Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020clops-and-tops-garbage.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020clops-and-tops-garbage.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2020clops-and-tops-garbage.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2020clops-and-tops-garbage.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020clops-and-tops-garbage.pdf")) % (defun e () (interactive) (find-LATEX "2020clops-and-tops-garbage.tex")) % (defun u () (interactive) (find-latex-upload-links "2020clops-and-tops-garbage")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2020clops-and-tops-garbage.pdf")) % (code-eec-LATEX "2020clops-and-tops-garbage") % (find-pdf-page "~/LATEX/2020clops-and-tops-garbage.pdf") % (find-sh0 "cp -v ~/LATEX/2020clops-and-tops-garbage.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020clops-and-tops-garbage.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020clops-and-tops-garbage.pdf % file:///tmp/2020clops-and-tops-garbage.pdf % file:///tmp/pen/2020clops-and-tops-garbage.pdf % http://angg.twu.net/LATEX/2020clops-and-tops-garbage.pdf % (find-LATEX "2019.mk") % «.defs» (to "defs") % % «.SetCs-and-SetDs» (to "SetCs-and-SetDs") % «.SetD-yoneda» (to "SetD-yoneda") % % «.J-ops» (to "J-ops") % «.clop-to-Jop» (to "clop-to-Jop") % «.Jop-to-top» (to "Jop-to-top") % «.Jop-to-top-defs» (to "Jop-to-top-defs") % «.def-j» (to "def-j") % «.def-j-NT» (to "def-j-NT") % «.def-j-obeys-J1-J2-J3» (to "def-j-obeys-J1-J2-J3") %% «.def-j-example» (to "def-j-example") %% «.clop-Jop-bij» (to "clop-Jop-bij") % «.SetD-dense-closed» (to "SetD-dense-closed") % «.SetD-sheaves» (to "SetD-sheaves") % «.SetD-closure» (to "SetD-closure") % «.topological-lemmas» (to "topological-lemmas") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") \input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L -- (find-dn6 "output.lua" "Deletecomments-class") % %L deletecomments = function (bigstr) return DeleteComments.from(bigstr) end % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu %L forths["<-'"] = function () pusharrow("<-^{) }") end %L kite = ".1.|2.3|.4.|.5." %L mp = MixedPicture.new({def="dagKite", meta="s", scale="6pt"}, z):zfunction(kite):output() %L -- mp = MixedPicture.new({def="dagKite", meta="s", scale="10pt"}, z):zfunction(kite):output() %L -- mp = MixedPicture.new({def="dagKote", meta="s", scale="10pt"}, z):zfunction(kite):output() \pu % «defs» (to ".defs") \def\Incs {\mathsf{Incs}} \def\inc {\mathsf{inc}} \def\CanSub {\mathsf{CanSub}} \def\SubPoints{\mathsf{SubPoints}} \def\Subsets {\mathsf{Subsets}} \def\Can {\mathsf{Can}} \def\can {\mathsf{can}} \def\Eq {\mathsf{Eq}} \def\eq {\mathsf{eq}} \def\Futs {\mathsf{Futures}} \def\Innerpts {\mathsf{Innerpoints}} \def\Logic {\mathsf{Logic}} \def\Po {\mathsf{Po}} \def\Ob {\mathsf{Ob}} \def\catH {\mathbf{H}} \def\catK {\mathbf{K}} \def\catT {\mathbf{T}} \def\catW {\mathbf{W}} \def\Clo {\textsc{Cl}} \def\univ {\text{univ}} \def\pcdot {(·)} \def\opcdot {\ovl{(·)}} \def\clop {\ovl{(·)}} \def\SetC {\Set^\catC} \def\SetD {\Set^\catD} \def\SetH {\Set^\catH} \def\SetK {\Set^\catK} \def\SetT {\Set^\catT} \def\calW {\mathcal{W}} \def\chizi {χ_{01}} \def\chizim {χ_{01m}} \def\toM {\ton{\text{M}}} \def\ph {\phantom} \def\Jcan {{J_\mathrm{can}}} \def\hasmax{\mathsf{hasmax}} \def\trans {\mathsf{trans}} \def\stab {\mathsf{stab}} \def\Above {\mathop{\textsf{above}}} \def\Covers {\mathop{\textsf{covers}}} \def\JCovers {\mathop{\textsf{$J$-covers}}} \def\RCovers {\mathop{\textsf{r-covers}}} \def\RJCovers{\mathop{\textsf{r-$J$-covers}}} \def\Downs {\mathsf{D}} \def\Cst {\mathsf{CST}} \def\sa#1#2{\expandafter\def\csname myarg#1\endcsname{#2}} \def\ga#1{\csname myarg#1\endcsname} \def\rotl#1{\rotatebox{90}{$#1$}} \def\eqP{\sim_P} \def\eqJ{\sim_J} \def\eqL{\sim_L} \def\eqR{\sim_R} \def\eqS{\sim_S} \def\TODO{(TODO)} % «theorem» (to ".theorem") % (find-es "tex" "newtheorem") % (find-es "tex" "newcounter") % \newtheorem{thmsection} {My Theorem}[section] \newtheorem{thmsubsection} {My Theorem}[subsection] \newtheorem{thmsubsubsection}{My Theorem}[subsubsection] \def\stepThm#1{\refstepcounter{#1}\csname the#1\endcsname} \def\Theoremsection {{\bf Theorem \stepThm{thmsection}. }} \def\Theoremsubsection {{\bf Theorem \stepThm{thmsubsection}. }} \def\Theoremsubsubsection {{\bf Theorem \stepThm{thmsubsubsection}. }} \def\Lemmasection {{\bf Lemma \stepThm{thmsection}. }} \def\Lemmasubsection {{\bf Lemma \stepThm{thmsubsection}. }} \def\Lemmasubsubsection {{\bf Lemma \stepThm{thmsubsubsection}. }} \def\Conjecturesection {{\bf Conjecture \stepThm{thmsection}. }} \def\Conjecturesubsection {{\bf Conjecture \stepThm{thmsubsection}. }} \def\Conjecturesubsubsection{{\bf Conjecture \stepThm{thmsubsubsection}. }} \def\Examplesection {{\bf Example \stepThm{thmsection}. }} \def\Examplesubsection {{\bf Example \stepThm{thmsubsection}. }} \def\Examplesubsubsection {{\bf Example \stepThm{thmsubsubsection}. }} % \newcounter{Counts}[section] % \newcounter{Countss}[subsection] % \newcounter{Countsss}[subsubsection] % \def\stepCount#1{\refstepcounter{#1}\csname the#1\endcsname} % \def\Theoremsection {{\bf Theorem \stepThm{Counts}.}} % \def\Theoremsubsection {{\bf Theorem \stepThm{Countss}.}} % \def\Theoremsubsubsection{{\bf Theorem \stepThm{Countsss}.}} \newpage % ---------------------------------------- % ---------------------------------------- % ---------------------------------------- % ---------------------------------------- % ---------------------------------------- % ____ _ % / ___| __ _ _ __| |__ __ _ __ _ ___ _ % | | _ / _` | '__| '_ \ / _` |/ _` |/ _ (_) % | |_| | (_| | | | |_) | (_| | (_| | __/_ % \____|\__,_|_| |_.__/ \__,_|\__, |\___(_) % |___/ % ____ _ ____ _ ____ _ ____ % / ___| ___| |_ / ___|___ __ _ _ __ __| | / ___| ___| |_| _ \ ___ % \___ \ / _ \ __| | / __| / _` | '_ \ / _` | \___ \ / _ \ __| | | / __| % ___) | __/ |_| |___\__ \ | (_| | | | | (_| | ___) | __/ |_| |_| \__ \ % |____/ \___|\__|\____|___/ \__,_|_| |_|\__,_| |____/ \___|\__|____/|___/ % % «SetCs-and-SetDs» (to ".SetCs-and-SetDs") % (clgp 30 "SetCs-and-SetDs") % (clga "SetCs-and-SetDs") \section{Toposes of the form $\SetC$ and $\SetD$} \label{SetCs-and-SetDs} From here onwards we will reserve the symbol $\catC$ for small categories and $\catD$ for ``DAG categories'', that we define as follows: a category $\catD$ is a {\sl DAG category} iff there is a {\sl finite} DAG $(P,A)$ such that $\catD$ is the transitive-reflexive closure $(P,A^*)$ of $(P,A)$, regarded as a category. We are especially interested in two kinds of DAG categories: % (ph1p 5 "positional" "1.") % (ph1 "positional") % %R local K, W, H = 1/ 1 \, 1/1 2 3\, 1/ 1 \ %R |2 3| \ 4 5 / |2 3| %R | 4 | \4 5/ %R \ 5 / %R H:tomp({zdef="H", scale="20pt", meta=nil}):addcells():addarrows():output() %R K:tomp({zdef="K", scale="20pt", meta=nil}):addcells():addarrows():output() %R W:tomp({zdef="W", scale="20pt", meta=nil}):addcells():addarrows():output() % (jonp 27 "classifier-big-figure") % (joe "classifier-big-figure") % %L myspec = "1232RL1" %L tdims_mini = TCGDims {h=32, v=25, q=15, crh=8, crv=7, qrh=5} %L tdims_big = TCGDims {h=110, v=110, crh=30, crv=45} %L tspec_mini = TCGSpec.new("33; 32, 13", "?.?", "??.") %L tspec_mini = TCGSpec.new("33; 32, 13") %L tspec_big = TCGSpec.new("33; 32, 13") %L tcg_T = TCGQ.newdsoa(tdims_mini, tspec_mini, {tdef="T", meta="1pt"}, "h v lr") %L tcg_T :output() %L %L tspec_mini = TCGSpec.new("33; 32, 13") %L tdims_micro = TCGDims {h=15, v=8, q=15, crh=3.5, crv=7, qrh=5} %L tcg_Tbu = TCGQ.newdsoa(tdims_micro, tspec_mini, {tdef="Tbu", meta="1pt"}, "h b") %L tcg_Tbu:output() %L %L mpnew({zdef="T"}, myspec):addlrs():print():output() \pu \begin{enumerate} \item The ones coming from the ZDAGs of \cite{PH1}, sections 1--2, with their objects labeled in the ``reading order'', as the categories $\catH$ (``house''), $\catK$ (``kite''), and $\catW$ below: % $$\pu \catH = \!\!\!\zha{H} \qquad \catK = \!\!\!\zha{K} \qquad \catW = \!\!\!\zha{W} $$ \item ``2-column graphs'', like the one below: % $$\catT = \;\; \tcg{T} $$ % They will be discussed in the next section. \end{enumerate} %L tspec_mini = TCGSpec.new("33; 32, 13") %L tdims_micro = TCGDims {h=15, v=8, q=15, crh=3.5, crv=7, qrh=5} %L tcg_Tbu = TCGQ.newdsoa(tdims_micro, tspec_mini, {tdef="Tbu", meta="1pt"}, "h b") %L tcg_Tbu:output() \pu The paper \cite{PH1} defines a language in which certain diagrams have precise meanings as mathematical objects, but these meanings depends on the context, and new meanings can be added. This bullet diagram % $$\dagKite•••••$$ % can be interpreted as a subset of $\Z^2$ (section 1) and as a DAG with arrows going downward (section 2); a diagram with `0's and `1's like % $$\dagKite00111$$ % can be interpreted as: \begin{enumerate} \item a function, a characteristic function, or a subset (section 1), \item a set or an open set in an arbitrary topology (section 11), \item a stable subset (section 12), \item an open set in the default topology (section 12), \item an open set of an order topology (section 12), \item a point in a certain partial order (section 13), \item a point in a certain planar Heyting Algebra (in a ``ZHA''; sections 4, 13, 16) \end{enumerate} Here we will add some new meanings to these lists. When we say % $$\catK = \dagKite••••• \qquad \text{or} \qquad \catT = \tcg{Tbu} $$ % these will be shorter versions of the definitions of the DAG categories $\catK$ and $\catT$ in the beginning of the section, and this % $$\dagKite00111 \ito \dagKite11111 $$ % will be an inclusion in the category $\SetK$, that we can expand as: % %D diagram sub-K-left %D 2Dx 100 +20 +20 %D 2D 100 A0 %D 2D / \ %D 2D +20 A1 A2 %D 2D \ / %D 2D +20 A3 %D 2D | %D 2D +20 A4 %D 2D %D ren A0 A1 A2 A3 A4 ==> ∅ ∅ \{*\} \{*\} \{*\} %D %D (( A0 A1 -> %D A0 A2 -> %D A1 A3 -> %D A2 A3 -> %D A3 A4 -> %D )) %D enddiagram %D %D diagram sub-K-right %D 2Dx 100 +20 +20 %D 2D 100 A0 %D 2D / \ %D 2D +20 A1 A2 %D 2D \ / %D 2D +20 A3 %D 2D | %D 2D +20 A4 %D 2D %D ren A0 A1 A2 A3 A4 ==> \{*\} \{*\} \{*\} \{*\} \{*\} %D %D (( A0 A1 -> %D A0 A2 -> %D A1 A3 -> %D A2 A3 -> %D A3 A4 -> %D )) %D enddiagram %D %D diagram sub-K-inclusion %D 2Dx 100 +85 %D 2D 100 A0 - A1 %D 2D %D 2D +50 B0 - B1 %D 2D %D ren B0 B1 ==> D E %D %D (( A0 .tex= \left(\diag{sub-K-left}\right) BOX %D A1 .tex= \left(\diag{sub-K-right}\right) BOX %D A0 A1 `-> %D # B0 B1 `-> .plabel= a T %D )) %D enddiagram %D $$\pu \diag{sub-K-inclusion} $$ % (ph1p 25 "topologies-on-ZSets" "12.") % (ph1 "topologies-on-ZSets") % (ph1p 29 "topologies-on-2CGs" "15.") % (ph1 "topologies-on-2CGs") Suppose that $A = \dagKite01000$ is an object of $\SetK$. This $A$ has an arrow from a 1 to 0: the image of the morphism $2→4$ in $K$ by $A$ is a morphism from $\{*\}$ to $∅$ in $\Set$, but $\Hom(\{*\},∅)$ is empty, so this is absurd. A diagram like $\dagKite01000$, ``with an arrow $1→0$'', denotes a non-stable subset of a ZSet in \cite[section 12]{PH1}, and a non-open subset in \cite[section 15]{PH1}; here it will denote something that is not an object of the DAG category that we are dealing with. \newpage % __ __ _ % \ \ / /__ _ __ ___ __| | __ _ % \ V / _ \| '_ \ / _ \/ _` |/ _` | % | | (_) | | | | __/ (_| | (_| | % |_|\___/|_| |_|\___|\__,_|\__,_| % % «SetD-yoneda» (to ".SetD-yoneda") % (clgp 32 "SetD-yoneda") % (clga "SetD-yoneda") \subsection{The classifier in a $\Set^\catD$ (via Yoneda)} \label{SetD-yoneda} % (find-maclanemoerdijkpage (+ 11 36) "For an arbitrary small category C,") Most texts about basic topos theory define the classifier of a $\SetC$ directly, as we did in sections \ref{SetD-classifier}--\ref{SetD-chi}: they define an object $Ω$ whose action on objects takes each $B∈\catC$ to the set of subfunctors of $\Hom(B,-)$ and whose action on morphisms is the ``obvious'' one, and then they show that this $Ω$ obeys the properties that we expect from the classifier. The book \cite{MacLaneMoerdijk} does that but it also shows, in its pages 36--39, that we can use Yoneda to prove that $ΩB≅\Sub(\Hom(B,-))$. I struggled a lot to understand their proof, but I found that when I specialize it to `$\SetD$'s it becomes easy to visualize. Let me show how. \msk Let $(P,A)$ be a 2-column graph, let $\catD$ be $(P,A)$ regarded as a category, and let $\catE$ be the topos $\SetD$. Let $Ω$ be any classifier object in $\catE$. This $Ω$ is a functor from $\catD$ to $\Set$, and: \ssk \Theoremsubsection The action on objects of $Ω$ takes each $B∈\catD$ to a set isomorphic to ${↓}{↓}B$. \msk % (favp 35 "yoneda-lemma") % (fav "yoneda-lemma") % (favp 40 "representable-functors") % (fav "representable-functors") The proof needs the two diagrams below. The one on the left is the ``standard Yoneda Lemma'': it is the diagram $\mathsf{Y}1$ of \cite[section 7.2]{FavC} with its functor $R:\catB→\Set$ replaced by $Ω:\catD→\Set$. The diagram on the right is the ``Yoneda Lemma for representable functors'' --- the second diagram from \cite[section 7.6]{FavC} with its representable functor $R:\catB→\Set$ replaced by $\Incs: (\Set^\catD)^\op → \Set$; its universal arrow is $\nameof{⊤}$, that selects the element $(⊤:1 \monicto Ω) ∈ \Incs(Ω)$. % % (mmop 3 "Omega-in-presheaf") % (mmo "Omega-in-presheaf") % %D diagram Omega-in-a-SetD %D 2Dx 100 +50 +50 +55 %D 2D 100 A1 D1 %D 2D | | %D 2D +20 A2 - A3 D2 - D3 %D 2D | | | | %D 2D +20 A4 - A5 D4 - D5 %D 2D %D 2D +20 B0 - B1 E0 - E1 %D 2D %D 2D +15 C0 - C1 F0 - F1 %D 2D \ | \ | %D 2D +20 C2 F2 %D 2D %D ren A1 A2 A3 A4 A5 ==> 1 B Ω(B) C Ω(C) %D ren B0 B1 C0 C1 C2 ==> \catD \Set \catD(B,-) \Set(1,Ω(-)) Ω(-)=Ω %D ren D1 D2 D3 D4 D5 ==> 1 Ω \Incs(Ω) E \Incs(E) %D ren E0 E1 ==> (\Set^\catD)^\op \Set %D ren F0 F1 F2 ==> \Set^\catD(-,Ω) \Set(1,\Incs(-)) \Incs(-)=\Incs %D %D (( A1 A3 -> %D A2 A3 |-> %D A2 A4 -> %D A3 A5 -> %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D B0 B1 -> .plabel= a Ω %D C0 C1 -> %D C1 C2 <-> %D C0 C2 -> %D # B0 relplace 0 -8 \catD %D C0 relplace -22 0 {↓}B≅ %D )) %D (( D1 D3 -> .plabel= r \sm{\nameof{⊤}\\(\univ)} %D D2 D3 |-> %D D2 D4 <- %D D3 D5 -> %D D2 D5 harrownodes nil 20 nil |-> %D D4 D5 |-> %D E0 E1 -> .plabel= a \Incs %D F0 F1 <-> %D F1 F2 <-> %D F0 F2 <-> %D E0 relplace 0 -7 \Set^\catD\phantom{...} %D )) %D enddiagram %D $$\pu \diag{Omega-in-a-SetD} $$ Now we have this sequence of isomorphisms: $$\begin{array}{rcl} Ω(B) & ≅ & \Set(1,Ω(B)) \\ & ≅ & \Set^\catD({↓}B,Ω) \\ & ≅ & \Incs({↓}B) \\ % & = & \Incs(\catD(B,-)) \\ % & = & \Incs(↓B) \\ \end{array} $$ % where the movement is: % % (find-latexinkscape-links "2020closures-and-J-ops/cla-1") $$\includegraphics[height=3cm]{2020closures-and-J-ops/cla-1.pdf}$$ Let's look at an example. If $\catD$ is the category $\catT$ and $B = ▁3$ then: % $$\Logic(\SetT) = \zha{T} \qquad \begin{array}{rcl} Ω(▁3) & ≅ & \Set(1,Ω(▁3)) \\ & ≅ & \Set^\catD({↓}(▁3),Ω) \\ & ≅ & \Incs({↓}(▁3)) \\ & ≅ & \Incs(13) \\ & ≅ & \Subsets(13) \\ & ≅ & \{00, 01, 02, 10, 11, 12, 13\} \\ % & = & \Incs(\catD(B,-)) \\ % & = & \Incs(↓B) \\ \end{array} $$ % (jonp 2 "parts") % (jon "parts") % (jonp 34 "fig:five-sqconds") % (joo "fig:five-sqconds") \newpage % _ _ % | | ___ _ __ ___ _ __ __ _| |_ ___ _ __ ___ % _ | |_____ / _ \| '_ \ / _ \ '__/ _` | __/ _ \| '__/ __| % | |_| |_____| (_) | |_) | __/ | | (_| | || (_) | | \__ \ % \___/ \___/| .__/ \___|_| \__,_|\__\___/|_| |___/ % |_| % «J-ops» (to ".J-ops") % (clgp 6 "J-ops") % (clga "J-ops") \section{J-operators, slashings, and question marks} % ____ _ __ _ % / ___| | ___ _ __ \ \ | | % | | | |/ _ \| '_ \ _____\ \ _ | | % | |___| | (_) | |_) | |_____/ / | |_| | % \____|_|\___/| .__/ /_/ \___/ % |_| % % «clop-to-Jop» (to ".clop-to-Jop") % (clgp 6 "clop-to-Jop") % (clga "clop-to-Jop") \subsection{Closure operators induce J-operators \TODO} \label{clop-to-Jop} Let $(P,A)$ be a 2-column graph. Let $\catE = \SetD$ be the DAG topos generated by $(P,A)$, and let $H := \Logic(\catE)$. Let $\clop$ be a closure operator on $\catE$. Define an operation $(·)^*: H→H$ by defining $R^*$ as $\dom(\ovl{\inc(R,1)})$. More formally, % $$\begin{array}{rrcl} (·)^*: & \Logic(\catE) &→& \Logic(\catE) \\ & R &↦& \dom(\ovl{\inc(R,1)}) \\ \end{array} $$ And as a diagram: % %D diagram clop-to-Jop %D 2Dx 100 +20 +20 +40 +20 %D 2D 100 A0 ------ A1 %D 2D | \ | %D 2D +20 | A2 --|------------- A4 %D 2D | / | / %D 2D +20 A5 ------ A6 ------ A7 %D 2D %D ren A0 A1 ==> R T %D ren A2 A4 ==> R^* T %D ren A5 A6 A7 ==> 1 Ω Ω %D %D (( # Horizontal arrows: %D A0 A1 >-> %D A2 A4 >-> %D A5 A6 >-> .plabel= b χ_{\inc(R,1)} %D A6 A7 -> .plabel= b j %D # A5 A7 -> .slide= -12.5pt .plabel= b χ_{\ovl{q}} %D %D A0 A5 `-> .PLABEL= _(0.40) \inc(R,1) %D A0 A2 `-> %D A2 A5 `-> .PLABEL= ^(0.40) \ovl{\inc(R,1)} %D %D A1 A6 `-> # .PLABEL= _(0.30) ⊤ %D A4 A7 `-> # .PLABEL= ^(0.30) ⊤ %D )) %D enddiagram %D $$\pu \diag{clop-to-Jop} $$ Note that we also have $R^* = \dom(σ(j∘χ_{\inc(R,1)}))$. \msk \Theoremsubsection The operation $(·)^*$ defined above is a J-operator. {\bf Proof.} The proofs of J1 and J2, i.e., of $R≤R^*$ and $R^*=R^{**}$, are just the parts C1 and C2 of Theorem \ref{thm:top-to-clop} with a slightly different notation: just rewrite the $E$ as $1$, $D$ as $R$, $\ovl{D}$ as $R^*$, and $\ovl{\ovl{D}}$ as $R^{**}$. The proof of J3 is better done in two steps. First we establish the notation, i.e., how the truth-values and their arrows to 1 will be named, using the notation for intersection pullbacks that we defined in Theorem \ref{thm:restr-clop-1}: % % (clgp 10 "top-to-clop") % (clga "top-to-clop") % (clga "top-to-clop" "thm:top-to-clop") % %D diagram C4-to-J3-notation-1 %D 2Dx 100 +35 +30 +35 %D 2D 100 A0 - A1 B0 - B1 %D 2D | | | | %D 2D +30 A2 - A3 B2 - B3 %D 2D %D ren A0 A1 A2 A3 ==> C{∧}D D C 1 %D ren B0 B1 B2 B3 ==> C^*{∧}D^* D^* C^* 1 %D %D (( A0 A1 `-> .plabel= a (c∩d)'' %D A0 A2 `-> .plabel= l (c∩d)' %D A0 A3 `-> .plabel= m (c∩d) %D A1 A3 `-> .plabel= r d %D A2 A3 `-> .plabel= b c %D )) %D (( B0 B1 `-> .plabel= a (c∩d)'' %D B0 B2 `-> .plabel= l (c∩d)' %D B0 B3 `-> .plabel= m (c∩d) %D B1 B3 `-> .plabel= r d %D B2 B3 `-> .plabel= b c %D )) %D enddiagram %D %D diagram C4-to-J3-notation-2 %D 2Dx 100 +20 %D 2D 100 A0 %D 2D %D 2D +20 A1 %D 2D %D 2D +20 A2 %D 2D %D ren A0 A1 A2 ==> C{∧}D (C∧D)^* 1 %D %D (( A0 A1 `-> %D A0 A2 `-> .plabel= l c∩d %D A1 A2 `-> .plabel= r \ovl{c∩d} %D )) %D enddiagram %D $$\pu \diag{C4-to-J3-notation-1} \qquad \diag{C4-to-J3-notation-2} $$ And here is the second step: % $$\def\c{c} \def\d{d} \begin{array}{rcl} (C∧D)^* &=& \dom(\ovl{\c∩\d}) \\ &=& \dom(\ovl{\c}∩\ovl{\d}) \\ &=& \dom(\ovl{\c})∩\dom(\ovl{\d}) \\ &=& C^*∩D^* \\ \end{array} % \quad % \def\c{\inc(C,1)} \def\d{\inc(D,1)} \begin{array}{rcl} (C∧D)^* &=& \dom(\ovl{\c∩\d}) \\ &=& \dom(\ovl{\c}∩\ovl{\d}) \\ &=& \dom(\ovl{\c})∩\dom(\ovl{\d}) \\ &=& C^*∩D^* \\ \end{array} $$ \newpage % _ __ _ % | | \ \ | |_ ___ _ __ % _ | | _____\ \ | __/ _ \| '_ \ % | |_| | |_____/ / | || (_) | |_) | % \___/ /_/ \__\___/| .__/ % |_| % % «Jop-to-top» (to ".Jop-to-top") % (clgp 7 "Jop-to-top") % (clga "Jop-to-top") \subsection{J-operators induce topologies \TODO} Let's state this in its general form first, and then see an example that clarifies what it means and how it works. \msk \Theoremsubsection \label{thm:Jop-to-top-generic} \begin{tabular}{rl} Suppose that: & $\catD$ is a DAG category, \\ & $\catE$ is $\SetD$, \\ & $j$ is a topology in $\catE$, \\ & $\clop$ is the closure operator associated to $j$, \\ & $B$ is an object of $D$, \\ & $R$ is ${↓}B$ (so $R∈\Logic(E)$), \\ & $(q:Q \ito R)∈\Incs(R)$ (so $Q≤R$), \\ & $(\ovl{q}:\ovl{Q} \ito R)$ is the closure of $q$ (so $Q≤\ovl{Q}≤R$). \\ Then: & $RB=\{*\}$, \\ & $ΩB={↓}{↓}B={↓}R$, \\ & $(χ_qB)(*)=Q$, \\ & $(χ_{\ovl{q}}B)(*)=\ovl{Q}$, \\ and so: & $\begin{array}[t]{rcl} jB(Q) &=& jB(χ_qB(*)) \\ &=& (jB∘χ_qB)(*) \\ &=& (j∘χ_q)(B)(*) \\ &=& χ_{\ovl{q}}(B)(*) \\ &=& \ovl{Q}. \\ \end{array} $ \\ \end{tabular} \msk %D diagram Jop-to-top-generic %D 2Dx 100 +20 +20 +40 +20 %D 2D 100 A0 ------ A1 %D 2D | \ | %D 2D +20 | A2 --|------------- A4 %D 2D | / | / %D 2D +20 A5 ------ A6 ------ A7 %D 2D %D 2D +25 B0 ------ B1 ------ B2 %D 2D %D 2D +25 C0 ------ C1 %D 2D +8 C2 ---------------- C3 %D 2D +8 C4 ------ C5 %D 2D %D ren A0 A1 ==> Q T %D ren A2 A4 ==> \ovl{Q} T' %D ren A5 A6 A7 ==> R Ω Ω' %D %D ren B0 B1 B2 ==> RB ΩB ΩB %D %D ren C0 C1 ==> * Q %D ren C2 C3 ==> * \ovl{Q} %D ren C4 C5 ==> Q \ovl{Q} %D %D (( # Horizontal arrows: %D A0 A1 >-> %D A2 A4 >-> %D A5 A6 >-> .plabel= b χ_q %D A6 A7 -> .plabel= b j %D A5 A7 -> .slide= -12.5pt .plabel= b χ_{\ovl{q}} %D %D A5 relplace -15 0 {↓}B= %D %D A0 A5 `-> .PLABEL= _(0.40) q %D A0 A2 `-> %D A2 A5 `-> .PLABEL= ^(0.40) \ovl{q} %D %D A1 A6 `-> # .PLABEL= _(0.30) ⊤ %D A4 A7 `-> # .PLABEL= ^(0.30) ⊤ %D %D B0 B1 -> .plabel= b χ_qB %D B1 B2 -> .plabel= b jB %D B0 B2 -> .slide= -12.5pt .plabel= b χ_{\ovl{q}}B %D %D C0 C1 |-> %D C2 C3 |-> %D C4 C5 |-> %D )) %D enddiagram %D $$\pu \diag{Jop-to-top-generic} $$ \newpage \Examplesubsection \label{thm:Jop-to-top-1} % If we make $\catD=\catT$, $B=3▁$, $Q=11$, and $\ovl{Q}=21$ in the previous diagram it becomes this: %D diagram Jop-to-top-1 %D 2Dx 100 +20 +20 +40 +20 %D 2D 100 A0 ------ A1 %D 2D | \ | %D 2D +20 | A2 --|------------- A4 %D 2D | / | / %D 2D +20 A5 ------ A6 ------ A7 %D 2D %D 2D +25 B0 ------ B1 %D 2D +8 B2 ---------------- B3 %D 2D +8 B4 ------ B5 %D 2D %D ren A0 A1 ==> 11 T %D ren A2 A4 ==> 21 T' %D ren A5 A6 A7 ==> 32 Ω Ω' %D %D ren B0 B1 ==> (3▁,*) (3▁,11) %D ren B2 B3 ==> (3▁,*) (3▁,21) %D ren B4 B5 ==> (3▁,11) (3▁,21) %D %D (( # Horizontal arrows: %D A0 A1 >-> %D A2 A4 >-> %D A5 A6 >-> .plabel= b χ_q %D A6 A7 -> .plabel= b j %D A5 A7 -> .slide= -12.5pt .plabel= b χ_{\ovl{q}} %D %D A5 relplace -15 0 {↓}3▁= %D %D A0 A5 `-> .PLABEL= _(0.40) q %D A0 A2 `-> %D A2 A5 `-> .PLABEL= ^(0.40) \ovl{q} %D %D A1 A6 `-> # .PLABEL= _(0.30) ⊤ %D A4 A7 `-> # .PLABEL= ^(0.30) ⊤ %D %D B0 B1 |-> %D B2 B3 |-> %D B4 B5 |-> %D )) %D enddiagram %D $$\pu \diag{Jop-to-top-1} $$ % «Jop-to-top-defs» (to ".Jop-to-top-defs") % %L tdims_med = TCGDims {h=30, v=10, crh=11, crv=8} %L tspec_med = TCGSpec.new("33; 32, 13") %L tcg_med = TCGQ.newdsoa(tdims_med, tspec_med, %L {tdef="Tmed", meta="1pt s"}, %L "h p") %L tcg_med:Lput(3, "\\Ta"); tcg_med:Rput(3, "\\Tb") %L tcg_med:Lput(2, "\\Tc"); tcg_med:Rput(2, "\\Td") %L tcg_med:Lput(1, "\\Te"); tcg_med:Rput(1, "\\Tf") %L tcg_med:output() \pu \def\Tmed#1#2#3#4#5#6{{ \def\Ta{#1} \def\Tb{#2} \def\Tc{#3} \def\Td{#4} \def\Te{#5} \def\Tf{#6} \left(\!\!\! \tcg{Tmed} \!\right) }} \def\C#1{\{#1\}} \def\UN{{\C{*}}} \def\TT{{\Tmed {\C{32}} {\C{13}} {\C{20}} {\C{02}} {\C{10}} {\C{01}} }} \def\TA{{\Tmed ∅∅ ∅∅ \UN\UN}} \def\TB{{\Tmed ∅∅ \UN∅ \UN\UN}} \def\TC{{\Tmed \UN∅ \UN\UN \UN\UN}} Here is its internal view: % %D diagram Jop-to-top-big-ex %D 2Dx 100 +30 +30 +50 +30 %D 2D 100 A0 ------ A1 %D 2D | \ | %D 2D +30 | A2 --|------------- A4 %D 2D | / | / %D 2D +30 A5 ------ A6 ------ A7 %D 2D %D 2D +25 B0 ------ B1 %D 2D +8 B2 ---------------- B3 %D 2D +8 B4 ------ B5 %D 2D %D ren A0 A1 ==> \TA \TT %D ren A2 A4 ==> \TB \TT %D ren A5 A6 A7 ==> \TC Ω Ω' %D %D ren B0 B1 ==> (3▁,*) (3▁,11) %D ren B2 B3 ==> (3▁,*) (3▁,21) %D ren B4 B5 ==> (3▁,11) (3▁,21) %D %D (( # Horizontal arrows: %D A0 A1 >-> %D A2 A4 >-> %D A5 A6 >-> .plabel= b χ_q %D A6 A7 -> .plabel= b j %D A5 A7 -> .slide= -12.5pt .plabel= b χ_{\ovl{q}} %D %D A5 relplace -15 0 {↓}3▁= %D %D A0 A5 `-> .PLABEL= _(0.40) q %D A0 A2 `-> %D A2 A5 `-> .PLABEL= ^(0.40) \ovl{q} %D %D A1 A6 `-> # .PLABEL= _(0.30) ⊤ %D A4 A7 `-> # .PLABEL= ^(0.30) ⊤ %D %D B0 B1 |-> %D B2 B3 |-> %D B4 B5 |-> %D )) %D enddiagram %D $$\pu \diag{Jop-to-top-big-ex} $$ I did not expand the `$Ω$'s because their internal views would be too big -- see the last diagram in section \ref{SetD-classifier}. Note that the images of $R$ by the monics $χ_q$ and $χ_{\ovl{q}}$ (that are not inclusions!) are, respectively: % $$\Tmed {\C{11}} {∅} {\C{10}} {\C{01}} {\C{10}} {\C{01}} \qquad \text{and} \qquad \Tmed {\C{21}} {∅} {\C{20}} {\C{01}} {\C{10}} {\C{01}} \;. $$ \newpage % «def-j» (to ".def-j") % (clgp 9 "def-j") % (clga "def-j") \Theoremsubsection \label{thm:Jop-to-top-formula} \begin{tabular}{rl} Suppose that: & $(P,A)$ is a 2-column graph, \\ & $\catD$ is $(P,A)$ as a DAG category, \\ & $\catE$ is $\SetD$, \\ & $H$ is $\Logic(\catE)$, \\ & $(·)^*$ is a J-operator on $H$. \\ Then the operation & $j = λB⠆P.λQ⠆{↓}Q.Q^*∧{↓}B$ \\ is a morphism & $j:Ω→Ω$ \\ that obeys & $j∘j=j$, \\ & $j∘⊤_Ω=⊤_Ω$, \\ & $∧∘j=(j×j)∘∧$, \\ i.e., & $j$ is a topology on $\catE$. \\ \end{tabular} %D diagram Jop-to-top-def-j %D 2Dx 100 +20 +20 +40 +20 %D 2D 100 A0 ------ A1 %D 2D | \ | %D 2D +20 | A2 --|------------- A4 %D 2D | / | / %D 2D +20 A5 ------ A6 ------ A7 %D 2D %D 2D +25 B0 ------ B1 ------ B2 %D 2D %D 2D +25 C0 ------ C1 %D 2D +8 C2 ---------------- C3 %D 2D +8 C4 ------ C5 %D 2D %D ren A0 A1 ==> Q T %D ren A2 A4 ==> Q^*{∧}{↓}B T' %D ren A5 A6 A7 ==> R Ω Ω' %D %D ren B0 B1 B2 ==> RB ΩB ΩB %D %D ren C0 C1 ==> * Q %D ren C2 C3 ==> * Q^*{∧}{↓}B %D ren C4 C5 ==> Q Q^*{∧}{↓}B %D %D (( # Horizontal arrows: %D A0 A1 >-> %D A2 A4 >-> %D A5 A6 >-> .plabel= b χ_q %D A6 A7 -> .plabel= b j %D A5 A7 -> .slide= -12.5pt .plabel= b χ_{\ovl{q}} %D %D A5 relplace -15 0 {↓}B= %D %D A0 A5 `-> .PLABEL= _(0.40) q %D A0 A2 `-> %D A2 A5 `-> .PLABEL= ^(0.40) \ovl{q} %D %D A1 A6 `-> # .PLABEL= _(0.30) ⊤ %D A4 A7 `-> # .PLABEL= ^(0.30) ⊤ %D %D B0 B1 -> .plabel= b χ_qB %D B1 B2 -> .plabel= b jB %D B0 B2 -> .slide= -12.5pt .plabel= b χ_{\ovl{q}}B %D %D C0 C1 |-> %D C2 C3 |-> %D C4 C5 |-> %D )) %D enddiagram %D $$\pu \diag{Jop-to-top-def-j} $$ \msk \def\adb{{∧}{↓}B} % «def-j-NT» (to ".def-j-NT") % (clgp 35 "def-j-NT") % (clga "def-j-NT") To prove that this $j:Ω→Ω$ is a natural transformation in $\SetD$ we need to check that the square at the right here commutes: % %D diagram def-j-NT %D 2Dx 100 +20 +25 +40 +50 %D 2D 100 A0 B0 - B1 E0 - E1 %D 2D | | | | | %D 2D +17 | | | | E3' %D 2D +8 A1 B2 - B3 E2 - E3 %D 2D %D 2D +15 C0 - C1 %D 2D %D ren A0 A1 ==> B C %D ren B0 B1 B2 B3 ==> ΩB ΩB ΩC ΩC %D ren C0 C1 ==> Ω Ω %D ren E0 E1 E3' ==> Q Q^*\adb (Q{∧}{↓}B)^*{∧}{↓}C %D ren E2 E3 ==> Q{∧}{↓}C (Q{∧}{↓}C)^*{∧}{↓}C %D %D (( A0 A1 -> .plabel= l f %D B0 B1 -> .plabel= a jB %D B0 B2 -> .plabel= l Ωf %D B1 B3 -> .plabel= r Ωf %D B2 B3 -> .plabel= a jC %D C0 C1 -> .plabel= a j %D )) %D %D (( E0 E1 |-> %D E0 E2 |-> %D E1 E3' |-> %D E2 E3 |-> %D )) %D enddiagram %D $$\pu \diag{def-j-NT} $$ \newpage % «def-j-obeys-J1-J2-J3» (to ".def-j-obeys-J1-J2-J3") % (clgp 38 "def-j-obeys-J1-J2-J3") % (clga "def-j-obeys-J1-J2-J3") To prove that $j$ obeys J1, J2, J3 we need to check that the lower three diagrams here commute: % %D diagram def-j-1 %D 2Dx 100 +20 +20 +20 +30 +25 %D 2D 100 A0 A1 B0 B1 C0 C1 %D 2D %D 2D +20 A2 B2 C2 C3 %D 2D %D ren A0 A1 A2 ==> Ω Ω Ω %D ren B0 B1 B2 ==> Ω Ω Ω %D ren C0 C1 C2 C3 ==> Ω×Ω Ω Ω×Ω Ω %D %D (( A0 A1 -> .plabel= a ⊤ %D A0 A2 -> .plabel= l ⊤ %D A1 A2 -> .plabel= r j %D %D B0 B1 -> .plabel= a j %D B0 B2 -> .plabel= l j %D B1 B2 -> .plabel= r j %D %D C0 C1 -> .plabel= a ∧ %D C0 C2 -> .plabel= l j×j %D C1 C3 -> .plabel= r j %D C2 C3 -> .plabel= a ∧ %D )) %D enddiagram %D $$\pu \diag{def-j-1} $$ %D diagram def-j-2 %D 2Dx 100 +20 +20 +25 +30 +45 %D 2D 100 A0 A1 B0 B1 C0 C1 %D 2D %D 2D +20 A2 B2 C2 C3 %D 2D %D ren A0 A1 A2 ==> ΩB ΩB ΩB %D ren B0 B1 B2 ==> ΩB ΩB ΩB %D ren C0 C1 C2 C3 ==> ΩB{×}ΩB ΩB ΩB{×}ΩB ΩB %D %D (( A0 A1 -> .plabel= a jB %D A0 A2 -> .plabel= l jB %D A1 A2 -> .plabel= r jB %D %D B0 B1 -> .plabel= a ⊤_ΩB %D B0 B2 -> .plabel= l ⊤_ΩB %D B1 B2 -> .plabel= r jB %D %D C0 C1 -> .plabel= a λQ,R.Q{∧}R %D C0 C2 -> .plabel= l jB×jB %D C1 C3 -> .plabel= r jB %D C2 C3 -> .plabel= a λQ,R.Q{∧}R %D )) %D enddiagram %D $$\pu \diag{def-j-2} $$ %D diagram def-j-3 %D 2Dx 100 +30 +30 +25 +45 +65 %D 2D 100 A0 - A1 B0 - B1 C0 - C1 %D 2D \ | \ | | | %D 2D +17 \ A2' \ B2' | C3' %D 2D +8 A2 B2 C2 - C3 %D 2D %D ren A0 A1 A2' A2 ==> Q Q^*\adb (Q^*\adb)^*\adb Q^*\adb %D ren B0 B1 B2' B2 ==> Q {↓}B ({↓}B)^*\adb {↓}B %D ren C0 C1 C3' C2 C3 ==> (Q,R) Q{∧}R (Q{∧}R)^*\adb (Q^*\adb,R^*\adb) (Q^*\adb){∧}(R^*\adb) %D %D (( A0 A1 |-> %D A1 A2' |-> %D A0 A2 |-> .curve= _20pt %D %D B0 B1 |-> %D B1 B2' |-> %D B0 B2 |-> .curve= _20pt %D %D C0 C1 |-> %D C1 C3' |-> %D C0 C2 |-> %D C2 C3 |-> %D )) %D enddiagram %D $$\pu \diag{def-j-3} $$ % \newpage % «def-j-example» (to ".def-j-example") % (clgp 42 "def-j-example") % (clga "def-j-example") % (clgp 28 "SetT-classifier-defs") % (clga "SetT-classifier-defs") % % «clop-Jop-bij» (to ".clop-Jop-bij") % % (clgp 28 "clop-Jop-bij") % % (clga "clop-Jop-bij") % \subsection{A bijection \TODO} % % «SetD-dense-closed» (to ".SetD-dense-closed") % (clgp 38 "SetD-dense-closed") % (clga "SetD-dense-closed") \subsection{Dense and closed maps in a $\SetD$ \TODO} Let $\catD$ be a DAG topos with a J-operator. If $R$ and $S$ are two truth-values in it with $R≤S$ we can name the inclusions between $R$, $S$, and $1$ like this: % %D diagram ?? %D 2Dx 100 +15 +15 %D 2D 100 A0 A1 %D 2D %D 2D +25 A2 %D 2D %D ren A0 A1 A2 ==> R S 1 %D %D (( A0 A1 `-> .plabel= a m %D A0 A2 `-> .plabel= l r %D A1 A2 `-> .plabel= r s %D )) %D enddiagram %D $$\pu \diag{??} $$ % and can use the Theorem \ref{thm:restr-clop-1} to calculate $\ovl{m}$ using just the J-operator. We have this: % %D diagram ?? %D 2Dx 100 +20 %D 2D 100 A0 %D 2D %D 2D +20 A1 %D 2D %D 2D +20 A2 %D 2D %D ren A0 A1 A2 ==> R R^S{=}R^*{∧}S S %D %D (( A0 A1 `-> .plabel= r (dense) %D A0 A2 `-> .plabel= l m %D A1 A2 `-> .plabel= r \sm{\ovl{m}\\(closed)} %D )) %D enddiagram %D $$\pu \diag{??} $$ % where we call the mediating map $d$, and we know that $d$ is dense and $\ovl{m}$ is closed by Theorem \ref{thm:dense-and-closed-2}. This gives us lots of examples of dense and closed maps in a topos with a J-operator. For example, if $R=11$ and $S=14$ in the figure below, then $R^*=23$ and $R^S=R^*∧S=13$: % % (jonp 16 "valuations") % (jov "valuations") % %L mp = mpnew({zdef="11-13-14", scale="12pt", meta="s"}, "1R2R3212RL1") %L mp:addcuts("c 4321/0 0123|45|6") %L mp:put(v"11", "R"):put(v"23", "R*", "R^*") %L mp:put(v"14", "S"):put(v"13", "RS", "R^S") %L mp:output() % %D diagram ?? %D 2Dx 100 +25 %D 2D 100 A0 %D 2D %D 2D +25 A1 %D 2D %D 2D +25 A2 %D 2D %D ren A0 A1 A2 ==> 11 13{=}23{∧}14 14 %D ren A0 A1 A2 ==> 11 13=23∧14 14 %D %D (( A0 A1 `-> .plabel= r (dense) %D A0 A2 `-> # .plabel= l m %D A1 A2 `-> .plabel= r (closed) %D )) %D enddiagram %D \pu $$%\zha{O_A(P),J} %\qquad \zha{11-13-14} \qquad \qquad \diag{??} $$ By trying many examples of this factorization I got two conjectures: \Conjecturesubsection an inclusion $R \ito R'$ in the logic is dense iff both $R$ and $R'$ belong to the same region of the slashing, \Conjecturesubsection an inclusion $S' \ito S$ in the logic is dense iff $S'$ cannot be moved upwards toward $S$ without crossing a line of the slashing. They are both easy to prove. (...) % «SetD-sheaves» (to ".SetD-sheaves") % (clgp 39 "SetD-sheaves") % (clga "SetD-sheaves") \subsection{Sheaves in a $\SetD$ \TODO} % (find-mclartypage (+ 4 196) "21. Topologies") % (find-books "__cats/__cats.el" "bell-lst") % (find-belltpage (+ 14 174) "(mu-)sheaf") % (find-books "__cats/__cats.el" "johnstone-topostheory") % (find-topostheorypage (+ 24 81) "3.2. Sheaves") % (find-toposthepubpage 113 "3.2. Sheaves") % (find-toposthepubtext 113 "3.2. Sheaves") The usual definition of a sheaf in a topos $\catE$ with a topology $j$ is that an object $S∈\catE$ is a ($j$-)sheaf iff for every dense monic $d: D \monicto E$ in $\catE$ every map $f: D \to S$ factors uniquely through $d: D \monicto E$. I prefer to write this backwards: $S$ is a sheaf iff for every dense monic $d: D \monicto E$ the map of hom-sets $(∘d): \Hom(E,S) → \Hom(D,S)$ is a bijection. In a diagram: % %D diagram ?? %D 2Dx 100 +25 +40 +30 %D 2D 100 A0 B0 C0 %D 2D | \ | %D 2D +25 A1 - A2 B1 C1 %D 2D %D ren A0 A1 A2 ==> ∀D ∀E S %D ren B0 B1 ==> \Hom(D,S) \Hom(E,S) %D ren C0 C1 ==> g∘d g %D %D (( A0 A1 `-> .plabel= l \sm{∀d\\dense} sl_ %D A0 A2 -> .plabel= r ∀f %D A1 A2 -> .plabel= b ∃!g %D %D B1 B0 -> .plabel= l \sm{∘d\\iso} %D %D C1 C0 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ In a $\SetD$ we can get lots of properties that sheaves must obey by understanding what the condition above means on a very small family of dense maps --- the ``basic dense maps''. Suppose that we have a DAG with question marks $((P,A),Q)$ and that our topos $\catE$ with topology $j$ is generated by that $((P,A),Q)$. For every point $B$ of the set of question marks $Q$ let $bd(B): D \ito E$ be the inclusion in which $E$ is ${↓}B$ and $D$ is $E$ minus the point $B$. We will call these `$bd(B)$'s the {\sl basic dense maps} of our topos. % % «SetD-closure» (to ".SetD-closure") % % (clgp 41 "SetD-closure") % % (clga "SetD-closure") % \subsection{From question marks to a closure operator \TODO} % % %L -- (find-dn6 "tcgs.lua" "TCGQ") % %L -- (find-dn6 "tcgs.lua" "TCGQ" "Lput =") % %L TCGQ.__index.Lputs = function (tq, arr) % %L if type(arr) == "string" then arr = split(arr) end % %L for y,str in ipairs(arr) do tq:Lput(y, str) end % %L return tq % %L end % %L TCGQ.__index.Rputs = function (tq, arr) % %L if type(arr) == "string" then arr = split(arr) end % %L for y,str in ipairs(arr) do tq:Rput(y, str) end % %L return tq % %L end % %L % %L tdims_clo = TCGDims {qrh=5, q=15, crh=12, h=60, v=25, crv=7} -- with v arrows % %L tspec_clo1 = TCGSpec.new("46; 11 22 34 45, 25", ".???", "???.?.") % %L tspec_clo2 = TCGSpec.new("46; 11 22 34 45, 25", "....", "???...") % %L tcg_clo1 = TCGQ.newdsoa(tdims_clo, tspec_clo1, {tdef="clo-1", meta="1pt p"}, "q h") % %L tcg_clo2 = TCGQ.newdsoa(tdims_clo, tspec_clo2, {tdef="clo-2", meta="1pt p"}, "q h") % %L tcg_clo1:Lputs("1 · · ·") % %L tcg_clo2:Lputs("1 · · ·") % %L tcg_clo1:Rputs("1 0 0 0 · ·") % %L tcg_clo2:Rputs("1 0 0 0 · ·") % %L tcg_clo1:output() % %L tcg_clo2:output() % \pu % $$\tcg{clo-1} % \qquad % \tcg{clo-2} % $$ % «topological-lemmas» (to ".topological-lemmas") % (clgp 30 "topological-lemmas") % (clga "topological-lemmas") \subsection{Some topological lemmas \TODO} Let $(X,\Opens(X))$ be a topological space. \msk \Lemmasubsection If $A,B⊆X$ then $\Int(A∩B) = \Int(A)∩\Int(B)$. {\bf Proof.} Suppose that $c∈\Int(A)∩\Int(B)$. Then we have open sets $W,V∈\Opens(X)$ that make all the inferences in the tree at the left below true, and so $c∈\Int(A∩B)$. Now suppose that $d∈\Int(A∩B)$. We have an open set $U∈\Opens(X)$ that makes all the inferences in the tree at the right below true, and so $d∈\Int(A)∩\Int(B)$. This means that $\Int(A)∩\Int(B)⊆\Int(A∩B)$ and $\Int(A∩B)⊆\Int(A)∩\Int(B)$, and so $\Int(A∩B) = \Int(A)∩\Int(B)$. %: %: c∈\Int(A)∩\Int(B) c∈\Int(A)∩\Int(B) %: ----------------- ----------------- %: c∈\Int(A) c∈\Int(B) %: ----------- ----------- %: c∈V⊆\Int(A) c∈V⊆\Int(B) %: ----------- ----------- %: c∈V⊆A c∈W⊆B %: ------- ------- %: c∈V∩W⊆A c∈V∩W⊆B %: ----------------------------- %: c∈V∩W⊆A∩B %: ----------- %: c∈\Int(A∩B) %: %: ^top-lemma-1 %: %: %: d∈\Int(A∩B) d∈\Int(A∩B) %: ------------- ------------- %: d∈U⊆\Int(A∩B) d∈U⊆\Int(A∩B) %: ------------- ------------- %: d∈U⊆A∩B d∈U⊆A∩B %: ------- ------- %: d∈U⊆A d∈U⊆B %: --------- --------- %: d∈\Int(A) d∈\Int(B) %: -------------------------- %: d∈\Int(A)∩\Int(B) %: %: ^top-lemma-2 %: \pu $$\ded{top-lemma-1}$$ $$\ded{top-lemma-2}$$ \msk \Lemmasubsection If $W,V∈\Opens(X)$, $W⊆V$, and $A⊆X$, then $\Int(W∪A)∩V = \Int(W∪(A∩V))$. {\bf Proof:} % $$\begin{array}{rcl} \Int(W∪A)∩V &=& \Int(W∪A)∩\Int(V) \\ &=& \Int((W∪A)∩V) \\ &=& \Int((W∩V)∪(A∩V)) \\ &=& \Int(W∪(A∩V)). \\ \end{array} $$ \printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020clops-and-tops-garbage veryclean make -f 2019.mk STEM=2020clops-and-tops-garbage pdf % Local Variables: % coding: utf-8-unix % ee-tla: "clg" % End: