Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020adjunctions.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020adjunctions.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020adjunctions.pdf")) % (defun e () (interactive) (find-LATEX "2020adjunctions.tex")) % (defun u () (interactive) (find-latex-upload-links "2020adjunctions")) % (find-pdf-page "~/LATEX/2020adjunctions.pdf") % (find-sh0 "cp -v ~/LATEX/2020adjunctions.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020adjunctions.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020adjunctions.pdf % file:///tmp/2020adjunctions.pdf % file:///tmp/pen/2020adjunctions.pdf % http://angg.twu.net/LATEX/2020adjunctions.pdf % (find-LATEX "2019.mk") \documentclass[oneside]{book} \usepackage[colorlinks,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu %D diagram adjunction-labels %D 2Dx 100 +30 %D 2D 100 LA' <-| A' %D 2D | | %D 2D v v %D 2D +30 LA <--| A %D 2D | | %D 2D v v %D 2D +30 B |---> RB %D 2D | | %D 2D v v %D 2D +30 B' |--> RB' %D 2D %D 2D +20 \catB \catA %D %D (( LA' A' <-| %D LA A <-| %D B RB |-> %D B' RB' |-> %D %D LA' A harrownodes nil 20 nil <-| sl^ %D LA RB harrownodes nil 20 nil <-| sl^ .plabel= a ♭ %D LA RB harrownodes nil 20 nil |-> sl_ .plabel= b ♯ %D B RB' harrownodes nil 20 nil |-> sl^ %D %D LA' LA -> .plabel= l Lf %D A' A -> .plabel= r f %D LA B -> .plabel= l \sm{h^♭\\g} %D A RB -> .plabel= r \sm{h\\g^♯} %D B B' -> .plabel= l k %D RB RB' -> .plabel= r Rk %D %D \catB \catA <- sl^ .plabel= a L %D \catB \catA -> sl_ .plabel= b R %D )) %D enddiagram % $$\pu \diag{adjunction-labels} \qquad \begin{array}{rcl} h^{♭♯} &=& h \\ g^{♯♭} &=& g \\ f;g^♯;Rk &=& (Lf;g;k)^♯ \\ Lf;h^♭;k &=& (f;h;Rk)^♭ \\ \end{array} $$ % <defmateight> % Skel: (find-defcsprefix-links "mateight" "MATRIX 4x2") % \def\defmateight#1#2{\expandafter\def\csname mateight-#1\endcsname{#2}} \def\ifmateightundefined#1{\expandafter\ifx\csname mateight-#1\endcsname\relax} \def\mateight#1{\ifmateightundefined{#1} \errmessage{UNDEFINED MATRIX 4x2: #1} \else \csname mateight-#1\endcsname \fi } \def\ph{\phantom} \def\ms{\mathstrut} \defmateight{A,B} {\psm{\ms & \\ \ms & A \\ \ms B & \\ \ms & \\}} \defmateight{A',B'}{\psm{\ms & A' \\ \ms & \\ \ms & \\ \ms B' & \\}} \defmateight{LA->B}{\psm{\ms & \\ \ms LA & \ph{A} \\ \ms B & \\ \ms & \\}} \defmateight{LA'->B'}{\psm{\ms LA' & \\ \ms & \ph{A} \\ \ms & \\ \ms B' & \\}} \defmateight{A->RB}{\psm{\ms & \\ \ms & A \\ \ms \ph{B} & RB \\ \ms & \\}} \defmateight{A'->RB'}{\psm{\ms & A' \\ \ms & \\ \ms \ph{B} & \\ \ms & RB' \\}} %D diagram sqcond-adj-1 %D 2Dx 100 +40 +50 +40 +45 %D 2D 100 AB \Hom(LA,B) --> \Hom(A,RB) g |---> gsh %D 2D | | | - - %D 2D | | | | v %D 2D +42 v v v v (gsh)' %D 2D +8 A'B' \Hom(LA',B') -> \Hom(A',RB') g' |-> (g')sh %D 2D %D 2D +30 \Hom(L-,-) -> \Hom(-,R-) %D 2D %D ren AB A'B' ==> \mateight{A,B} \mateight{A',B'} %D ren \Hom(LA,B) \Hom(A,RB) ==> \mateight{LA->B} \mateight{A->RB} %D ren \Hom(LA',B') \Hom(A',RB') ==> \mateight{LA'->B'} \mateight{A'->RB'} %D ren gsh (gsh)' ==> g^♯ f;g^♯;Rk %D ren g' (g')sh ==> Lf;g;k (Lf;g;k)^♯ %D %D (( AB A'B' -> .plabel= l (f,k) %D %D \Hom(LA,B) \Hom(A,RB) -> .plabel= a \sharp_{A,B} %D \Hom(LA,B) \Hom(LA',B') -> .plabel= l Lf;-;k # \Hom(Lf,k) %D \Hom(A,RB) \Hom(A',RB') -> .plabel= l f;-;Rk # \Hom(f,Rk) %D \Hom(LA',B') \Hom(A',RB') -> .plabel= a \sharp_{A',B'} %D %D \Hom(L-,-) \Hom(-,R-) -> .plabel= a \sharp %D %D g gsh |-> gsh (gsh)' |-> %D g g' |-> g' (g')sh |-> %D )) %D enddiagram %D $$\pu \diag{sqcond-adj-1} $$ %D diagram sqcond-adj-2 %D 2Dx 100 +40 +50 +40 +45 %D 2D 100 AB \Hom(LA,B) <-- \Hom(A,RB) hfl <---| h %D 2D | | | - - %D 2D | | | v | %D 2D +42 v v v (hfl)' v %D 2D +8 A'B' \Hom(LA',B') <- \Hom(A',RB') (h')fl <-| h' %D 2D %D 2D +30 \Hom(L-,-) <- \Hom(-,R-) %D 2D %D ren AB A'B' ==> \mateight{A,B} \mateight{A',B'} %D ren \Hom(LA,B) \Hom(A,RB) ==> \mateight{LA->B} \mateight{A->RB} %D ren \Hom(LA',B') \Hom(A',RB') ==> \mateight{LA'->B'} \mateight{A'->RB'} %D ren hfl (hfl)' ==> h^♭ Lf;h^♭;k %D ren h' (h')fl ==> f;h;Rk (f;h;Rk)^♭ %D %D (( AB A'B' -> .plabel= l (f,k) %D %D \Hom(LA,B) \Hom(A,RB) <- .plabel= a \flat_{A,B} %D \Hom(LA,B) \Hom(LA',B') -> .plabel= l Lf;-;k # \Hom(Lf,k) %D \Hom(A,RB) \Hom(A',RB') -> .plabel= l f;-;Rk # \Hom(f,Rk) %D \Hom(LA',B') \Hom(A',RB') <- .plabel= a \flat_{A',B'} %D %D \Hom(L-,-) \Hom(-,R-) <- .plabel= a \flat %D %D h hfl |-> hfl (hfl)' |-> %D h h' |-> h' (h')fl |-> %D )) %D enddiagram %D $$\pu \diag{sqcond-adj-2} $$ \newpage Putting an $\id$ at one extremity: %: %: ------------------- ------------------- %: f;g^♯;Rk=(Lf;g;k)^♯ Lf;h^♭;k=(f;h;Rk)^♭ %: ----------------------- ------------------- %: f;g^♯;R\id=(Lf;g;\id)^♯ L\id;h^♭;k=(\id;h;Rk)^♭ %: ----------------------- ------------------- %: f;g^♯=(Lf;g)^♯ h^♭;k=(h;Rk)^♭ %: %: ^r1 ^r2 %: %: ------------------- ------------------- %: f;g^♯;Rk=(Lf;g;k)^♯ Lf;h^♭;k=(f;h;Rk)^♭ %: ----------------------- ----------------------- %: \id;g^♯;Rk=(L\id;g;k)^♯ Lf;h^♭;\id=(f;h;R\id)^♭ %: ----------------------- ----------------------- %: g^♯;Rk=(g;k)^♯ Lf;h^♭=(f;h)^♭ %: %: ^r3 ^r4 %: \pu $$\ded{r1} \qquad \ded{r2}$$ $$\ded{r3} \qquad \ded{r4}$$ Putting an $\id$ at the middle: %: %: ------------------- ------------------- %: f;g^♯;Rk=(Lf;g;k)^♯ Lf;h^♭;k=(f;h;Rk)^♭ %: ----------------------- ------------------- %: f;\id^♯;Rk=(Lf;\id;k)^♯ Lf;\id^♭;k=(f;\id;Rk)^♭ %: ----------------------- ------------------- %: f;\id^♯;Rk=(Lf;k)^♯ Lf;\id^♭;k=(f;Rk)^♭ %: %: ^mid1 ^mid2 %: \pu $$\ded{mid1} \qquad \ded{mid2}$$ Putting an $\id$ at one extremity: %: %: ------------------- ------------------- %: f;g^♯;Rk=(Lf;g;k)^♯ Lf;h^♭;k=(f;h;Rk)^♭ %: ----------------------- ------------------- %: f;\id^♯;R\id=(Lf;\id;\id)^♯ L\id;\id^♭;k=(\id;\id;Rk)^♭ %: ----------------------- ------------------- %: f;\id^♯=(Lf)^♯ \id^♭;k=(Rk)^♭ %: %: ^m1 ^m2 %: %: ------------------- ------------------- %: f;g^♯;Rk=(Lf;g;k)^♯ Lf;h^♭;k=(f;h;Rk)^♭ %: ----------------------- ----------------------- %: \id;\id^♯;Rk=(L\id;\id;k)^♯ Lf;h^♭;\id=(f;h;R\id)^♭ %: ----------------------- ----------------------- %: \id^♯;Rk=k^♯ Lf;h^♭=(f;h)^♭ %: %: ^r3 ^r4 %: \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "adj" % End: