|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020closure-operator.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2020closure-operator.tex" :end))
% (defun d () (interactive) (find-pdf-page "~/LATEX/2020closure-operator.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2020closure-operator.pdf"))
% (defun e () (interactive) (find-LATEX "2020closure-operator.tex"))
% (defun u () (interactive) (find-latex-upload-links "2020closure-operator"))
% (defun v () (interactive) (find-2a '(e) '(d)) (g))
% (find-pdf-page "~/LATEX/2020closure-operator.pdf")
% (find-sh0 "cp -v ~/LATEX/2020closure-operator.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2020closure-operator.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2020closure-operator.pdf
% file:///tmp/2020closure-operator.pdf
% file:///tmp/pen/2020closure-operator.pdf
% http://angg.twu.net/LATEX/2020closure-operator.pdf
% (find-LATEX "2019.mk")
\documentclass[oneside,12pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
%\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
\usepackage{proof} % For derivation trees ("%:" lines)
\input diagxy % For 2D diagrams ("%D" lines)
\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15} % (find-LATEX "edrx15.sty")
\input edrxaccents.tex % (find-LATEX "edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
% (find-es "tex" "geometry")
\begin{document}
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
% (find-angg ".emacs.papers" "johnstone")
% (find-topostheorypage (+ 24 76) "3.1. Topologies")
% (find-topostheorypage (+ 24 77) "3.13. Definition")
(Page 77):
3.13 Definition. Let $\calE$ be any category with pullbacks. A {\sl
universal closure operation} on $\calE$ is defined by specifying,
for each $X∈\calE$, a closure operation (i.e., an increasing,
order-preserving, idempotent map) on the poset of subobjects of $X$
--- we denote the closure of $X' \monicto X$ by $\ovl{X'} \monicto X$
--- in such a way that closure commutes with pullback along morphisms
of $\calE$; i.e., given $Y \ton{f} X$, we have $f^*(\ovl{X'}) ≅
\ovl{f^*(X')}$ as subobjects of $Y$.
We shall use the words {\sl dense} and {\sl closed} with their usual
meanings relative to a universal closure operation; i.e., $X' \monicto
X$ is dense if $\ovl{X'} ≅ X'$, and closed if $\ovl{X'} ≅ X'$.
\msk
Here is a way to visualize those rules.
First line: a monic map $α:A \monicto B$ factors through its closure
$\ovl{α}:\ovl{A} \monicto B$; the factorization arrow $A \monicto
\ovl{A}$ is not usually named. The closure of $\ovl{α}:\ovl{A}
\monicto B$ is a monic $\ovl{\ovl{α}}:\ovl{\ovl{A}} \monicto B$
isomorphic to $\ovl{α}:\ovl{A} \monicto B$. In a shorter notation,
$A≤\ovl{A}≅\ovl{\ovl{A}}$.
Second line: in the shorter notation the closure operation is
order-preserving iff $A≤B$ implies $\ovl{A}≤\ovl{B}$; more formally,
if $(α:A \monicto C) ≤ (β:B \monicto C)$ implies $(\ovl{α}:\ovl{A}
\monicto C) ≤ (\ovl{β}:\ovl{B} \monicto C)$, where each `$≤$'s between
monics should be read as ``factors through''.
%D diagram ??
%D 2Dx 100 +25 +25 +25 +25 +25
%D 2D 100 A0 B0
%D 2D
%D 2D +25 A1 B1 B2 B3
%D 2D
%D 2D +20 C0 D0
%D 2D
%D 2D +25 C1 D1 D2
%D 2D
%D 2D +25 C2 D3 D4
%D 2D
%D 2D
%D ren A0 B0 ==> B B
%D ren A1 B1 B2 B3 ==> A A \ovl{A} \ovl{\ovl{A}}
%D ren C0 D0 ==> C C
%D ren C1 D1 D2 ==> B B \ovl{B}
%D ren C2 D3 D4 ==> A A \ovl{A}
%D
%D (( A1 A0 >-> .plabel= l α
%D B1 B0 >-> .plabel= l α
%D B2 B0 >-> .plabel= m \ovl{α}
%D B3 B0 >-> .plabel= r \ovl{\ovl{α}}
%D B1 B2 >->
%D B2 B3 <-> .plabel= a ≅
%D
%D A0 B1 midpoint .TeX= ⇒ place
%D C1 D0 midpoint .TeX= ⇒ xy+= 0 5 place
%D
%D C0 C1 <-< .plabel= r β
%D C0 C2 <-< .plabel= l α
%D C1 C2 <-<
%D D0 D1 <-< .plabel= m β
%D D0 D2 <-< .plabel= m \ovl{β}
%D D0 D3 <-< .plabel= l α
%D D0 D4 <-< .plabel= m \ovl{α}
%D D1 D2 >->
%D D1 D3 <-<
%D D2 D4 <-<
%D D3 D4 >->
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
\newpage
The best way to visualize the last rule is by a slight diagrammatic
abuse of of language. We start with a monic $γ:C→D$ and an arrow
$f:B→D$ that is not necessarily a monic, as below. We form their
pullback, and we call the arrow at the left wall $f^*(γ):A \monicto
B$. Let $\ovl{γ}:\ovl{C} \monicto D$ and $\ovl{f^*(γ)}:\ovl{A}
\monicto B$ be the closures of $γ$ and $f^*(γ)$. If we draw everything
as below then the natural way to draw the pullback of $\ovl{γ}:\ovl{C}
\monicto D$ by $f$ would be as an arrow $f^*(\ovl{γ})$ in the same
position as $\ovl{f^*(γ)}:\ovl{A} \monicto B$; what the rule
$\ovl{f^*(γ)}≅f^*(\ovl{γ})$ says is that $\ovl{f^*(γ)}$ and
$f^*(\ovl{γ})$ are isomorphic as subobjects of $B$ --- but we will
draw $\ovl{f^*(γ)}$ and $f^*(\ovl{γ})$ as if they were a single arrow.
%
%D diagram ??
%D 2Dx 100 +25 +25 +35 +25 +25 +25
%D 2D 100 E0 E1 F0 F1
%D 2D
%D 2D +20 F2 F3
%D 2D
%D 2D +20 E5 F4 F5
%D 2D
%D ren E0 E1 F0 F1 ==> B D B D
%D ren F2 F3 ==> \ovl{A} \ovl{C}
%D ren E5 F4 F5 ==> C A C
%D
%D (( E0 E1 -> .plabel= a f
%D E1 E5 <-< .plabel= l γ
%D F0 F1 -> .plabel= a f
%D F0 F2 <-< .plabel= m \phantom{mmmm}\ovl{f^*(γ)}≅f^*(\ovl{γ})
%D F0 F4 <-< .plabel= l f^*(γ)
%D F1 F3 <-< .plabel= r \ovl{γ}
%D F1 F5 <-< .plabel= l γ
%D F4 F5 ->
%D
%D E1 F4 midpoint .TeX= ⇒ xy+= -5 0 place
%D
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
We will usually draw that diagram as this, and omit the names of most,
or all, of its arrows.
%
%D diagram ??
%D 2Dx 100 +20 +20 +20
%D 2D 100 F0 F1
%D 2D
%D 2D +20 F2 F3
%D 2D
%D 2D +20 F4 F5
%D 2D
%D ren F0 F1 ==> B D
%D ren F2 F3 ==> \ovl{A} \ovl{C}
%D ren F4 F5 ==> A C
%D
%D (( F0 F1 -> # .plabel= a f
%D F0 F2 <-< # .plabel= m \phantom{mmmm}\ovl{f^*(γ)}≅f^*(\ovl{γ})
%D F0 F4 <-< # .plabel= l f^*(γ)
%D F1 F3 <-< # .plabel= r \ovl{γ}
%D F1 F5 <-< # .plabel= l γ
%D F2 F3 ->
%D F2 F4 <-<
%D F3 F5 <-<
%D F4 F5 ->
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
\section*{A J-operator induces a universal closure}
%D diagram ??
%D 2Dx 100 +20 +20 +20
%D 2D 100 F0 F1
%D 2D
%D 2D +20 F2 F3
%D 2D
%D 2D +20 F4 F5
%D 2D
%D ren F0 F1 ==> Q 1
%D ren F2 F3 ==> \ovl{P}∧Q \ovl{P}
%D ren F4 F5 ==> P∧Q P
%D
%D (( F0 F1 -> # .plabel= a f
%D F0 F2 <-< # .plabel= m \phantom{mmmm}\ovl{f^*(γ)}≅f^*(\ovl{γ})
%D F0 F4 <-< # .plabel= l f^*(γ)
%D F1 F3 <-< # .plabel= r \ovl{γ}
%D F1 F5 <-< # .plabel= l γ
%D F2 F3 ->
%D F2 F4 <-<
%D F3 F5 <-<
%D F4 F5 ->
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
%D diagram ??
%D 2Dx 100 +20 +20 +20
%D 2D 100 F0 F1
%D 2D
%D 2D +20 F2 F3
%D 2D
%D 2D +20 F4 F5
%D 2D
%D ren F0 F1 ==> Q 1
%D ren F2 F3 ==> \ovl{P}∧Q \ovl{P}
%D ren F4 F5 ==> P∧Q P
%D
%D (( F0 F1 -> # .plabel= a f
%D F0 F2 <-< # .plabel= m \phantom{mmmm}\ovl{f^*(γ)}≅f^*(\ovl{γ})
%D F0 F4 <-< # .plabel= l f^*(γ)
%D F1 F3 <-< # .plabel= r \ovl{γ}
%D F1 F5 <-< # .plabel= l γ
%D F2 F3 ->
%D F2 F4 <-<
%D F3 F5 <-<
%D F4 F5 ->
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
\end{document}
% __ __ _
% | \/ | __ _| | _____
% | |\/| |/ _` | |/ / _ \
% | | | | (_| | < __/
% |_| |_|\__,_|_|\_\___|
%
% <make>
* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-LATEXfile "2019planar-has-1.mk")
make -f 2019.mk STEM=2020closure-operator veryclean
make -f 2019.mk STEM=2020closure-operator pdf
% Local Variables:
% coding: utf-8-unix
% ee-tla: "clo"
% End: