



5

and we use P 7n Q to denote (P ? ∧ Q?)? with the bits “that belong to n”
replaced by stars. So:

70 = P ∧Q, 74 = (P ∧Q)∗,
71 = P ∗ ∧Q, 75 = (P ∗ ∧Q)∗,
72 = P ∧Q∗, 76 = (P ∧Q∗)∗,
73 = P ∗ ∧Q∗, 77 = (P ∗ ∧Q∗)∗.

We omit the arguments of 7n when they are P and Q — so we can rewrite
(P ∧Q)∗ = P ∗ ∧Q∗ as 74 = 73. These conventions also hold for 6 and 	→.

It is easy to prove each one of the arrows in the cubes below (A // B
means A ≤ B):

P∧Q

P ∗∧QddJJJJJJJ

P∧Q∗

P ∗∧Q∗
ddJJJJJJJ

(P∧Q)∗

(P ∗∧Q)∗
ddJJJJJJJ

(P∧Q∗)∗

(P ∗∧Q∗)∗
ddJJJJJJJ

P∧Q

P∧Q∗
::ttttttt

P ∗∧Q

P ∗∧Q∗
::ttttttt

(P∧Q)∗

(P∧Q∗)∗
::ttttttt

(P ∗∧Q)∗

(P ∗∧Q∗)∗
::ttttttt

P∧Q

(P∧Q)∗
OO

P ∗∧Q

(P ∗∧Q)∗
OO

P∧Q∗

(P∧Q∗)∗
OO

P ∗∧Q∗

(P ∗∧Q∗)∗
OO

P∨Q

P ∗∨QddJJJJJJJ

P∨Q∗

P ∗∨Q∗
ddJJJJJJJ

(P∨Q)∗

(P ∗∨Q)∗
ddJJJJJJJ

(P∨Q∗)∗

(P ∗∨Q∗)∗
ddJJJJJJJ

P∨Q

P∨Q∗
::ttttttt

P ∗∨Q

P ∗∨Q∗
::ttttttt

(P∨Q)∗

(P∨Q∗)∗
::ttttttt

(P ∗∨Q)∗

(P ∗∨Q∗)∗
::ttttttt

P∨Q

(P∨Q)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO

P→Q

P ∗→Q

$$

JJJJJJJ

P→Q∗

P ∗→Q∗

$$

JJJJJJJ

(P→Q)∗

(P ∗→Q)∗

$$

JJJJJJJ

(P→Q∗)∗

(P ∗→Q∗)∗

$$

JJJJJJJ

P→Q

P→Q∗
::ttttttt

P ∗→Q

P ∗→Q∗
::ttttttt

(P→Q)∗

(P→Q∗)∗
::ttttttt

(P ∗→Q)∗

(P ∗→Q∗)∗
::ttttttt

P→Q

(P→Q)∗
OO

P ∗→Q

(P ∗→Q)∗
OO

P→Q∗

(P→Q∗)∗
OO

P ∗→Q∗

(P ∗→Q∗)∗
OO

Let’s write their sets of elements as 70...7 := {70, . . . ,77}, 60...7 :=
{60, . . . ,67}, and 	→0...7 := {	→0, . . . ,	→7}. The cubes above — we will
call them the “obvious and-cube”, the “obvious or-cube”, and the “obvious
implication-cube” — can be interpreted as directed graphs (70...7,OCube∧),
(60...7,OCube∨), (	→0...7,OCube→).

The “extended cubes” will be the directed graphs with the arrows above

2019planar-has-2-logic June 23, 2019 02:52



6

plus the ones coming from these derived rules:

(P ∗ ∧Q∗)∗ = P ∗ ∧Q∗ = (P ∧Q)∗
77 = 73 = 74

:=

P ∗∗ = P ∗ J2
Q∗∗ = Q∗ J2

(P ∗ ∧Q∗)∗ = P ∗∗ ∧Q∗∗ = P ∗ ∧Q∗ = (P ∧Q)∗
J3

(P ∗ ∧Q∗)∗ = P ∗ ∧Q∗ = (P ∧Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
67 ≤ 63

:=

P ≤ P ∨Q

P ∗ ≤ (P ∨Q)∗
Mo

Q ≤ P ∨Q

Q∗ ≤ (P ∨Q)∗
Mo

P ∗ ∨Q∗ ≤ (P ∨Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗∗
Mo

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
J2

(P → Q∗)∗ ≤ P ∗ → Q∗ 	→6 ≤ 	→3
:=

P → Q∗ ≤ P → Q∗

(P → Q∗) ∧ P ≤ Q∗

((P → Q∗) ∧ P )∗ ≤ Q∗∗ Mo

((P → Q∗) ∧ P )∗ ≤ Q∗ J2

(P → Q∗)∗ ∧ P ∗ ≤ Q∗ J3

(P → Q∗)∗ ≤ P ∗ → Q∗

where 77 = 73 = 74 will be interpreted as these arrows:

(P ∗ ∧Q∗)∗ oo // P ∗ ∧Q∗ oo // (P ∧Q)∗

The directed graphs of these “extended cubes” will be called (70...7,ECube∧),
(60...7,ECube∨), (	→0...7,ECube→). We are interested in the (non-strict) par-
tial orders that they generate, and we want an easy way to remember these
partial orders. The figure below shows these extended cubes at the left,
and at the right the “simplified cubes”, SCube∧, SCube∨, and SCube→, that
generate the same partial orders that the extended cubes.

2019planar-has-2-logic June 23, 2019 02:52



7


70

71 ddJJJJJJJJJ

72

73 ddJJJJJJJJJ
74

75 ddJJJJJJJJJ

76

77 ddJJJJJJJJJ

70

72::ttttttttt

71

73::ttttttttt
74

76::ttttttttt

75

77::ttttttttt

70

74OO71

75OO

72

76OO73

77OO

73

77

��
73

74

��

73

74

OO



∗

=


70

71 ddJJJJJJJJJ

72

73 ddJJJJJJJJJ
74

75 JJJJJJJJJ

JJJJJJJJJ

76

77 JJJJJJJJJ

JJJJJJJJJ

70

72::ttttttttt

71

73::ttttttttt
74

76ttttttttt

ttttttttt

75

77ttttttttt

ttttttttt

70

74OO71

75OO

72

76OO73

77



∗


60

61 ddJJJJJJJJJ

62

63 ddJJJJJJJJJ
64

65 ddJJJJJJJJJ

66

67 ddJJJJJJJJJ

60

62::ttttttttt

61

63::ttttttttt
64

66::ttttttttt

65

67::ttttttttt

60

64OO61

65OO

62

66OO63

67OO67

64

��



∗

=


60

61 ddJJJJJJJJJ

62

63 ddJJJJJJJJJ
64

65 JJJJJJJJJ

JJJJJJJJJ

66

67 JJJJJJJJJ

JJJJJJJJJ

60

62::ttttttttt

61

63::ttttttttt
64

66ttttttttt

ttttttttt

65

67ttttttttt

ttttttttt

60

64OO61

65OO

62

66OO63

67OO



∗


	→0

	→1

$$

JJJJJJJJ

	→2

	→3

$$

JJJJJJJJ
	→4

	→5

$$

JJJJJJJJ

	→6

	→7

$$

JJJJJJJJ

	→0

	→2::tttttttt

	→1

	→3::tttttttt
	→4

	→6::tttttttt

	→5

	→7::tttttttt

	→0

	→4OO	→1

	→5OO

	→2

	→6OO	→3

	→7OO

	→6	→3
oo



∗

=


	→0

	→1

$$

JJJJJJJJ

	→2

	→3 JJJJJJJJ

JJJJJJJJ

	→4

	→5

$$

JJJJJJJJ

	→6

	→7 JJJJJJJJ

JJJJJJJJ

	→0

	→2::tttttttt

	→1

	→3::tttttttt
	→4

	→6::tttttttt

	→5

	→7::tttttttt

	→0

	→4OO	→1

	→5OO

	→2

	→6	→3

	→7



∗

From these cubes it is easy to see, for example, that we can prove 65 = 66

(as a derived rule).

1.4 Valuations
Let H� and J� be a ZHA and a J-operator on it, and let v� be a function
from the set {P,Q} to H. By an abuse of language v� will also denote the
triple (H�, J�, v�) — and by a second abuse of language v� will also denote
the obvious extension of v� : {P,Q} → H to the set of all valid expressions
formed from P , Q, ·∗, >, ⊥, and the connectives.

Let i, j ∈ {0, . . . , 7}. Then (7i,7j) ∈ SCube∗∧ means that 7i ≤ 7j is a

2019planar-has-2-logic June 23, 2019 02:52



8

theorem, and so v�(7i) ≤ v�(7j) holds; i.e.,

SCube∗∧ ⊆ { (7i,7j) | i, j ∈ {0, . . . , 7}, v�(7i) ≤ v�(7j) }

and the same for:

SCube∗∨ ⊆ { (6i,6j) | i, j ∈ {0, . . . , 7}, v�(6i) ≤ v�(6j) }
SCube∗→ ⊆ { (	→i,	→j) | i, j ∈ {0, . . . , 7}, v�(	→i) ≤ v�(	→j) }

Some valuations that turn these ‘⊆’s into ‘=’. Let

(H∧, J∧, v∧) = P
P ∗

Q
Q∗

(H∨, J∨, v∨) =

P
P ∗

Q
Q∗

(H→, J→, v→) =
P Q

then

SCube∗∧ = { (7i,7j) | i, j ∈ {0, . . . , 7}, v∧(7i) ≤ v∧(7j) }
SCube∗∨ = { (6i,6j) | i, j ∈ {0, . . . , 7}, v∨(6i) ≤ v∨(6j) }

SCube∗→ = { (	→i,	→j) | i, j ∈ {0, . . . , 7}, v→(	→i) ≤ v→(	→j) }

or, in more elementary terms:

2019planar-has-2-logic June 23, 2019 02:52



9

A very important fact. For any i and j,

7i ≤ 7j is a theorem iff it is true in P
P ∗

Q
Q∗

,

6i ≤ 6j is a theorem iff it is true in
P

P ∗

Q
Q∗ ,

	→i ≤ 	→j is a theorem iff it is true in
P Q

.

The very important fact, and the valuations v∧, v∨, v→, give us:

• a way to remember which sentences of the forms 7i ≤ 7j, 6i ≤ 6j,
	→i ≤ 	→j are theorems;

• countermodels for all the sentences of these forms not in SCube∧, SCube∨,
SCube→. For example, 67 ≤ 64 is not in SCube∨; and v∨(67) ≤
v∨(64), which shows that 67 ≤ 64 can’t be a theorem.

An observation. I arrived at the cubes ECube∗∧, ECube∗∨, ECube∗→ by tak-
ing the material in the corollary 5.3 of chapter 5 in [?] and trying to make it
fit into less mental space (as discussed in [?]); after that I wanted to be sure
that each arrow that is not in the extended cubes has a countermodel, and I
found the countermodels one by one; then I wondered if I could find a single
countermodel for all non-theorems in ECube∗∧ (and the same for ECube∗∨ and
ECube∗→), and I tried to start with a valuation that distinguished some equiv-
alence classes in ECube∗∧, and change it bit by bit, getting valuations that
distinguished more equivalence classes at every step. Eventually I arrived at
v∧, v∨ and at v→, and at the — surprisingly nice — “very important fact”
above.

2019planar-has-2-logic June 23, 2019 02:52



10

Note that this valuation

(H∧∨, J∧∨, v∧∨) =

P

P ∗

Q

Q∗

distinguishes all equivalence classes in ECube∗∧ and in ECube∗∨, but not in
ECube∗→... it “thinks” that P → Q and P ∗ → Q are equal.

2019planar-has-2-logic June 23, 2019 02:52


	J-operators
	Cuts stopping midway
	The are no Y-cuts and no -cuts
	How J-operators interact with connectives
	Valuations


