Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020barrwellsctcs.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020barrwellsctcs.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020barrwellsctcs.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020barrwellsctcs.pdf")) % (defun e () (interactive) (find-LATEX "2020barrwellsctcs.tex")) % (defun u () (interactive) (find-latex-upload-links "2020barrwellsctcs")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020barrwellsctcs.pdf") % (find-sh0 "cp -v ~/LATEX/2020barrwellsctcs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020barrwellsctcs.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020barrwellsctcs.pdf % file:///tmp/2020barrwellsctcs.pdf % file:///tmp/pen/2020barrwellsctcs.pdf % http://angg.twu.net/LATEX/2020barrwellsctcs.pdf % (find-LATEX "2019.mk") \documentclass[oneside,11pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu {\setlength{\parindent}{0em} \footnotesize Notes on Michael Barr and Charles Wells's ``Category Theory for Computing Science'': \url{http://www.tac.mta.ca/tac/reprints/articles/22/tr22.pdf} \url{http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020barrwellsctcs.pdf} } % (find-books "__cats/__cats.el" "barr-wells-ctcs") % (find-barrwellsctcspage (+ 20 331) "12 Fibrations") % (find-barrwellsctcspage (+ 20 331) "12.1.1" "cartesian") \section*{12. Fibrations} 12.1.1. Fibrations and opfibrations (page 331): $u$ is cartesian (for $f$ and $Y$) when: %D diagram cartesian %D 2Dx 100 +20 +20 +20 %D 2D 100 A0 %D 2D %D 2D +20 L0 A1 A2 %D 2D %D 2D +20 B0 %D 2D %D 2D +20 L1 B1 B2 %D 2D %D ren A0 A1 A2 ==> ∀Z X Y %D ren B0 B1 B2 ==> P(Z) C D %D ren L0 L1 ==> \calE \calC %D %D (( A0 A1 -> .plabel= l ∃!w %D A1 A2 -> .plabel= b u %D A0 A2 -> .plabel= a ∀v %D %D B0 B1 -> .plabel= l h %D B1 B2 -> .plabel= b f %D B0 B2 -> .plabel= a P(v) %D %D L0 xy+= 0 -5 %D L1 xy+= 0 -5 %D L0 L1 -> .plabel= l P %D )) %D enddiagram %D $$\pu \diag{cartesian} $$ % (find-barrwellsctcspage (+ 20 332) "opcartesian") $u$ is opcartesian (for $f$ and $X$): %D diagram opcartesian %D 2Dx 100 +20 +20 +20 %D 2D 100 A2 %D 2D %D 2D +20 L0 A0 A1 %D 2D %D 2D +20 B2 %D 2D %D 2D +20 L1 B0 B1 %D 2D %D ren A0 A1 A2 ==> X Y ∀Z %D ren B0 B1 B2 ==> C D P(Z) %D ren L0 L1 ==> \calE \calC %D %D (( A0 A1 -> .plabel= b u %D A1 A2 -> .plabel= r ∃!w %D A0 A2 -> .plabel= a ∀v %D %D B0 B1 -> .plabel= b f %D B1 B2 -> .plabel= r ∀k %D B0 B2 -> .plabel= a P(v) %D %D L0 xy+= 0 -5 %D L1 xy+= 0 -5 %D L0 L1 -> .plabel= l P %D )) %D enddiagram %D $$\pu \diag{opcartesian} $$ 12.1.4. Example: % %D diagram Example-12.1.4 %D 2Dx 100 +20 +20 +60 %D 2D 100 A0 %D 2D %D 2D +20 L0 A1 A2 %D 2D %D 2D +20 B0 %D 2D %D 2D +20 L1 B1 B2 %D 2D %D ren A0 A1 A2 ==> ∀(A',C'') (A,C) Y=(A',C) %D ren B0 B1 B2 ==> C'' C C' %D ren L0 L1 ==> \calA×\calC \calC %D %D (( A0 A1 -> .plabel= l (g,u) %D A1 A2 -> .plabel= b γ(f,v)=(\id_A,f) %D A0 A2 -> .plabel= a ∀(g,h) %D %D B0 B1 -> .plabel= l ∀u %D B1 B2 -> .plabel= b f %D B0 B2 -> .plabel= a h %D %D L0 xy+= 0 -5 %D L1 xy+= 0 -5 %D L0 L1 -> .plabel= l P %D )) %D enddiagram %D $$\pu \diag{Example-12.1.4} $$ % (find-barrwellsctcspage (+ 20 334) "12.1.7 Cleavages induce functors") % (find-barrwellsctcstext (+ 20 334) "12.1.7 Cleavages induce functors") % (find-barrwellsctcspage (+ 20 334) "12.1.8 Proposition") % (find-barrwellsctcstext (+ 20 334) "12.1.8 Proposition") {\bf 12.1.7 Cleavages induce functors} (page 334) Let $P: \calE → \calC$ be an opfibration with opcleavage $κ$. Define $F: \calC → \Cat$ by... % %D diagram opcleavage-induce-functor %D 2Dx 100 +20 +40 %D 2D 100 A0 A1 %D 2D %D 2D +25 A2 A3 %D 2D %D 2D +25 L0 A4 A5 %D 2D %D 2D +20 L1 B0 B1 %D 2D %D ren A0 A1 ==> X Ff(X) %D ren A2 A3 ==> X' Ff(X') %D ren A4 A5 ==> X'' Ff(X'') %D ren B0 B1 ==> C D %D ren L0 L1 ==> \calE \calC %D %D (( A0 A1 -> .plabel= a κ(f,X) %D %D A0 A2 -> .plabel= l u %D A1 A3 -> .plabel= r ∃!Ff(u) %D A0 A3 -> .plabel= m \phantom{a} %D A0 A3 harrownodes nil 20 nil |-> %D %D A2 A3 -> .plabel= a κ(f,X') %D %D A2 A4 -> .plabel= l v %D A3 A5 -> .plabel= r ∃!Ff(v) %D A2 A5 -> .plabel= m \phantom{a} %D A2 A5 harrownodes nil 20 nil |-> %D %D A4 A5 -> .plabel= a κ(f,X'') %D %D B0 B1 -> .plabel= a f %D %D L0 L1 -> .plabel= l P %D %D )) %D enddiagram %D $$\pu \diag{opcleavage-induce-functor} $$ % (find-barrwellsctcspage (+ 20 335) "In a similar way, split fibrations") % (find-barrwellsctcstext (+ 20 335) "In a similar way, split fibrations") In a similar way, split fibrations give functors $\calC^\op → \Cat$. Let $P: \calE → \calC$ be a fibration with cleavage $γ$. Define $F: \calC^\op → \Cat$ by % %D diagram cleavage-induce-functor %D 2Dx 100 +20 +40 %D 2D 100 A0 A1 %D 2D %D 2D +25 A2 A3 %D 2D %D 2D +25 L0 A4 A5 %D 2D %D 2D +20 L1 B0 B1 %D 2D %D ren A0 A1 ==> Ff(Y) Y %D ren A2 A3 ==> Ff(Y') Y' %D ren A4 A5 ==> Ff(Y'') Y'' %D ren B0 B1 ==> C D %D ren L0 L1 ==> \calE \calC %D %D (( A0 A1 -> .plabel= a γ(f,Y) %D %D A0 A2 -> .plabel= l ∃!Ff(u) %D A1 A3 -> .plabel= r u %D A0 A3 -> .plabel= m \phantom{a} %D A0 A3 harrownodes nil 20 nil <-| %D %D A2 A3 -> .plabel= a γ(f,Y') %D %D A2 A4 -> .plabel= l ∃!Ff(v) %D A3 A5 -> .plabel= r v %D A2 A5 -> .plabel= m \phantom{a} %D A2 A5 harrownodes nil 20 nil <-| %D %D A4 A5 -> .plabel= a γ(f,Y'') %D %D B0 B1 -> .plabel= a f %D %D L0 L1 -> .plabel= l P %D %D )) %D enddiagram %D $$\pu \diag{cleavage-induce-functor} $$ \newpage % (find-barrwellsctcspage (+ 20 336) "12.2 The Grothendieck construction") % (find-barrwellsctcstext (+ 20 336) "12.2 The Grothendieck construction") % (find-barrwellsctcspage (+ 20 339) "12.2.8 Given a functor") % (find-barrwellsctcstext (+ 20 339) "12.2.8 Given a functor") \section*{12.2 The Grothendieck construction} {\bf 12.2.8} and {\bf 12.2.9}: Given a functor $F: \calC → \Cat$ (...) the Grothendieck construction in this more general setting constructs the opfibration induced by $F$, a category $𝐛G(\calC, F)$ defined as follows: % %D diagram 12.2.8-and-12.2.9 %D 2Dx 100 +20 +30 +45 +30 +25 +35 +35 %D 2D 100 D1 |-> D2 |-> D3 %D 2D | | %D 2D v v %D 2D +20 D5 |-> D6 %D 2D | %D 2D v %D 2D +20 D9 %D 2D %D 2D +10 A0 B0 --> B1 --> B2 E0 F0 -> F1 -> F2 %D 2D ^ | %D 2D | v %D 2D +20 A1 C0 --> C1 --> C2 E1 G0 -> G1 -> G2 %D 2D %D ren A0 A1 ==> \Cat \calC %D ren B0 B1 B2 ==> F(C) F(C') F(C'') %D ren C0 C1 C2 ==> C C' C'' %D ren D1 D2 D3 ==> x (Ff)(x) (Fg)((Ff)(x)) %D ren D5 D6 ==> x' (Fg)(x') %D ren D9 ==> x'' %D ren E0 E1 ==> 𝐛G(\calC,F) \calC %D ren F0 F1 F2 ==> (x,C) (x',C') (x'',C'') %D ren G0 G1 G2 ==> C C' C'' %D %D (( A0 A1 <- .plabel= l F %D B0 B1 -> .plabel= a Ff %D B1 B2 -> .plabel= a Fg %D C0 C1 -> .plabel= a f %D C1 C2 -> .plabel= a g %D %D D1 D2 |-> D2 D3 |-> D5 D6 |-> %D D2 D5 -> .plabel= l u %D D3 D6 -> .plabel= r (Fg)(u) %D D6 D9 -> .plabel= r v %D %D E0 E1 -> .plabel= l P %D F0 F1 -> .plabel= a (u,f) %D F1 F2 -> .plabel= a (v,g) %D G0 G1 -> .plabel= a f %D G1 G2 -> .plabel= a g %D )) %D enddiagram %D $$\pu \diag{12.2.8-and-12.2.9} $$ \msk % (find-barrwellsctcspage (+ 20 341) "12.2.10 An analogous construction") % (find-barrwellsctcstext (+ 20 341) "12.2.10 An analogous construction") {\bf 12.2.10} An analogous construction, also called the Grothendieck construction (in fact this is the original one), produces a split fibration $𝐛F(\calC, G)$ given a functor $G: \calC^\op → \Cat$: % %D diagram 12.2.10 %D 2Dx 100 +20 +50 +30 +30 +25 +35 +35 %D 2D 100 D1 %D 2D | %D 2D v %D 2D +20 D4 <-| D5 %D 2D | | %D 2D v v %D 2D +20 D7 <-| D8 <-| D9 %D 2D %D 2D +15 A0 B0 <-- B1 <-- B2 E0 F0 -> F1 -> F2 %D 2D ^ | %D 2D | v %D 2D +20 A1 C0 --> C1 --> C2 E1 G0 -> G1 -> G2 %D 2D %D ren A0 A1 ==> \Cat \calC^\op %D ren B0 B1 B2 ==> G(C) G(C') G(C'') %D ren C0 C1 C2 ==> C C' C'' %D ren D1 ==> x %D ren D4 D5 ==> (Gf)(x') x' %D ren D7 D8 D9 ==> (Gf)((Gg)(x'')) (Gg)(x'') x'' %D ren E0 E1 ==> 𝐛F(\calC,G) \calC %D ren F0 F1 F2 ==> (C,x) (C',x') (C'',x'') %D ren G0 G1 G2 ==> C C' C'' %D %D (( A0 A1 <- .plabel= l G %D B0 B1 <- .plabel= a Gf %D B1 B2 <- .plabel= a Gg %D C0 C1 -> .plabel= a f %D C1 C2 -> .plabel= a g %D %D D4 D5 <-| D7 D8 <-| D8 D9 <-| %D D1 D4 -> .plabel= l u %D D4 D7 -> .plabel= l (Gf)(v) %D D5 D8 -> .plabel= r v %D %D E0 E1 -> .plabel= l P %D F0 F1 -> .plabel= a (f,u) %D F1 F2 -> .plabel= a (g,v) %D G0 G1 -> .plabel= a f %D G1 G2 -> .plabel= a g %D )) %D enddiagram %D $$\pu \diag{12.2.10} $$ \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020barrwellsctcs veryclean make -f 2019.mk STEM=2020barrwellsctcs pdf % Local Variables: % coding: utf-8-unix % ee-tla: "ctc" % End: