Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020closures-and-J-ops.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020closures-and-J-ops.tex" :end)) % (defun D () (interactive) (find-pdf-page "~/LATEX/2020closures-and-J-ops.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020closures-and-J-ops.pdf")) % (defun e () (interactive) (find-LATEX "2020closures-and-J-ops.tex")) % (defun u () (interactive) (find-latex-upload-links "2020closures-and-J-ops")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020closures-and-J-ops.pdf") % (find-sh0 "cp -v ~/LATEX/2020closures-and-J-ops.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020closures-and-J-ops.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020closures-and-J-ops.pdf % file:///tmp/2020closures-and-J-ops.pdf % file:///tmp/pen/2020closures-and-J-ops.pdf % http://angg.twu.net/LATEX/2020closures-and-J-ops.pdf % (find-LATEX "2019.mk") % «.defs» (to "defs") % «.title» (to "title") % «.abstract» (to "abstract") % «.inclusions» (to "inclusions") % % «.yoneda» (to "yoneda") % «.and-and-imp» (to "and-and-imp") % «.canonical-subobjects» (to "canonical-subobjects") % «.subpoints» (to "subpoints") \documentclass[oneside,12pt,a4paper]{article} %\documentclass[oneside,12pt,a5paper]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu \newpage % «and-and-imp» (to ".and-and-imp") % (cljp 3 "and-and-imp") % (clj "and-and-imp") \section{Conjunction and implication} % «canonical-subobjects» (to ".canonical-subobjects") % (cljp 1 "canonical-subobjects") % (clj "canonical-subobjects") \section{Canonical subobjects} $\CanSub(E)$ is the set of canonical subobjects of $E$. The notation $D⊆E$ means $D∈\CanSub(E)$. If $D⊆E$ the canonical monic $D \monicto E$ is called an {\sl inclusion}. Pullbacks of inclusions are inclusions. All our arrows written as `$\monicto$' will be inclusions except where explicitly indicated. Using inclusions (almost) everywhere will let us use a set-theoretic notation for several operations -- for example, if $C,D⊆E$ then $C∩D$ is their product in $\CanSub(E)$ (a pullback!) and $C∪D$ is their coproduct. In diagrams: %D diagram ?? %D 2Dx 100 +25 +25 +25 +25 %D 2D 100 A0 A1 B0 B1 B2 %D 2D %D 2D +25 A2 A3 B3 %D 2D %D ren A0 A1 A2 A3 ==> C∩D D C E %D ren B0 B1 B2 B3 ==> C C∪D D E %D %D (( A0 A1 >-> %D A0 A2 >-> %D A1 A3 >-> %D A2 A3 >-> %D A0 relplace 7 7 \pbsymbol{7} %D %D B0 B1 >-> %D B1 B2 <-< %D B0 B3 >-> %D B1 B3 >-> %D B2 B3 >-> %D )) %D enddiagram %D $$\pu \diag{??} $$ \msk 1 is the (given) terminal object. A {\sl subterminal} is a canonical subobject of 1. The truth-values of \cite{PH1} and \cite{PH2} are subterminals here. % «subpoints» (to ".subpoints") \section{Subpoints} A {\sl subpoint} of $E$ is a canonical subobject of $E$ that is isomorphic to a subterminal. We write $\SubPoints(E)$ for the set of subpoints of $E$. The notation $R::E$ is an abbreviation for $R∈\SubPoints(E)$. \msk $E = \bigcup_{R::E} E_R$. $D = \bigcup_{R::E} D_R$. $D^E = \bigcup_{R::E} D_R {}^R$. If $C⊆D⊆E$ and $R::E$ then $C_R ⊆ D_R$ and $C_R {}^R ⊆ D_R {}^R$. If $C⊆D⊆E$ then $C^E = \bigcup_{R::E} C_R {}^R ⊆ \bigcup_{R::E} D_R {}^R = D^E$. $$\begin{array}{rcl} D^{EE} &=& (D^E)^E \\ &=& \bigcup_{R::E} (D^E)_R {}^R \\ &=& \bigcup_{R::E} (\bigcup_{S::E} D_S {}^S)_R {}^R \\ &=& \bigcup_{R::E} (\bigcup_{S::E} D_S {}^S {}_R)^R \\ &=& \bigcup_{R::E} (\bigcup_{S::E} D_{R∩S} {}^{R∩S})^R \\ &=& \bigcup_{R::E} (\bigcup_{Q::R} D_Q {}^Q)^R \\ &=& \bigcup_{R::E} ((D_R)^R)^R \\ &=& \bigcup_{R::E} D_R {}^R \\ &=& D^E \\ \end{array} $$ %D diagram ?? %D 2Dx 100 +20 +20 +20 +20 +20 +20 +20 %D 2D 100 A0 B0 %D 2D +20 A1 B1 %D 2D +20 A2 B2 %D 2D %D 2D +20 C0 D0 %D 2D +20 C1 D1 %D 2D +20 C2 D2 %D 2D %D ren A0 A1 A2 ==> D_{R∩S} D_{R∩S}{}^{R∩S} R∩S %D ren B0 B1 B2 ==> D_S D_S{}^S S %D ren C0 C1 C2 ==> D_R D_R{}^R R %D ren D0 D1 D2 ==> D D^E E %D %D (( A0 A2 >-> A0 A1 >-> A1 A2 >-> %D B0 B2 >-> B0 B1 >-> B1 B2 >-> %D C0 C2 >-> C0 C1 >-> C1 C2 >-> %D D0 D2 >-> D0 D1 >-> D1 D2 >-> %D A2 B2 >-> %D A2 C2 >-> %D B2 D2 >-> %D C2 D2 >-> %D %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +20 +20 +20 +40 +20 +20 +20 +20 %D 2D 100 A0 B0 C0 D0 %D 2D +20 A1 B1 C1 D1 %D 2D +20 A2 B2 C2 D2 D3 %D 2D %D ren A0 A1 A2 ==> Q Q^* 1 %D ren B0 B1 B2 ==> P P^Q=P^*{∧}Q Q %D ren C0 C1 C2 ==> R R^S S %D ren D0 D1 D2 ==> {\Can}R {\Can}R^{{\Can}S} {\Can}S %D %D (( A0 A2 >-> .plabel= l q %D A0 A1 >-> %D A1 A2 >-> .plabel= r \ovl{q} %D %D B0 B2 >-> .plabel= l p %D B0 B1 >-> %D B1 B2 >-> .plabel= r \ovl{p} %D %D C0 C2 >-> .plabel= l r %D C0 C1 >-> %D C1 C2 >-> .plabel= r \ovl{r} %D %D D0 D2 >-> .plabel= l p %D D0 D1 >-> %D D1 D2 >-> .plabel= r \ovl{p} %D %D )) %D enddiagram %D $$\pu \diag{??} $$ $\Clo$ \newpage % (larp 9 "21.2._lemma") % (lar "21.2._lemma") \printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020closures-and-J-ops veryclean make -f 2019.mk STEM=2020closures-and-J-ops pdf % Local Variables: % coding: utf-8-unix % ee-tla: "clj" % End: